
Learning active quasistatic physics-based models from data

SANGEETHA GRAMA SRINIVASAN and QISI WANG, University of Wisconsin-Madison
JUNIOR ROJAS, University of Utah
GERGELY KLÁR, Weta Digital
LADISLAV KAVAN, University of Utah
EFTYCHIOS SIFAKIS, University of Wisconsin-Madison and Weta Digital

Fig. 1. This paper explores the following proposition: given a data set of target poses of an active deformable model (top), can we learn a low-dimensional
control space that could reproduce them (bottom) in a physics-based way? The target poses are provided as surface meshes (top), and the reconstructions are
produced by a physics-based quasistatic simulator using tetrahedral meshes (bottom). In contrast to modeling approaches where users build anatomical
models from first principles, medical literature or medical imaging, we do not presume knowledge of the underlying musculature, but learn the structure and
control of the actuation mechanism directly from the input data.

Humans and animals can control their bodies to generate a wide range of
motions via low-dimensional action signals representing high-level goals.
As such, human bodies and faces are prime examples of active objects, which
can affect their shape via an internal actuation mechanism. This paper ex-
plores the following proposition: given a training set of example poses of an

Authors’ addresses: Sangeetha Grama Srinivasan; University of Wisconsin-
Madison, sgsrinivasa2@wisc.edu; Qisi Wang; University of Wisconsin-Madison,
qisi.wang@gmail.com; Junior Rojas, University of Utah, jrojasdavalos@gmail.com;
Gergely Klár, Weta Digital, gklar@wetafx.co.nz; Ladislav Kavan, University of Utah,
ladislav.kavan@gmail.com; Eftychios Sifakis, University of Wisconsin-Madison and
Weta Digital, sifakis@cs.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/8-ART1 $15.00
https://doi.org/10.1145/3450626.3459883

active deformable object, can we learn a low-dimensional control space that
could reproduce the training set and generalize to new poses? In contrast
to popular machine learning methods for dimensionality reduction such as
auto-encoders, we model our active objects in a physics-based way. We uti-
lize a differentiable, quasistatic, physics-based simulation layer and combine
it with a decoder-type neural network. Our differentiable physics layer natu-
rally fits into deep learning frameworks and allows the decoder network to
learn actuations that reach the desired poses after physics-based simulation.
In contrast to modeling approaches where users build anatomical models
from first principles, medical literature or medical imaging, we do not pre-
sume knowledge of the underlying musculature, but learn the structure and
control of the actuation mechanism directly from the input data. We present
a training paradigm and several scalability-oriented enhancements that al-
low us to train effectively while accommodating high-resolution volumetric
models, with as many as a quarter million simulation elements. The prime
demonstration of the efficacy of our example-driven modeling framework
targets facial animation, where we train on a collection of input expressions
while generalizing to unseen poses, drive detailed facial animation from
sparse motion capture input, and facilitate expression sculpting via direct
manipulation.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459883

1:2 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: physics-based animation, differentiable
physics, neural networks

ACM Reference Format:
Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav
Kavan, and Eftychios Sifakis. 2021. Learning active quasistatic physics-based
models from data. ACM Trans. Graph. 40, 4, Article 1 (August 2021), 14 pages.
https://doi.org/10.1145/3450626.3459883

1 INTRODUCTION
Many of the elastic deformable bodies used in graphics and visual
effects applications are active objects, in that their deformation is
the result of internal actuation mechanisms in addition to external
constraints such as forces, boundary conditions, or collisions. Hu-
man bodies and faces are prime examples of such active models, as
their apparent deformation is primarily driven by the action of the
underlying musculature, which is effectively the built-in actuation
mechanism. In graphics, it is common to construct such simulated
objects from first principles, by incorporating muscle geometry and
composition directly into Finite Element meshes and material mod-
els. This paper explores an alternative approach for learning how
to create and simulate such active models from data, seeking to
answer the question: Given a collection of shapes that an active object
takes in various scenarios and poses, and assuming they provide a
good sampling of its possible behaviors, can we infer an actuation
mechanism that explains and generalizes these demonstrations?
Our approach is built around a crucial, fundamental hypothesis.

We assume that the control parameters of the internal actuation
mechanism we seek to learn are low-dimensional in nature. There
is a clear motivation for this, inspired from anatomical models: the
apparent function and shape of human bodies and faces is traced
to the action of a finite number of active muscles. In our method,
we start by endowing our active model with extremely fine-grained
actuation mechanisms, akin to creating a completely independent
“muscle” for every tetrahedral element of a Finite Element simula-
tion mesh, similar in spirit to the work of Ichim et al. [2017] and
Klár et al. [2020]. We use a neural network to generate these fine-
grained actuation controls as a function of a low-dimensional set of
latent variables, that parameterize the control space of the object’s
actuation mechanism (Figure 2). The output of this network is fed to
a quasistatic, differentiable, Finite Element simulator that produces
the equilibrium shape produced by such controls, while resolving
additional physics constraints (e.g. boundary conditions, external
forces, collisions). After training, the neural network that maps the
latent parameters of the control space to the fine-grained actions
effectively becomes the model of the internal actuation mechanism.

The proposed methodology explicitly seeks to model and param-
eterize the control space of the actuation mechanism rather than the
space of shapes that the active model deforms into. In this aspect,
it deviates from neural network architectures (e.g. autoencoders)
that directly produce shape as output without incorporating a dif-
ferentiable simulator in their design. There are two factors that
motivate this design. First, by injecting a simulator layer into this
network we reduce the burden for the neural network to learn fun-
damental simulation mechanics, such as rotation invariance, energy

conservation, etc. Second, this architecture allows us to separate
the effect that measurable/knowable simulation parameters have
on the resulting simulated shapes, and focus the network on just
capturing the intricacies of the actuation mechanism itself. Consider
for example a training set consisting of the deformation of the skin
surface in a human body, corresponding to varied skeletal poses and
muscle action. If the skeletal motion was presumed to be known at
all times, both for the training data and any poses that we wish to
later generate, our architecture allows us to focus the expressive
ability of the neural network on just capturing the mechanics of
the active musculature. This would be in contrast to requiring ad-
ditional parameters to capture the dimensionality of the apparent
shape space of skin deformations which would be partly due to the
known skeletal motion. We believe that this separation of known
simulation factors or physics traits from the true latent parameters
of the underlying actuation facilitates learning from a reasonably
sized data set, and creates favorable conditions for generalization.
In this paper, we focus our investigation on physically-based

models that produce deformation via quasistatic simulation, a well-
represented approach in anatomy-driven animation for human bod-
ies and faces. We presume that a volumetric mesh representation
of the active object is available, e.g. a tetrahededral mesh of the
flesh volume for face or body models, along with any kinematic
constraints (e.g. bone attachments) that the user seeks to provide as
input. We require no prior knowledge of the geometry, composition
or control structure of the internal actuation mechanism – we do
not presume any internal musculature, or constrain our learning
process to an anatomical prior. Although our simulated models are
volumetric, we operate on training data given as surface shapes;
for the case of faces, we simulate volumetric flesh meshes but train
them using only shape data of the exterior skin surface. In contrast
to modeling approaches based on first principles, our scheme is able
to capture the behavior of such active objects driven by data alone,
without strict reliance on detailed knowledge of anatomy, material
constitutive laws, or intricacies of muscle control.

Core contributions of our work include:

• The design concept of a neural network that generates fine-
grained actuation signals as a function of a low-dimensional
latent descriptor of the action/actuation space, combined with
a quasistatic differentiable simulator.
• A training methodology for this network, bootstrapped by
an autoencoder that maps surface shapes to an initial approx-
imation of corresponding volumetric actions; this provides a
warm start to training the network via backpropagation.
• A number of algorithmic enhancements aimed at scalability,
that allow us to train volumetric face models with a quar-
ter million elements, and accelerate batch processing during
backpropagation.
• Demonstrations of the usability and applications of our sys-
tem in the context of facial animation, including approxima-
tions of unseen expressions, motion-capture driven anima-
tion, and expression sculpting using direct manipulation.

Finally, it should be highlighted that, while producing an paramet-
ric animated model that accurately matches training demonstrations
and generalizes well to unseen scenarios is a key objective, there are

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459883

Learning active quasistatic physics-based models from data • 1:3

initial configuration fine-grained actuationneural network final configuration

latent space

differentiable physics

Fig. 2. Schematic view of our pipeline. We model elastic objects discretized as tetrahedralized elements and endow each element with a fine-grained actuator
that can push it towards a prescribed target shape (“fine-grained actuation”); a differentiable simulator (“differentiable physics”) reconciles the elemental
actuation inputs, and produces a quasistatic output shape (“final configuration”). We use a decoder-type neural network to generate the fine-grained controls
from a low-dimensional latent space (_) that effectively encodes the structure of the final (coarse-grained) actuators. The network is trained on a collection of
final configurations representative of the desired behavior.

further reasons for pursuing a volumetric, physics-based descrip-
tion. After all, kinematic non-physics approaches, from traditional
blendshape solvers to newer techniques that can provide good lo-
calization of actions [Neumann et al. 2013] and reproduce detailed,
high-frequency features [Bailey et al. 2020] have an excellent record
in this space; such methods offer opportunities for highly efficient
animation and manipulation, and may also circumvent the need for
a full volumetric mesh as part of the pipeline. A key added benefit
of our proposed approach is the opportunity to further edit and
affect the animations using physics-based effects, such as detailed
resolution of collision, editing boundary conditions or mandible
kinematics while retaining an expression, adding external forces, or
modulating the activation signals themselves, while maintaining a
physically consistent simulated face shape.

2 RELATED WORK
Physics-based modeling and simulation of anatomical systems have
been studied for several decades [Barbarino et al. 2009; Flynn et al.
2015; Gladilin 2003; Stavness et al. 2014;Weiss et al. 1996; Zhang et al.
2019] and usually rely on expert operators who manually design
individual organ shapes (bones, muscles, ligaments, etc.), including
their connections and material parameters. Several modeling and
simulation platforms have been developed, such as FEBio [Maas
et al. 2017], SOFA [Faure et al. 2012], or ArtiSynth [Lloyd et al. 2012].
An important feature of physics-based simulation is the ability to
faithfully model effects such as contact and volume conservation,
which makes a difference in applications such as hand tracking
[Smith et al. 2020]. In this paper we propose to depart from these

traditional modeling paradigms and, instead, we aim to infer muscle
models from data using machine learning techniques, specifically, a
neural network coupled with a physics-based simulator.

Classical muscle models include the popular Hill-type models [Za-
jac 1989], which have been successfully used in both biomechan-
ics [Blemker 2004] and computer graphics [Sifakis et al. 2005; Teran
et al. 2003, 2005]. However, the behavior of muscles in vivo is poorly
understood mainly due to difficulties of obtaining experimental
data [Fan et al. 2014]. In this project we adopt a shape-targeting
approach to muscle modeling [Fan et al. 2014; Ichim et al. 2017;
Kadlecek and Kavan 2019; Klár et al. 2020; Nardinocchi and Teresi
2007]. In this family of models, muscle activations are modeled
as volumetric, typically fiber-aligned contractions of the rest pose.
Related models were also examined in physics-based animation to
generate example-based materials [Martin et al. 2011] and to control
active deformable objects to achieve specific animations [Coros et al.
2012; Tan et al. 2012]. The key difference of our approach is the
ability to learn a low-dimensional action space. Although there is
prior work applying dimensionality reduction methods to extract
muscle synergies from EMG data [Spüler et al. 2016] and to obtain
control policies for physics-based animation of articulated charac-
ters [Ding et al. 2015], in this paper we focus on dimensionality
reduction via differentiable simulation for active deformable models,
with an emphasis on facial animation.

Even though the expressions of the human face are driven by
muscles, early methods for facial modeling and animation relied
on direct, linear models [Blanz and Vetter 1999]. Blendshape-based
methods dating back to FACS [Ekman and Friesen 1977] continue
to be commonly used in the animation industries [Lewis et al. 2014].

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:4 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

Local models often provide higher expressivity and ability to gen-
eralize to even less common facial shapes [Tena et al. 2011; Wu
et al. 2016]. Deep learning methods enabled a new generation of
models that explain both geometry and appearance, in particular
“codec avatars” based on variational auto-encoders [Bagautdinov
et al. 2018; Lombardi et al. 2018], including advanced encoders us-
ing VR headsets [Wei et al. 2019] and explicit modeling of the eyes
[Schwartz et al. 2020]. Most recent morphable face models feature
impressive visual quality [Li et al. 2020a] even when learned from
just a single scan [Li et al. 2020b].
Animating the face using physics-based simulation with explic-

itly modeled muscles is a difficult problem, even though early work
on this topic demonstrated encouraging results [Sifakis et al. 2005].
About a decade later, the limitations of explicit muscle modeling in
targeting 3D facial scans were discussed, along with more expres-
sive muscle models such as “muscle tracks” [Cong et al. 2016] and
fine-grained per-tetrahedron activations [Ichim et al. 2016]. These
advances spurred renewed interest in physics-based animation of
the face [Kozlov et al. 2017; Lan et al. 2017] with more recent ap-
proaches proposing inverse modeling combining MRI and 3D scans
[Kadlecek and Kavan 2019]. Related to our approach is a differen-
tiable physics-based model capable of targeting a single image [Bao
et al. 2019], assuming that facial musculature is given. In this paper,
we also propose a differentiable simulator, but we focus on learning
the muscle model without making any anatomical assumptions.
We represent our muscle activation model by a neural network,

with parameters trained from data. This is related to well-known
generative models such as Generative Adversarial Networks [Ar-
jovsky et al. 2017; Goodfellow et al. 2014] and Variational Auto-
encoders [Doersch 2016; Kingma and Welling 2014], which are
generally applicable methods to discover latent structure in data,
such as collections of images. The key difference of our methodol-
ogy is that we explicitly endow our models with knowledge about
physics and its numerical solution in the case of quasistatics. Even
though physics invariants can be learned from data for simple me-
chanical systems [Schmidt and Lipson 2009], the problem becomes
more challenging for complex anatomical systems. Our main thesis
is that combining neural networks with physics-based priors will
improve their training and ability to generalize. Similar questions
have recently been studied also for other types of physics-based
simulation such as cloth [Geng et al. 2020].
Differentiable physics-based simulators are an active research

area because they enable the combination of the strengths of deep
learning frameworks with physics. Differentiable soft-body simu-
lators based on the material point method [Hu et al. 2020, 2019]
have proven useful for training soft robots, but the explicit time in-
tegration scheme with small time steps may require a lot of memory
and compute time to backpropagate through. Implicit integration
enables stable simulation with large time steps, but both the forward
and backward passes become much more complex to solve numeri-
cally [Geilinger et al. 2020; Hahn et al. 2019]. A recently published
paper developed concurrently with our work extends Projective Dy-
namics (originally proposed only for forward simulation [Bouaziz
et al. 2014]) to DiffPD, i.e., differentiable simulator which enjoys the
fast numerics of Projective Dynamics also in the backward pass.

3 BACKGROUND

3.1 Simulation framework
Following standard practices for mesh discretization and simulation
using tetrahedral elements [Sifakis and Barbič 2012], different elastic
materials can be defined in terms of an energy density function
Ψ : R3×3 → R (assuming 3D simulations) that represents the stored
elastic energy associated with the deformation gradient F𝑗 (x) ∈
R3×3 which characterizes the deformation of element 𝑗 due to an
arbitrary configuration of vertex positions x ∈ R3𝑛 , where 𝑛 is
the number of vertices. More precisely, the deformation gradient
Fj (X, x) is computed assuming a rest pose X ∈ R3𝑛 , but here we
omit X since it can be considered as a constant associated to a
particular model of interest. The total elastic energy of the body is
computed by a summation over all mesh elements 𝐸 (x) = ∑

𝑗 𝐸 𝑗 (x),
where 𝐸 𝑗 =𝑊𝑗Ψ(Fj (x)) is the energy associated to element 𝑗 and
𝑊𝑗 is its rest-pose volume. Forces are obtained by computing the
negative gradient of the energy with respect to vertex positions,
i.e. f (x) = −∇𝑥𝐸 (x). A quasistatic solution 𝜒 is a minimum of the
energy 𝐸 subject to boundary conditions C:

𝜒 = argmin
x∈C

𝐸 (x) (1)

We employ embedded volumetric simulation in our framework
[McAdams et al. 2011; Sifakis et al. 2007], motivated by the desire
to have simulation elements that are as well conditioned as possible
in their rest shape. We use simulation meshes that are derived from
regular lattices (BCC or Cartesian, in our examples) and use virtual
node methods to duplicate degrees of freedom to resolve topology
when needed, e.g. around the lips [Mitchell et al. 2015].

3.2 Actuation model
We adopt shape targeting [Klár et al. 2020] for our actuation model,
which can be defined by extending the conventional definition of
energy density function Ψ to depend not only on the deformation
gradient F but also on a shape target matrix St ∈ R3×3 for each
tetrahedron:

Ψ : R3×3 × R3×3 → R (2)

Ψ(F, S𝑡) = argmin
R∈𝑆𝑂 (3)

`∥F − RS𝑡 ∥2𝐹 (3)

It is our intent for S𝑡 to be a rotationally-invariant descriptor
of the shape that an element targets, as opposed to any specific
orientation, and the minimization formulation reflects exactly that.
With rotations factored away, we restrict St to be a symmetric 3 × 3
matrix, effectively reducing its degrees of freedom to 6.We represent
St as a vector b ∈ R6 using the following convention:

St =
©«

1 + b1 b2 b3
b2 1 + b4 b5
b3 b5 1 + b6

ª®¬ (4)

If we then concatenate the shape targets of all tetrahedra into a
single action vector a ∈ R6𝑢 , where 𝑢 is the number of tetrahedra,
we can reformulate the quasistatic solution 𝜒 from Equation 1 as a
function of a:

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Learning active quasistatic physics-based models from data • 1:5

𝜒 (a) = argmin
x∈C

𝐸 (x, a) (5)

which also implies that the force at the quasistatic equilibrium
configuration is zero:

f (𝜒 (a), a) = 0 (6)

3.3 Learning-based pipeline
Our project focuses on finding tetrahedral actions a ∈ R6𝑢 that can
reproduce desired poses t from a data set, specified as vertex posi-
tions. Note that because the number of tetrahedra𝑢 is typically large,
directly controlling a could be problematic. Instead, we introduce
a = 𝜋\ (_), a mapping from a low-dimensional latent vector _ ∈ R𝑧
to the high-dimensional action signal a, with learnable parameters
\ . We model 𝜋\ using a neural network as shown in Figure 3.

sim

Fig. 3. Learning-based pipeline. A decoder-type network maps a low-
dimensional latent vector _ to a full set of tetrahedral actions a that are
fed to a quasistatic simulator. The simulator produces a resulting pose 𝜒

which is used to compute a loss 𝐿 that measures the discrepancy between
the pose produced by the simulator and a given target pose.

Our problem formulation involves finding optimal values for _
and \ to minimize a loss function 𝐿 that penalizes the discrepancy
between poses in the training set t𝑖 and poses generated by the
quasistatic solver 𝜒 (a𝑖):

_∗, \∗ = argmin
_,\

∑
𝑖

𝐿(a𝑖 , t𝑖) (7)

𝐿(a𝑖 , t𝑖) = ∥𝜒 (a𝑖) − t𝑖 ∥2 (8)

a𝑖 = 𝜋\ (_𝑖) (9)
Note that \∗ is shared among all target poses, since it is a parameter
of the mapping 𝜋 , but _∗ includes one latent vector _∗

𝑖
for each

target pose ti. In other words, if the index 𝑖 corresponds to time, _𝑖
expresses temporal variation while the network 𝜋\ expresses spatial
variation (by mapping _𝑖 ∈ R𝑧 to a𝑖 ∈ R6𝑢 , where 𝑧 is much smaller
than 6𝑢).

3.4 Back-propagation through quasistatic solver
To solve the optimization problem formulated in Equation 7 using
gradient-based optimization, we need to compute 𝑑𝐿

𝑑a . We start by
observing that 𝑑f

𝑑a must be zero when evaluated at (𝜒 (a), a) since

the force f is zero at the quasistatic equilibrium configuration as
originally stated in Equation 6:

𝑑

𝑑a
f (𝜒 (a), a) = 𝜕f

𝜕x

����
(𝜒 (a),a)

𝑑𝜒

𝑑a
+ 𝜕f

𝜕a

����
(𝜒 (a),a)

= 0 (10)

Using Equation 10 we can then obtain a formula for 𝑑𝐿
𝑑a via the

following derivations (omitting the explicit evaluations at (𝜒 (a), a)
for conciseness):

𝑑𝜒

𝑑a
= − 𝜕f

𝜕x

−1 𝜕f
𝜕a

(11)

𝑑𝐿

𝑑a
=
𝑑𝐿

𝑑x
𝑑𝜒

𝑑a
= −𝑑𝐿

𝑑x
𝜕f
𝜕x

−1 𝜕f
𝜕a

(12)

As a final step, we take advantage of the fact that the stiffness
matrix −𝜕f/𝜕x is symmetric to rewrite Equation 12 as:

𝑑𝐿

𝑑a
= −

©«
𝜕f
𝜕x

−1

︸︷︷︸
R3𝑛×3𝑛

𝑑𝐿

𝑑x

T

︸︷︷︸
R3𝑛×1

ª®®®®®¬

T

︸ ︷︷ ︸
R1×3𝑛

𝜕f
𝜕a︸︷︷︸
R3𝑛×6𝑢

(13)

Considering the dimensionality and sparsity of 𝜕f
𝜕a , this last deriva-

tion is particularly useful to make the computation more efficient.
Note that 𝜕f

𝜕a is sparse because the action associated with each
tetrahedral element only affects the force on its four vertices. Al-
though previous works have used similar strategies based on im-
plicit differentiation to compute this derivative [Bern et al. 2017b,
2019, 2017a; McNamara et al. 2004; Sifakis et al. 2005; Wojtan et al.
2006], the learning-based approach that we propose to discover low-
dimensional latent spaces for active models with unknown structure
via neural networks and differentiable simulation has not been ex-
plored before, to our best knowledge.

To put this differentiation strategy in the context of deep learning
and back-propagation, we observe that the “forward pass” 𝜒 (a)
can be computed by running the physical simulator, and the “back-
ward pass” (which computes 𝑑𝐿

𝑑a assuming that 𝑑𝐿
𝑑x has already been

computed) is defined by Equation 13 and requires solving a linear
system. Note that computing the backward pass is possible because
we have access to an explicit definition of the force function f from
our physics-based model. With the forward and backward passes in
place, we can compose our physics-based quasistatic simulator with
neural networks and run back-propagation through the simulation
step.

4 SCALABILITY OPTIMIZATIONS
Some of the challenges associated with the effective training of
our pipeline are related to the scale of the training set we aspire
to accommodate. Specifically, we target high-resolution volumetric
simulation meshes (up to 250K tetrahedral elements in our principal
demonstrations), and training sets containing hundreds of frames
of sample surface deformations. This section describes the design
interventions and algorithmic enhancements that allowed us to

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:6 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

accommodate such training tasks on typical well-equipped GPU
workstations.

4.1 Batch-optimized computation

sim

Fig. 4. Several of the state variables in our training pipeline are provided
as batches. State variables in the batch include the latent parameters _,
the fine-grained actions a, and the corresponding result of the quasistatic
volumetric simulation 𝜒 . Our simulator is designed to support a batch of
frames and can accommodate a persistent collection of states for each frame
in the batch, thus speeding up training and inference.

We train the neural network on a collection of animation frames
corresponding to example surface deformations, with the objective
of optimizing the loss function collectively on all frames. As a con-
sequence, several of the state variables in our training pipeline are
provided as batches, with each instance in the batch corresponding
to a specific targeted animation frame. Those include the latent pa-
rameters (_𝑖), the fine-grained activations (a𝑖), and the correspond-
ing results of the quasistatic volumetric simulations (𝜒𝑖). During
training, we conceptually need to maintain several concurrent sim-
ulator instances, both for the purposes of forward evaluation (e.g.
update of the quasistatic simulation after any changes are made to
the latent parameters, during training) as well as back-propagation.
Note that, beyond such state variables that are directly referenced in
our neural net pipeline, there are intermediate, simulation-related
quantities (e.g. Polar Decomposition factors, force accumulators,
bone attachment targets and boundary conditions) that are also
maintained as a batch across animation frames.
In practice, instead of maintaining several concurrent and inde-

pendent instances of a simulator, we have adapted a single qua-
sistatic Projective Dynamics simulator engine to accommodate a
persistent collection of states corresponding to the various frames
of the animation used for training. Individual operations of this
engine (e.g. update of elemental rotations via Polar Decomposition,
calculation of elastic forces, etc.) can optionally be invoked on a spe-
cific frame (or “slice” of the batch), or collectively across all batches,
if such in-tandem execution provides performance benefits. We
will see that such aggregate execution of certain operations across
the entire batch is particularly meaningful in the back-propagation
stage, for the evaluation of gradients.

In practice, most operations associated with forward evaluation –
corresponding to an update of the quasistatic shape as a result of
change in the actuation parameters – are performed on one slice of

the batch at a time. This is due to the fact that there are adequate
opportunities for efficient parallelization of the relevant simula-
tion kernels by concurrently processing elements of the simulation
mesh, that we do not need to resort to processing different anima-
tion frames in parallel. This also allows us to iterate the Projective
Dynamics loop for as many times as needed for convergence on each
individual animation frame, and we do observe that some frames of
the animation certainly converge more rapidly than others.

Back-propagation involves substantially different circumstances
and operations, which demand more attention to yield good scal-
ability. In particular, the most expensive operation in the pipeline
is the inversion of the stiffness matrix K = 𝜕f/𝜕x in equation (13)
in the process of computing the gradient of the loss with respect to
the fine grained actions a. This situation is made more complex by
the fact that the stiffness matrix is, in fact, a function K𝑖 = K(𝜒𝑖)
of the quasistatic shape under the present value of the actions a𝑖 .
Essentially, for each instance in the training set we are called upon
to independently solve a system K𝑖h𝑖 = g𝑖 (where g𝑖 = 𝜕𝐿(𝜒𝑖)/𝜕x)
with a different coefficient matrix and right hand side for each frame.

Thankfully, we can leverage an iterative solution, in the spirit of
local defect correction schemes, which is similar to the local-global
iterative solution in forward simulation of Projective Dynamics.
Specifically, if we denote by K𝑃𝐷 the (constant; not deformation-
dependent) matrix used in the global step of Projective Dynamics,
we can solve the system K𝑖h𝑖 = g𝑖 using the iterative process:

Initialize h𝑖 ← 0;
// fixed iteration count

for 𝑘 = 1, 2, . . . , 𝑁 do
r← g𝑖 − K𝑖h𝑖 ; // matrix-free multiply with K𝑖

𝛿h← K−1
𝑃𝐷

r; // via Cholesky factorization
h𝑖 ← h𝑖 + 𝛿h

end

Du et al. [2021] provided a good intuitive explanation of this
iterative process; its convergence can be rigorously proven, tracing
its foundation to the stability properties of the local-global iteration
in forward simulation of Projective Dynamics. This methodology al-
leviates the need to construct or re-factorize every shape-dependent
stiffness matrix K𝑖 , as the matrix K𝑃𝐷 can be prefactorized in ad-
vance, and the product K𝑖h𝑖 can be computed in a matrix-free fash-
ion, as we do in our simulator (the product is in essence a force
differential, which can be computed according to the derivations in
Klàr et al. [2020]). In fact, under this formulation the most computa-
tionally expensive part of this solution (and of the back-propagation
algorithm, in general) is the solution of 𝛿h ← K−1

𝑃𝐷
r via forward-

and back-substitution on a precomputed Cholesky factorization,
which needs to be performed for every animation frame in the train-
ing set. However, since now the matrix to be inverted for all frames
in a batch has become the same, constant matrix K𝑃𝐷 , this task can
be recast as a forward- and back-substitution with multiple right
hand sides (as many as training frames). This is typically at least an
order of magnitude faster than solving each system independently;
the substitution operations are highly memory-bound when operat-
ing on a single right-hand-side, while using several allows this cost
to be amortized, with significant performance gains.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Learning active quasistatic physics-based models from data • 1:7

4.2 Matrix-free multiplication with force/action Jacobian

Equation (13) involves a multiplication of the vector h𝑖 = K−1
𝑖

𝜕𝐿 (𝜒𝑖)
𝜕x

(computed using the optimizations of the preceeding section) with
the Jacobian 𝜕f (𝜒𝑖 , a𝑖)/𝜕a to form the product h𝑇

𝑖
𝜕f
𝜕a . This is a chal-

lenging task in terms of efficiency; the Jacobian 𝜕f/𝜕a is a matrix
with such large dimensions (remember that a includes 6 scalars for
each tetrahedron) that could only realistically be stored in a sparse
format. The assembly of such matrix would be both cumbersome
and expensive, and would have to be repeated for each animation
frame, as this Jacobian is dependent on the current quasistatic shape,
which is different across the batch. All such matrices (which would
be very impractical to store) would have to be recomputed at every
back-propagation pass.

We circumvent such challenges by computing the product h𝑇 𝜕f
𝜕a

(we drop the animation frame indices 𝑖 , for simplicity) without
explicitly constructing the Jacobian 𝜕f/𝜕a, but instead applying it
to this algebraic operation in a matrix-free fashion. Let us start by
revisiting the equation of the Piola stress in our specific actuation
model [Klár et al. 2020]:

P(F, S𝑡) = 2` (F − R∗S𝑡).

Where R∗ is the rotational component of FS𝑡 . We observe that a
tetrahedron-specific shape target S𝑡 (corresponding to six of the
degrees of freedom in a, corresponding to the element in question)
will only induce stress – and thus, elastic force – on the same element.
This the Jacobian 𝜕f/𝜕a is conceptually assembled from elemental
contributions: each will be a sub-matrix which will be non-zero
only on the 6 columns corresponding to the actuation values of this
element, and the 3 × 4 rows corresponding to the forces on the four
tetrahedron vertices. It is thus sufficient to focus on the contribution
of each individual simulation tetrahedron to the product h𝑇 𝜕f

𝜕a ; all
such contributions will be additively combined. In doing so, we can
also restrict the vector h to just its values on the four vertices of the
element in question.
Thus, the 𝑖-th component of the product h𝑇 𝜕f

𝜕a is computed as:

h𝑇
𝜕f
𝜕a𝑖

=
𝜕

𝜕a𝑖
[h𝑇 f (x, S𝑡 (a))] = h𝑇 𝛿f (x, S𝑡 ;𝛿S𝑡 ←

𝜕S𝑡
𝜕a𝑖
)

Here, the derivative 𝜕S𝑡/𝜕a𝑖 – which is constant – is trivially com-
putable from Equation 4, while force differentials are directly com-
putable [Sifakis and Barbič 2012] from the differential of the Piola
Stress with respect to a variation 𝛿S𝑡 in the shape target. From the
definition of P previously given, this differential is given as:

𝛿P(F, S𝑡 ;𝛿S𝑡) = −2` (𝛿R∗)S𝑡 − 2`R∗ (𝛿S𝑡)

and, finally, the differential of the Polar Decomposition factor R∗
with respect to a variation in S𝑡 is (following the derivations of Klár
et al. [Klár et al. 2020]):

𝛿R∗ (F, S𝑡 ;𝛿S𝑡) = U∗{E : [K−1E𝑇 (U𝑇
∗ F𝛿S𝑡V∗)]}V𝑇

∗

where U∗,Σ∗,V∗ are the SVD factors of the product FS𝑡 , E is the
alternating tensor, and K = tr(Σ∗)I − Σ∗ [Klár et al. 2020]. All the
aforementioned calculations are easy to parallelize over the ele-
ments of the tetrahedral mesh, share computation among the partial
derivatives 𝜕/𝜕a𝑖 relative to the six components of the elemental

action parameter, and can be aggregated to compute the overall
product h𝑇 𝜕f

𝜕a without explicit formation of the force Jacobian.

4.3 Sparse layers
The architecture we would conventionally use for the decoder net-
work that is prefixed to the differentiable simulator would be one of
multiple layers, with fully-connected topology between successive
ones. The size, however, of our output layer (1.5M scalars, for our
250K element face model, with 6 scalars per tetrahedron) would
yield a prohibitive size and density of the network connections in
the last two layers (in our experience, a hierarchical, fully connected
network would exhaust the memory even of large-memory GPUs
with just a few tens of thousands of simulation elements).

sim

Fig. 5. The final layer in the decoder is a sparse layer with a custom con-
nectivity determined from the topological neighborhood of the volumetric
mesh. This design decision is important to allow us to scale the network to
output 1.5M scalars, required to specify a full set of tetrahedral actions.

In order to avoid this prohibitive storage and complexity cost, we
designed a custom, sparse topology, specifically for the last layer of
the decoder network (Figure 5). Our design was motivated by the
observation that, when training on more modest-resolution mod-
els that would be accommodated with a fully-connected network
topology, the actuation signals that were learned in neighboring sim-
ulation elements appeared to be, in general, highly correlated. We
hypothesized that an "upsampling" layer, that would have a sparse,
but localized connectivity would perform well in this instance. We
designed such a layer by using a regularly sampled subset of the
elements in our simulation mesh (see the conceptual illustration
in Figure 6; samples indicated by the small red circles), and associ-
ated each of these sparse samples with a node in the second-to-last
layer of the decoder network. Since we used embedded simulation
in our work, with lattice-derived embedding meshes, the chosen
samples among the simulation elements were simply chosen by
taking regular strides along the background Cartesian lattice.

For each element in this sparser set, we computed the topological
neighborhood, specifically in our examples a 9 × 9 box surrounding
each of the sparsely selected “centers”. The extent of this topologi-
cal neighborhood would be used to establish network connections
between nodes in the last two layers of the decoder; a node on the
second-to-last layer would be connected only to those nodes on the
last layer that would be interpreted as belonging in the topological
neighborhood of the sparsely sampled node. In a sense, the topol-
ogy has a conceptual similarity to that of a convolutional network,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:8 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

but with a distinct convolution stencil associated with each node
in the interior layer, and weights that are learned during training.
We found this paradigm to be very effective in our face simulation
examples, while allowing high-resolution simulation models to be
used within our pipeline.

Fig. 6. Leveraging our observation that fully-connected networks when
trained on modest resolution models learn highly correlated actuation sig-
nals around their neighborhood, we select centers (colored dots) in a sparse
manner and a neighborhood around them (dotted squares) to establish
custom connectivity for the sparse layer. Note that the number of neighbors,
and hence the kernel size, is not the same for each cluster center.

5 TRAINING METHODOLOGY
In this section we present specific design choices for our network
training strategy, mainly aimed at bootstrapping the training pro-
cess with good quality initialization, and improving data fit and
generalization. We highlight this process with a focus on our data
set of facial expressions; this collection included 694 frames in var-
ied facial expressions, which were separated into 533 frames for
training, and 161 frames held aside for testing.

5.1 Initialization via an auto-encoder (no simulation)
Although our end-to-end training training procedure involves a de-
coder network followed by the differentiable simulator, as originally
presented in Figure 3, we used an auto-encoder-type network to
train the decoder without using the simulator as an initialization
step. This network receives as input a surface with a facial expres-
sion, and outputs the fine-grained elemental actuations that should
result in the same expression resulting from volumetric, physics-
based simulation. Of course, we do not have ground truth data for
these actions. Moreover, actions that would produce that (or any
other) surface deformation are not uniquely defined: In our mesh the
degrees of freedom in the fine-grained actuation descriptor (a) are
about 10 times as many as the ones in the quasistatic simulation re-
sult (𝜒). As a consequence, any given simulated shape corresponds to
an entire (nonlinear, and multi-dimensional) manifold of elemental
actions that would yield exactly the same equilibrium configuration

Fig. 7. The raw input to our pipeline is a surface mesh that specifies a target
pose (left). In order to generate pairs of target poses and actions for our
initial training procedure, we use a tetrahedral mesh (right) to target the
surface pose (left) with the help of targeting springs with zero rest-length
and compute the actuation for the corresponding pose from this deformed
tetrahedral mesh.

– the difference being that different actions would reproduce the
same shape with different degrees of tension throughout the model.

Even if ground-truth elemental actions are rather elusive, for the
reasons we described, we still seek to furnish at least a plausible
approximation of them, constructed from the input surface data. If
we had such an approximation, and with the understanding that
the result of this stage would simply be used for warm-starting
the training of our end-to-end pipeline, we have the opportunity
to train the auto-encoder network, as shown in Figure 8, without
incorporating simulation in the training process. This training pro-
cess is faster, and can be used to experimentally probe what is an
appropriate dimension of the bottleneck of this auto-encoder, which
will ultimately become the dimension of the latent parameter vector
in our original (simulator-integrated) network.
We fabricate the approximation of elemental actions needed for

this supervised training by a physics-based extrapolation of the
surface deformation provided as input, into a corresponding defor-
mation of the volumetric simulation mesh. We do so by attaching
“targeting springs” with zero rest length between the surface vertex
locations in the input animation, and the corresponding locations
on the flesh surface embedded on our volumetric simulation mesh;
we thus “drag and stretch” the volumetric simulation mesh to match
the surface deformation given as input, see Figure 7. While doing
so, we enforce any boundary conditions on skeletal attachments in
the inner part of the flesh volume, and apply no muscle action in
our actuation model; effectively the flesh material is pure corotated
elasticity in this exercise. When we obtain a converged quasistatic
simulation from this targeting operation, we extract the deformation
gradient of each tetrahedron in the simulation mesh, and use the
symmetric part from its polar decomposition as the approximate
shape target S𝑡 we will use to train our auto-encoder.

It should be emphasized that the fine-grained muscle actions thus
computed are just an approximation of what true actions would have
corresponded to a volumetric simulation that closely approximates
the input surface shape. In particular, the actions thus computed

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Learning active quasistatic physics-based models from data • 1:9

would bring the volumetric mesh towards the desired shape while
exhibiting zero stress or tension. To put it in other terms, such fine-
grained actions would have resulted in tetrahedral forces that are
equal to zero, individually on every simulation element (as opposed
to simply canceling out from the contributions of neighboring el-
ements, but still exhibiting some tension). In our experiments we
observed both positive and negative impacts of this approximation:
the decoder trained via this process appeared to generally produce
rather acceptable actions, especially in their ability to fit the training
set, but was far from perfect when applied to data unseen in training
(especially in poses with high flesh tension, as a wide opening of
the mouth), as evaluated by simply taking the actions output by
the auto-encoder and feeding them through a forward simulator.
Nonetheless, despite the inaccuracies inherent in this first stage of
training, the weights of the decoder network computed as part of
this auto-encoder architecture proved to be a very effective initializa-
tion for the end-to-end training of our primary network architecture,
which combines the decoder with a differentiable simulator.

We use a 𝛽-variational auto-encoder [Higgins et al. 2017] with
2 hidden layers in the encoder, 3 hidden layers in the decoder and
a latent dimension of 60. All the layers of the encoder and all but
the last layer of the decoder are fully-connected. The final layer of
the decoder is designed to be a sparse layer by specifying custom
connections between the neurons in the second to last layer and the
last layer as illustrated in 5. The surface displacement is given as
input to the encoder (76557 scalars, corresponding to 25519 surface
vertices in 3D) and actions for each tetrahedral element are produced
as output by the decoder (1475904 scalars). The encoder has 2 hidden
layers with 4096 neurons in the first layer and 512 neurons in the
second layer. Since we fixed the latent parameter dimension to 60,
the output of the encoder is composed of 120 neurons (60 neurons for
the mean and 60 neurons for the variance). The decoder has 3 hidden
layers with 256, 4096 and 10224 neurons, followed by a sparse layer
as described in Section 4.3. All the hidden layers use Leaky RELU
activations. During every training epoch, the input is fed into the
encoder which outputs 2 values: mean and variance, which are then
used to sample from a normal distribution via the commonly used
reparameterization trick [Kingma and Welling 2014]. The generated
latent parameters _ are then fed into the decoder which outputs
actions a. To train the weights of this network, we compute the
loss on the output actions and the KL-Divergence of the latent
parameters, to measure how far their distribution is from the prior.
This KL-Divergence term is also scaled by a hyperparameter 𝛽

which encourages disentanglement between the latent parameters.
We experimented with different 𝛽 values for training and fixed 𝛽

to be 0.01 for this dataset. We used Adam [Kingma and Ba 2015] to
train the network weights, with a learning rate of 10−5, and 𝛽1 = 0.9
and 𝛽2 = 0.999 for the running averages of the gradient and squared
gradient. The sparsity introduced in the final layer of the decoder
permitted us to train the network on a GPU using a batch size of
30, for a data set with 533 training samples. In the inference stage,
the mean produced by the encoder for each input, is used as the
latent parameter vector _ and fed into the decoder, followed by the
simulator to reconstruct the input shape.

Fig. 8. As an initialization step, we used an auto-encoder network to train
the decoder 𝜋\ without using the simulator. This network takes as input
a facial expression t (specified as vertex positions of the surface mesh),
and outputs the fine-grained elemental actuations a. We used a variational
auto-encoder, which generates the latent variable _ by sampling from a
normal distribution whose mean and variance are produced as outputs of
the encoder 𝑔𝛾 (sampling procedure not shown in the figure).

5.2 Training via differentiable simulator
We use the weights for the decoder network from the auto-encoder
trained via the procedure described in Section 5.1, and use them to
warm-start an end-to-end training process on our intended network
design that combines the decoder with a differentiable simulator,
as depicted in Figure 4. During training of this network, both the
weights of the decoder network and the values of the latent parme-
ters (_) will be updated to better incorporate the effect of the simu-
lator stage in the quasistatic shapes produced. We clarify that while
only a single set of decoder network weights will result from this
training, an entire batch of latent vectors will be optimized, each
corresponding to a frame of the training set. The loss function itself
is defined in terms of the discrepancy between the simulated and
targeted surface vertex positions:

𝐿 =
∑
𝑖

𝐿(a𝑖 , t𝑖) (14)

𝐿(a𝑖 , t𝑖) = ∥𝜒 (a𝑖) − t𝑖 ∥2 (15)
a𝑖 = 𝜋\ (_𝑖) (16)

where t𝑖 , 𝜒 (a𝑖), a𝑖 , and _𝑖 are respectively the target surface ver-
tex locations, their quasistatic simulated counterparts, the fine-
grained actuations, and the low-dimensional latent parameters asso-
ciated with the 𝑖-th frame of the training set. Exploiting the batch-
optimized computation design of the simulator engine, we train
the latent parameters and the decoder weights with a batch size of
30. To accommodate 533 training samples, we use 18 simulator in-
stances. Since each simulator instance has persistent per-frame data
required for simulation, maintaining a separate simulator instance
for each batch speeds up the training pipeline. Another trick we use
to speed up training is to customise the number of iterations for
forward and backward passes in the simulator. Since we only need
the direction of descent during training, with a small learning rate,
we are able to train the model, without requiring the backward and
forward passes through the simulator to converge completely. We
used the Adam [Kingma and Ba 2015] optimizer to train the decoder
network and used different learning rates for updating the decoder

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:10 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

weights and the latent parameters. We used a learning rate of 10−5
for the decoder weights and 10−3 for the latent parameters. We used
the same values of 𝛽1 and 𝛽2 that we used for the auto-encoder
training, and we also used L2-regularization, with a regularization
factor of 10−1, for both cases. Since we warm-start the training from
the auto-encoder network, the end-to-end training of the decoder
network requires fewer epochs. We train the decoder network on
our dataset for 175 epochs. We also point out that the autoencoder
network was trained with data (for its output) that were fabricated
using a simplifying hypothesis, rather than corresponding to a hard
ground-truth: we relaxed a volumetric mesh targeting the frontal
surface and used the converged element shapes as shape targets. In
doing so, we make a highly heuristic assumption that such shapes
are reached with each element being tension-free (as opposed to
having forces that balance out across neighboring elements). It is
important to note that the loss function used in training this autoen-
coder was defined directly on these elemental shape targets, while
for the end-to-end training, the loss is defined on the quasistatic
simulated surface shape. In our examples, we observed that the prior
auto-encoder training consistently generated a high-quality warm
start for the training of this simulator-integrated network.

5.3 Optimizing for latent variables on unseen data
Our goal with the decoder training process was to capture some
internal structure of the active object. To further explore the proper-
ties of the learned latent spaces, we perform additional experiments
where we fix the parameters of the decoder network 𝜋\ ∗ and run
a new optimization process to find optimal latent variables _∗ that
best match a new target expression t∗

_∗ = argmin
_

∥𝜒 (𝜋\ ∗ (_)) − t∗∥2 (17)

Of course, the data target t∗ involved in this optimization would
be some unseen expression, not necessarily a part of the training
set. Intuitively, here we keep the learnt actuation mechanism fixed,
as resulting from the training of our network, and only focus on
determining the latent parameters that drive this mechanism to a
given pose; essentially a standard problem of inverse control for a
given actuation mechanism. We note that the norm in Equation 17
could be taken either over the entire frontal surface vertices (if
we wish to “project” an input expression to our action space), or
a sparse subset thereof (e.g. for expression reconstruction from
motion capture data, or sculpting from direct manipulation of a
small number of vertices). For motion capture, we use 35 sparse
markers as shown in Figure 11 and use unseen poses from the
test data to simulate motion capture data. We include only these
35 markers in the norm in Equation 17 and find the set of latent
parameters that best fit the specified marker positions. We use the
Adam [Kingma and Ba 2015] optimizer with a learning rate of 10−1
to optimize the latent parameters in the inverse control setup.

6 EXPERIMENTS AND EVALUATION
We draw our primary set of examples from facial animation, with
an additional controlled experiment on simulated, synthetic data
on a human limb.

Fig. 9. Using our differentiable simulator, we can produce a more accurate
reconstruction (right) of the target expression (left) than an auto-encoder
which only operates on surface shapes and was not trained using the differ-
entiable simulator (middle). The colors indicate reconstruction error, where
blue means low error and red means high error.

Fig. 10. Our trained model can be used to generate physically plausible
expressions via direct manipulation of sparse targets (blue and green mark-
ers). The top 3 images (left-to-right) show results from our pipeline after
manipulating the green marker. The bottom 3 images (left-to-right) show
the results from our pipeline after manipulating the blue marker, while
keeping the green marker fixed.

6.1 Facial animation examples
We draw upon a training set of facial performance data, acquired
from an actor that was instructed to articulate their face between
several expressive poses. Our training set includes 694 frames, 533 of
which are used for training, and 161 frames for testing. The data set
we had at our disposal had kinematic information for the mandible,
thus boundary conditions associated with skeletal attachments were
presumed known at all time. We employ embedded simulation on a
background (embedding) simulation mesh constructed from a BCC

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Learning active quasistatic physics-based models from data • 1:11

Fig. 11. Motion Capture. One of the applications of our pipeline is to target
unseen poses using motion capture markers. The position of the markers
(shown on the right) from the unseen pose (left) is given as input to our
system. The output from our pipeline is on the right. The red markers corre-
spond to vertices of the surface reconstructed by our embedded simulation
and the blue markers correspond to the target positions.

lattice template, with a total of 246K tetrahedral elements and 52K
vertices. Our supplemental video provides footage associated with
the following experiments and evaluation exercises:

Construction of approximate shape targets. As detailed in Sec-
tion 5.1, we perform a simulation-based extrapolation of the surface
data into a volumetric deformation, by targeting the skin surface
embedded on the simulationmesh towards the shape provided in the
training data (using zero-restlength springs). Approximate shape
targets are constructed from the symmetric part of the polar decom-
position of the deformation gradient for each simulation tetrahedron.
We observed that the use of highly regular, uniform tetrahedra with
good aspect ratios was particularly important for our system to have
good training and reconstruction performance, hence our choice to
use embedding. Prior experiments with conforming meshes with
non-ideal aspect ratios would create approximate actions with range
beyond what is intutively expected – a way to interpret this is that
a flat or sliver tetrahedron might need to scale one of its dimensions
very drastically even to assume a shape that is not very remote from
its rest shape in absolute distance terms. Our embedded simulation
enjoyed very stable performance in this step. Our video depicts the
results of this volumetric extrapolation of the training shapes.

Autoencoder training and evaluation. In accordance with Sec-
tion 5.1 we train an autoencoder that maps surface shapes to es-
timated tetrahedral actions, supervised during training using the
elemental shape targets just computed. Even though this network is
trained without the intervention of a simulator stage, we can simply
take the resulting fine-grain controls and feed them to a simulator,
in order to visually assess how close the result is to the surface
originally given as input (Figure 9). Each epoch of training for the
autoencoder takes around 23s on an NVidia Quadro RTX 8000 GPU.
In our video, we examine the reconstruction accuracy of this step,
both for the training and test datasets.

End-to-end training via simulation. Using the decoder stage of the
autoencoder just trained as initialization, we assemble our decoder-
simulator network and continue to train it via backpropagation
as in section Section 5.2. Training 533 frames on Intel i9-9940X
CPU (28 cores, 3.30GHz) takes 1603.92s. Our video demonstrates
the reconstruction error of this network, and compares it with the
prior result of only using the autoencoder controls.

Inverse control. New poses can be fit against our trained model,
by keeping the decoder weights fixed, and optimizing for the latent
parameters that yield the best fit.We evaluate this task on our end-to-
end trained network, and also contrast to an alternative autoencoder
that could be crafted with no simulation (or volumetric deformation)
in the loop, that simply performs dimensionality reduction of the
animation samples to the same number of parameters as our latent
control dimension. We observe our system to be generally superior,
and especially so in frames that have mandible motion. It should also
be noted that our system provides a full physics-based, simulation-
oriented description of the expression, which can be manipulated in
additional useful ways, such as incorporating collisions, constraints,
volume conservation, etc.

Motion capture and direct manipulation. One very practical ap-
plication of a parametric, controllable face puppet as the one we
effectively learn from data would be the generation of detailed facial
expressions from sparse motion capture data. We emulate such a
scenario by capturing the trajectories of a small set of hand-selected
“marker locations” from input shapes that were not part of the train-
ing set (effectively, a sparse sampling of unseen data that was also
used in our prior reconstruction experiment). We then formulate a
loss function that seeks to optimize the sum of squared distances
between the target markers and their simulated counterparts, and
optimize the latent parameters to compute a fit (Figure 11). Our
results, which can be seen in our video, illustrate that even a sparse
marker set articulates the face model in a way that allows detailed
features such as folds, bulges and wrinkles to realistically emerge.
Finally, we also demonstrate a “direct manipulation” session, where
an artist might directly sculpt a facial expression by dragging a
mesh vertex (Figure 10), while traversing the parameter space of
this puppet (which, in our case, is action- and simulation-driven, as
opposed to procedural blendshapes).

Fig. 12. Muscle-driven simulation of the arm. We included four active mus-
cles: the biceps, triceps, brachialis, and brachioradialis.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:12 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

6.2 Learning a synthetic elbow model
The facial dataset we had at our disposal included skeletal motion
(for the mandible) to a relatively small degree, and for a smaller
fraction of the available frames. We wanted to evaluate the ability
of our model, which is action-centric as opposed to pose- or shape-
centric, to learn the actuation mechanism even in the presence
of substantial (albeit, known) skeletal motion. For this specialized
example, we created our training set by muscle-driven simulation
on the upper extremity; we included four active muscles: the biceps,
triceps, brachialis, and brachioradialis shown in Figure 12. For this
experiment we create a tetrahedral embedding mesh 130K elements
and approximately 75k degrees of freedom in total. We simulated a
sequence where the four muscles activate with a sinusoidal temporal
pattern, with different period for each, and also a different period
for the kinematic bending of the elbow joint. We repeated the same
pipeline as in our facial examples, and demonstrate the performance
of our model to fit unseen poses, beyond those in the training set.

7 LIMITATIONS AND FUTURE WORK
A notable characteristic of our approach that could variably be con-
sidered either as a limitation or a possible trait of versatility is that
when we use our framework to approximate a model for which we
have a strong anatomical prior (e.g. muscle-driven bodies or faces)
we do not have explicit guarantees that the actuation system we
will infer will be identical, or even similar enough to the anatomical
ground-truth. A good example of this is the frontalis muscle, and its
action in generating corrugations in the forehead. The muscle itself,
structured largely as a sheet, is relatively simple in its operation
(produces a contractile potential along largely parallel lines). The
high-level observed effect (forehead wrinkles) is a consequence of
many additional contributing factors: inextensibility of the skin
surface, sliding on top of the cranium, and the effect of connective
tissue. If our simulation model does not explicitly incorporate these
anatomical factors (and our tetrahedral simulation mesh consciously
does not), it is quite likely that the mechanism that will be deduced
from data would be one that directly triggers the formation of wrin-
kles by shearing elements to create bending and folding of skin.
This can be a disadvantage, when conforming to the anatomically
accurate structures is important, which could be the case, for exam-
ple if we want to have the ability to warp this actuation system to
another human subject or non-human creature, or if we wanted the
control parameters of such different models to be analogous. On
the other hand, the fact that we are not constrained to be anatomi-
cally accurate alleviates the need for perfect geometric modeling
of anatomy, and still gives us the possibility to generate a plausible
physics-based expression space.
The use of shape targeting [Ichim et al. 2017; Klár et al. 2020]

as the underlying fine-grained actuation model was motivated by
its stability properties and the moderate nonlinearity it involves.
It has also been argued [Klár et al. 2020] that it is a plausible gen-
eralization of fiber-based muscle actuation models. It does come,
however, with certain limitations; principal among them is that the
“action” of the contractile elements principally dictates their desired
rest shape, not their stiffness! For certain parts of anatomical models,
the distinction is substantial: tendons are characterized by their

highly anisotropic stiffness, and modeling them as such is essential
to their biomechanical function (including their ability to generate
adequate torque to move the skeleton). Since our actuation mecha-
nism is primarily geared towards creating shapes rather than forces,
it is questionable if our approach would be directly applicable to a
musculoskeletal application where the primary function would be
supporting skeletal motion (as opposed to deforming the skin). It
would be a fascinating topic of inquiry to explore learning-based
models that would be capable of also attenuating their stiffness, and
inferring such properties from data.

Finally, our examples in this iteration of our work do not include
collision effects as a component of the training process, or the refine-
ment process that determines the values of the latent parameters
that best fit an unseen face shape. We do include some demon-
strations of collision processing as a post-process (while replaying
precomputed elemental actions), but not as a part of our optimiza-
tion pipeline. We do, in fact, suffer some isolated consequences of
this omission, for example, the absence of lip/gum collisions in the
jaw makes it difficult to have a good match with the animation data
in scenarios where the jaw is widely open. Although this is a feature
that is presently not incorporated into our pipeline, we strongly be-
lieve that our physics-based approach creates much more favorable
conditions for either training models through scenarios that involve
collision, or reconstructing expressions (e.g. via motion capture)
while respecting collisions. Since we have seen examples of inverse
control in the presence of self- and body-collisions [Sifakis et al.
2005], it is reasonable to expect that tuning the latent parameters of
a pre-learned mechanism to target poses through collisions should
be quite possible. Training will be more challenging; one immediate
impact in our approach would be compromising the opportunity
to reuse the same, constant, pre-factorized matrix from the global
step of Projective Dynamics when evaluating the gradients for back-
propagation; this would, however, be a fascinating opportunity for
research that would unlock significant new capabilities.

ACKNOWLEDGEMENTS
We thank Luca Fascione and Stephen Cullingford for valuable contri-
butions on assets and administrative support. This research was sup-
ported in part by National Science Foundation grants CCF-1812944,
IIS-1763638, IIS-1764071, IIS-2008915, IIS-2008564 and IIS-2008584.

REFERENCES
Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative

adversarial networks. In International conference on machine learning. 214–223.
Timur Bagautdinov, Chenglei Wu, Jason Saragih, Pascal Fua, and Yaser Sheikh. 2018.

Modeling Facial Geometry Using Compositional VAEs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Stephen W. Bailey, Dalton Omens, Paul Dilorenzo, and James F. O’Brien. 2020. Fast and
Deep Facial Deformations. ACM Trans. Graph. 39, 4, Article 94 (July 2020).

Michael Bao, Matthew Cong, Stephane Grabli, and Ronald Fedkiw. 2019. High-Quality
Face Capture Using Anatomical Muscles. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

GG Barbarino, M Jabareen, J Trzewik, A Nkengne, G Stamatas, and E Mazza. 2009.
Development and validation of a three-dimensional finite element model of the face.
Journal of biomechanical engineering 131, 4 (2009), 041006.

James Bern, Grace Kumagai, and Stelian Coros. 2017b. Fabrication, Modeling, and Con-
trol of Plush Robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 3739 – 3746. 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2017); Conference Location: Vancouver,
Canada; Conference Date: September 24-28, 2017.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Learning active quasistatic physics-based models from data • 1:13

Fig. 13. Left-to-right. Tetrahedral mesh (column 1) deformed to match the surface poses (column 2). Output form the auto-encoder is shown in column 3.
Reconstructions form the end-to-end trained decoder network is shown in column 4. Column 5 shows the result after refining the latent parameters on unseen
poses from test data.

JamesM Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory optimization
for cable-driven soft robot locomotion. Proceedings of Robotics: Science and Systems
(2019).

James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017a. Interactive Design of
Animated Plushies. ACM Trans. Graph. 36, 4, Article 80 (July 2017), 11 pages.

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 187–194.

Silvia Salinas Blemker. 2004. 3D modeling of complex muscle architecture and geometry.
Ph.D. Dissertation. Stanford University.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: fusing constraint projections for fast simulation. Proc. of ACM
SIGGRAPH 33, 4 (2014).

Matthew Cong, Kiran S Bhat, and Ronald Fedkiw. 2016. Art-directed muscle simulation
for high-end facial animation. 119–127.

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher,
Robert Sumner, andMarkus Gross. 2012. Deformable objects alive! ACMTransactions
on Graphics (TOG) 31, 4 (2012), 69.

Kai Ding, Libin Liu, Michiel van de Panne, and KangKang Yin. 2015. Learning Reduced-
Order Feedback Policies for Motion Skills. In Proceedings of the 14th ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:14 • Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis

’15). Association for Computing Machinery, New York, NY, USA, 83–92.
Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908 (2016).
Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and

Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics with Contact.
arXiv:2101.05917 [cs.LG]

Paul Ekman and Wallace V Friesen. 1977. Facial action coding system. (1977).
Ye Fan, Joshua Litven, and Dinesh K Pai. 2014. Active volumetric musculoskeletal

systems. Proc. of ACM SIGGRAPH 33, 4 (2014), 152.
François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard, Benjamin Gilles,

Stéphanie Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet,
Igor Peterlik, et al. 2012. Sofa: A multi-model framework for interactive physical
simulation. In Soft tissue biomechanical modeling for computer assisted surgery.
Springer, 283–321.

Cormac Flynn, Ian Stavness, John Lloyd, and Sidney Fels. 2015. A finite element model
of the face including an orthotropic skin model under in vivo tension. Computer
methods in biomechanics and biomedical engineering 18, 6 (2015), 571–582.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body
systems with frictional contact. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1–15.

Zhenglin Geng, Daniel Johnson, and Ronald Fedkiw. 2020. Coercing machine learning
to output physically accurate results. J. Comput. Phys. 406 (Apr 2020), 109099.

Evgeny Gladilin. 2003. Biomechanical modeling of soft tissue and facial expressions
for craniofacial surgery planning. Freien University, Berlin (2003).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
Advances in neural information processing systems. 2672–2680.

David Hahn, Pol Banzet, James M Bern, and Stelian Coros. 2019. Real2sim: Visco-elastic
parameter estimation from dynamic motion. ACM Transactions on Graphics (TOG)
38, 6 (2019), 1–13.

I. Higgins, Loïc Matthey, A. Pal, C. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed,
and Alexander Lerchner. 2017. beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework. In ICLR.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. In International Conference on Learning Representations.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. Chainqueen: A
real-time differentiable physical simulator for soft robotics. In 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 6265–6271.

Alexandru Ichim, Ladislav Kavan, Merlin Nimier-David, and Mark Pauly. 2016. Building
and Animating User-Specific Volumetric Face Rigs.

Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace:
Physics-based face modeling and animation. ACM Transactions on Graphics (TOG)
36, 4 (2017), 153.

Petr Kadlecek and Ladislav Kavan. 2019. Building Accurate Physics-Based Face Models
from Data. In Symposium on Computer Animation.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings.

Gergely Klár, Andrew Moffat, Ken Museth, and Eftychios Sifakis. 2020. Shape Tar-
geting: A Versatile Active Elasticity Constitutive Model. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Talks (SIGGRAPH ’20).
Association for Computing Machinery, Article 59, 2 pages.

Yeara Kozlov, Derek Bradley, Moritz Bächer, Bernhard Thomaszewski, Thabo Beeler,
and Markus Gross. 2017. Enriching Facial Blendshape Rigs with Physical Simulation.
In Computer Graphics Forum, Vol. 36. Wiley Online Library, 75–84.

Lana Lan, Matthew Cong, and Ronald Fedkiw. 2017. Lessons from the evolution of
an anatomical facial muscle model. In Proceedings of the ACM SIGGRAPH Digital
Production Symposium. ACM, 11.

John P Lewis, KenAnjyo, Taehyun Rhee,Mengjie Zhang, Frederic H Pighin, and Zhigang
Deng. 2014. Practice and Theory of Blendshape Facial Models. Eurographics (State
of the Art Reports) 1, 8 (2014), 2.

Jiaman Li, Zhengfei Kuang, Yajie Zhao, Mingming He, Karl Bladin, and Hao Li. 2020b.
Dynamic facial asset and rig generation from a single scan. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–18.

Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara, Owen Ingraham, Pengda Xiang,
Xinglei Ren, Pratusha Prasad, Bipin Kishore, Jun Xing, et al. 2020a. Learning Forma-
tion of Physically-Based Face Attributes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3410–3419.

John E Lloyd, Ian Stavness, and Sidney Fels. 2012. ArtiSynth: A fast interactive biome-
chanical modeling toolkit combining multibody and finite element simulation. In
Soft tissue biomechanical modeling for computer assisted surgery. Springer, 355–394.

Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep appear-
ance models for face rendering. ACM Transactions on Graphics (TOG) 37, 4 (2018),
68.

Steve A Maas, Gerard A Ateshian, and Jeffrey A Weiss. 2017. FEBio: History and
advances. Annual review of biomedical engineering 19 (2017), 279–299.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM Transactions on Graphics (TOG), Vol. 30.
ACM, 72.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. ACM Transactions on Graphics (TOG) 30, 4 (2011), 37.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control
Using the Adjoint Method. ACM Trans. Graph. 23, 3 (Aug. 2004), 449–456.

Nathan Mitchell, Court Cutting, and Eftychios Sifakis. 2015. GRIDiron: An interactive
authoring and cognitive training foundation for reconstructive plastic surgery
procedures. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH) (2015).

Paola Nardinocchi and Luciano Teresi. 2007. On the active response of soft living
tissues. Journal of Elasticity 88, 1 (2007), 27–39.

Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus Magnor,
and Christian Theobalt. 2013. Sparse Localized Deformation Components. ACM
Trans. Graph. 32, 6, Article 179 (Nov. 2013), 10 pages.

Michael Schmidt and Hod Lipson. 2009. Distilling Free-Form Natural Laws from
Experimental Data. Science 324, 5923 (2009), 81–85.

Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lombardi, Tomas Simon, Jason
Saragih, and Yaser Sheikh. 2020. The eyes have it: an integrated eye and face model
for photorealistic facial animation. ACM Transactions on Graphics (TOG) 39, 4 (2020),
91–1.

Eftychios Sifakis and Jernej Barbič. 2012. FEM Simulation of 3D Deformable Solids:
A practitioner’s guide to theory, discretization and model reduction. http://www.
femdefo.org.

Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic determination of
facial muscle activations from sparse motion capture marker data. In Proc. of ACM
SIGGRAPH, Vol. 24. 417–425.

Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. 2007. Hybrid simu-
lation of deformable solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation. Eurographics Association, 81–90.

Breannan Smith, Chenglei Wu, HeWen, Patrick Peluse, Yaser Sheikh, Jessica K Hodgins,
and Takaaki Shiratori. 2020. Constraining dense hand surface trackingwith elasticity.
ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–14.

Martin Spüler, Nerea Irastorza Landa, Andrea Sarasola Sanz, and Ander Ramos-
Murguialday. 2016. Extracting Muscle Synergy Patterns from EMG Data Using
Autoencoders. In Artificial Neural Networks and Machine Learning – ICANN 2016.
47–54.

Ian Stavness, Mohammad Ali Nazari, Cormac Flynn, Pascal Perrier, Yohan Payan, John E
Lloyd, and Sidney Fels. 2014. Coupled biomechanical modeling of the face, jaw, skull,
tongue, and hyoid bone. In 3D Multiscale Physiological Human. Springer, 253–274.

Jie Tan, Greg Turk, and C Karen Liu. 2012. Soft body locomotion. ACM Transactions on
Graphics (TOG) 31, 4 (2012), 26.

J Rafael Tena, Fernando De la Torre, and Iain Matthews. 2011. Interactive region-based
linear 3d face models. In ACM SIGGRAPH 2011 papers. 1–10.

Joseph Teran, Sylvia Blemker, V Hing, and Ronald Fedkiw. 2003. Finite volume methods
for the simulation of skeletal muscle. Eurographics Association, 68–74.

Joseph Teran, Eftychios Sifakis, Silvia S Blemker, Victor Ng-Thow-Hing, Cynthia Lau,
and Ronald Fedkiw. 2005. Creating and simulating skeletal muscle from the visible
human data set. IEEE TVCG 11, 3 (2005), 317–328.

Shih-En Wei, Jason Saragih, Tomas Simon, Adam W Harley, Stephen Lombardi, Michal
Perdoch, Alexander Hypes, Dawei Wang, Hernan Badino, and Yaser Sheikh. 2019.
Vr facial animation via multiview image translation. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–16.

Jeffrey A Weiss, Bradley N Maker, and Sanjay Govindjee. 1996. Finite element im-
plementation of incompressible, transversely isotropic hyperelasticity. Computer
methods in applied mechanics and engineering 135, 1 (1996), 107–128.

Chris Wojtan, Peter J. Mucha, and Greg Turk. 2006. Keyframe control of complex
particle systems using the adjoint method. In SCA ’06: Proceedings of the 2006
ACM SIGGRAPH/Eurographics symposium on Computer animation (Vienna, Austria).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 15–23.

Chenglei Wu, Derek Bradley, Markus Gross, and Thabo Beeler. 2016. An anatomically-
constrained local deformation model for monocular face capture. ACM transactions
on graphics (TOG) 35, 4 (2016), 1–12.

Felix E Zajac. 1989. Muscle and tendon Properties models scaling and application to
biomechanics and motor. Critical reviews in biomedical engineering 17, 4 (1989),
359–411.

Xiaotian Zhang, Fan Kiat Chan, Tejaswin Parthasarathy, and Mattia Gazzola. 2019.
Modeling and simulation of complex dynamic musculoskeletal architectures. Nature
communications 10, 1 (2019), 1–12.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://arxiv.org/abs/2101.05917
http://www.femdefo.org
http://www.femdefo.org

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Simulation framework
	3.2 Actuation model
	3.3 Learning-based pipeline
	3.4 Back-propagation through quasistatic solver

	4 Scalability optimizations
	4.1 Batch-optimized computation
	4.2 Matrix-free multiplication with force/action Jacobian
	4.3 Sparse layers

	5 Training methodology
	5.1 Initialization via an auto-encoder (no simulation)
	5.2 Training via differentiable simulator
	5.3 Optimizing for latent variables on unseen data

	6 Experiments and evaluation
	6.1 Facial animation examples
	6.2 Learning a synthetic elbow model

	7 Limitations and future work
	References

