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ABSTRACT
Packet classification is the foundation of many Internet functions
such as QoS and security. A long thread of research has proposed
efficient software-based solutions to this problem. Such software
solutions are attractive because they require cheap memorysys-
tems for implementation, thus bringing down the overall cost of the
system. In contrast, hardware-based solutions use more expensive
memory systems, e.g., TCAMs, but are often preferred by router
vendors for their faster classification speeds. The goal of this paper
is to find a ‘best-of-both-worlds’ solution — a solution thatincurs
a cost of a software-based system and has a speed of a hardware-
based one. Our proposed solution, calledsmart rule cacheachieves
this goal by using minimal hardware — a few additional registers
— to cacheevolvingrules which preserve classification semantics,
and additional logic to match incoming packets to these rules. Us-
ing real traffic traces and real rule sets from a tier-1 ISP, weshow
such a setup is sufficient to achieve very high hit ratios for fast
classification in hardware. Cache miss ratios are2 ∼ 4 orders of
magnitude lower than flow cache schemes. Given its low cost and
good performance, we believe our solution may create significant
impact on current industry practice.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internetworking—
Routers

General Terms
Algorithms, Design, Performance

Keywords
Packet Classification, Rule Cache, Rule Evolution

1. INTRODUCTION
As the foundation of many Internet functions such as QoS and

security, packet classification involves matching each incoming packet
against a set of rules defined over some packet header fields. For
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each packet header fieldF , a rule specifies a range literalF ∈
[a, b]. When matching a packet against a rule, each literal in the
rule is evaluated on the corresponding packet header field. If ev-
ery literal is evaluated to betrue, the rule is considered tomatch
the packet. Besides the literals, each rule also specifies a decision.
Although a packet may match more than one rule, there is a strict
ordering among rules and the goal is to find thefirst matching rule,
i.e., the one with the highest priority.

Packet classification as a theory problem is inherently hard. Over-
mars and van der Stappen [18] have shown that for packet clas-
sification overd > 3 packet header fields, the best known algo-
rithms have eitherO(logn) search time at the cost ofO(nd) space
or O(logd−1n) search time at the cost ofO(n) space, wheren is
the number of rules in the rule set. While fast network processors
have been successfully designed to keep up with wire speeds,the
widening gap between memory access speeds and wire speeds rep-
resents an increasingly tough challenge to pure software solutions.1

Therefore, most router vendors favor hardware solutions based
on Ternary Content Addressable Memory (TCAM)[17] for its fast
speed. Basically, TCAMs can compare a given search key (i.e., a
packet) with all entries (i.e., stored rules) in parallel and returns the
first matching entry in one single clock cycle. However, as a more
complex technology, TCAM is more expensive and more power
consuming than conventional DRAM/SRAM-based systems. More-
over, TCAM is well known to suffer size explosion due to inef-
ficient range specification [6]. As wire speeds and rule set size
rapidly increase, pure TCAM-based solutions will become increas-
ingly expensive.

To summarize, hardware solutions are attractive for their abil-
ity to classify packets at wire speeds, but are quite expensive and
are a significant part of the cost of a line card;2 on the other hand,
software solutions reduce expensive hardware costs (sincethey can
be implemented in much less expensive DRAMs), but can rarely
match the speed of hardware solutions. In this paper, we there-
fore, address the following challenging problem —is it possible to
design a classification system that has a cost similar to a software-
based system and speed of a hardware-based system?We answer
this question in the affirmative and present an approach which can
provide the best-of-both-worlds solution to packet classification.

Our approach calledsmart rule cachehas the following attrac-
tive properties. First, it uses just a few cache entries to cache a few
specially-crafted rules. A unique aspect of our proposal isthat we
do not necessarily cache an exact rule from the rule set. Instead, we
cache independently constructed rules that are derived from the se-

1In [7], Estan and Varghese report that DRAM speeds improve
7% ∼ 9% per year while wire speeds improve100% per year.
2TCAMs installed on a line card typically cost hundreds of dollars,
and can be more expensive if we target higher wire speeds.



Rule I : (F1 ∈ [30, 70]) ∧ (F2 ∈ [40, 60]) → permit

Rule II : (F1 ∈ [10, 80]) ∧ (F2 ∈ [20, 45]) → permit
Rule III : (F1 ∈ [25, 75]) ∧ (F2 ∈ [55, 85]) → permit

Rule IV : (F1 ∈ [0, 100]) ∧ (F2 ∈ [0, 100]) → deny

Table 1: A rule set of 4 rules. Rules ordered by priority.
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Figure 1: Caching an independently defined and dynamically evolving
rule based on the rule set in Table 1.

mantics of the rule set. In order to preserve correctness, weensure
that such rules preservesemantic equivalenceof the classification
task. Second, the cached rulesevolveover time. This rule evolution
process is driven by (changing) characteristics of incoming traffic
that are continuously learned by smart rule cache.

Use of fast caches for fast packet classification is naturally ap-
pealing and has been studied in the past, e.g., flow cache schemes [28,
4]. (In this paper, aflow corresponds to a set of all packets with
the sameprojection, and the projection of a packet is defined as
the d-tuple consisting of the values of thed packet header fields
specified in the rule set.) In flow cache schemes, the cache is used
to store the projection and decision of recently observed packets,
with the expectation of speeding up the classification of succeed-
ing packets with the same projections. Given that most flows are
short-lived [19], it is not uncommon for individual routersto ob-
serve millions of concurrent flows [8] and we expect this number
to only grow with time. Hence, a large flow cache would be nec-
essary to achieve high and stablecache hit ratios when using such
flow cache schemes. For instance, using 16K cache entries, the
flow cache scheme proposed in [28] delivers a cache miss ratioof
8% on a sample trace with less than 14,000 concurrent flows. A
more recent flow cache scheme [4] uses a 4KB size cache and re-
ports a cache miss ratio of4.85% on a sample trace containing up
to 567 concurrent flows.

1.1 A motivating example
In this section, we illustrate our proposed smart rule cacheap-

proach through a simple example. Through this process, we also
present an intuitive understanding why such an approach is natu-
rally superior to flow cache schemes. Consider the rule set shown
in Table 1, which is also pictorially illustrated in Figure 1. In the
figure, the two packet header fields,F1 and F2, are represented
alongx andy axes, respectively. The shaded boxes correspond to
rules whose decision ispermit whereas the white boxes corre-
spond to rules whose decision isdeny. In the scenario depicted in
Figure 1(a), there are six flows observed by the router, each repre-
sented by a corresponding dot. Each of Rules I, II, and III matches
two flows. We now make three observations:

Cache rules instead of flows If we cache any one of the first
three rules (instead of caching any of these flows), a greaterfrac-
tion of packets will be classified using the cache.3 This simple ob-

3Caching a flow and caching a rule both involve caching some val-
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Figure 2: Framework of the smart rule cache.

servation is reinforced by recent study [5], which reports astrong
Zipf-like pattern in the usage of rules in rule sets of a tier-1 ISP,
where a very small number of rules match most of incoming traffic.
Moreover, cache hit ratio can also be much more stable. Because a
popular rule in cache can match a series of flows and hence contin-
ues to remain in cache. In contrast, a flow cache may suffer severe
thrashing. Such stability also implies enhanced robustness against
malicious attacks. Although an attacker can forge a large number
of short-lived flows to occupy and thrash a flow cache, it is much
harder for the forged flows to match sufficiently many rules that are
not needed by legitimate flows with sufficiently many hits. Even if
the attacker may manage to figure out the rule set, it is extremely
difficult for the attacker to obtain accurate real timeknowledge of
concurrent legitimate flows. Section 3.4 presents quantitative anal-
ysis on the security property of our smart rule cache.

Construct new rules for better cache performance If we
construct a new rule, RuleX: (F1 ∈ [32, 55])∧(F2 ∈ [23, 68]) →
permit, as illustrated by the dashed box in Figure 1(a), this sin-
gle rule is able to match all six flows and execute the same action.
Thus, caching this single new rule is adequate.

Evolve cached rules over time Now consider the scenario (as
shown in Figure 1(b)) where a new flow,P , starts. RuleX will not
match this flow. But we now construct another new rule, RuleY :
(F1 ∈ [32, 55]) ∧ (F2 ∈ [23, 80]) → permit, as illustrated by the
dashed box in Figure 1(b), and this new rule will continue to match
all the seven flows. Thus, by evolving the cached rule (from Rule
X to RuleY ) based on incoming traffic pattern, we can continue to
match a great fraction of the incoming traffic with a single rule.

Based on these insights, we propose smart rule cache, where the
classification task can occur in two stages, as shown in Figure 2.
The first stage occurs in the small on-chiprule cache, which is com-
posed of a few registers and corresponding hardware logic. Each
rule cache entry stores an evolving rule and the hardware logic is
used to match packets against the stored rule. Rule cache entries
are organized in such a way that allows parallel search across all
cached rules. The search ends with either the right decisionor a
cache miss, within one clock cycle. Acache managermodule, im-
plemented in software, is responsible for creating and continuously
updating (i.e., evolving) the rules in cache. The goal of thecache
manager is to minimize the number of packets that are not classifi-
able by the rules in cache, which are then pass to the second stage
of the classification process, where they are matched against the
entire original rule set by a full-fledged backup classifier,prefer-
ably implemented in software. While this software classification is
a slower operation, our results using real traffic traces andrule sets
from a tier-1 ISP indicate that a good cache manager design would
require less than0.07% of packets to take this slower path.

ues of those relevant packet header fields plus the decision.There-
fore, the cache space per entry is comparable.



1.2 Challenges and results
Although the basic idea is conceptually clear, a number of key

problems remain to be addressed.
(1) What (not which!) rules should be placed in the cache? In the

motivating example in Figure 1, we have only created an evolving
rule withpermit as its decision. But in general, the cache man-
ager can create rules with any decision to effectively reduce cache
miss ratio. For example, we may create and cachedeny rules to
quickly deny a lot of malicious flows.

(2) How should rules in cache evolve in response to incoming
traffic pattern changes?

(3) How can we guarantee the semantic integrity of the rule
cache? Namely, for each incoming packet, how can we ensure that
the decision output by the rule cache is always consistent with the
original rule set? In flow cache, this is not a problem. But in rule
cache, this issue needs to be carefully handled due to the priority-
based ordering among rules. For example, caching Rule IV only in
Table 1 suffices to match all the flows but gives the wrong decision.

(4) How can we smooth out the effect of cache management de-
lay on cache hit performance? To minimize the cost, we only re-
quire low cost and slow memory for cache management. Therefore,
cache management delay can be long (compared with the packet
classification speed we target). The updated rule cache willnot
be available until after cache management. This means potentially
decreased cache hit ratios during cache management delays.

In this paper, we present effective solutions to these design prob-
lems and evaluate the performance of our smart rule cache using
real rule sets and traffic traces from a tier-1 ISP. We show that even
for backbone routers carrying105 concurrent flows, a small rule
cache composed of just a few entries has been enough to deliver
stable cache hit ratios above99.93%. Such a small cache can be
easily implemented in network processors to perform wire speed
packet classification, at negligible cost. For 40Gbps OC-768, the
volume of missed traffic is less than 0.03Gbps, which can be easily
classified using a software classifier. Both the software classifier
and the software cache manager can be implemented in low cost
DRAM. Given its negligible implementation cost and superior per-
formance, we believe our smart rule cache represents a cost effi-
cient solution for wire speed packet classification. Moreover, we
believe the value of this solution will only increase as the gap be-
tween wire speeds and memory access speeds keeps widening.

1.3 Roadmap
The rest of the paper is organized as follows. We first present

preliminaries of packet classification in Section 2. The basic design
of smart rule cache is then described in Section 3. Some effective
optimization techniques are proposed in Section 4. We evaluate the
performance of our smart rule cache using real traffic tracesand
real rule sets from a tier-1 ISP and present the results in Section 5.
After reviewing related work in Section 6, we conclude the paper
in Section 7.

2. PRELIMINARIES
A rule set is an ordered setR = {r1, r2, · · · , rn} of rules. Each

rule ri is composed of two parts: apredicateand adecision(or
action). The predicate is a conjunction ofd literals defined over
d packet header fields. In the most generalized form, each literal
can be written as a range literalFj ∈ [lj , hj ], whereFj denotes a
packet header field. A ruleri defined overd packet header fields is
thus written as

Vd

j=1 (Fj ∈ [lj , hj ]) → decision.

The industry standard of packet classification comes from Cisco
Access Control Lists (ACLs) [1]. Currently, the predicate of each
rule may specify a literal on each of the following five packetheader

fields: source IP address, destination IP address, source port, des-
tination port, and protocol type. For convenience, we definethe
projectionof a packet to be thed-tuple consisting of the packet’s
d header fields specified in the rule set. A rule and a packet are
considered tomatchif the conjunctive predicate of the rule is eval-
uated to betrue on the projection of the packet. If a rule is the
first rule in the rule set that matches a packet, the action it specifies
is performed on the packet.

Either explicitly or implicitly, rule sets contain a default rule that
matches every incoming packet. If none of the preceding rules
matches a packet, the action of the default rule is performedon the
packet. Thus, each rule set covers the entired-dimensional space
defined over thed packet header fields specified in that rule set.
The domain of each dimension is the domain of the corresponding
packet header field. For example, the dimension corresponding to
the 32-bit source IP address field has a domain of[0, 232 − 1].

Within this d-dimensional space, the conjunctive predicate of
each rule delimits ad-dimensional hypercube, which we refer to
as thedefinition regionof the rule. We can think of the decision
of a rule as a “color” that colors the definition region of that rule.
For simplicity, we refer to it as the color of that rule. A ruleset as
an ordered set of rules essentially defines a coloring of the entire
d-dimensional space, which we refer to as thesemanticsof the rule
set. The projection of a packet/flow can be viewed as the coordi-
nate of a specific point in thed-dimensional space, which we often
use to represent the packet/flow. (Recall that aflow corresponds to
a set of all packets with the same projection.) Each point in the
d-dimensional space may be contained in the definition regionof
multiple rules. The color of a point is defined to be the color of the
first rule whose definition region contains that point.

As we have pointed out in Section 1, we need to ensure that the
rules stored in the rule cache are consistent with the rule set in se-
mantics. To facilitate the enforcement of this semantic integrity,
we need an efficient data structure to represent the rule set’s se-
mantics for verification. In this paper, we use such an efficient data
structure calledpruned packet decision diagram (PPDD). Given a
rule set, we obtain its PPDD by trimming itsstandard packet de-
cision diagram (SPDD), which is proposed by Liu and Gouda in
[15]. The SPDDf of a rule set defined over packet header fields
F1, F2, · · · , Fd is a directed tree that has the following properties.

1. Each nodev in f has a labelF (v). If v is a leaf node,F (v)
specifies an action. Ifv is an internal node,F (v) specifies a packet
header field.

2. Each internal nodev has a setE(v) of outgoing edges point-
ing to its children and only one incoming edge from its parent. Each
edgee ∈ E(v) has a labelI(e), which denotes a non-empty subset
of the domain of fieldF (v). In general,I(e) can be represented as
a set of non-overlapping ranges. For any two edgese 6= e′ in E(v),
I(e) ∩ I(e′) = φ. Meanwhile,∪e∈E(v)I(e) is the entire domain
of the packet header fieldF (v) (denoted byD(F (v)). Namely, the
labels ofv’s outgoing edges form a partition ofD(F (v)).

3. On the path from the root to any leaf node (which is re-
ferred to as adecision path), there are exactlyd internal nodes.
The label of theith internal node denotes theith packet header
field Fi, i.e., theith dimension of thed-dimensional space. Recall
that the label of the leaf node denotes the decision. The decision
path, denoted byv1e1v2e2 · · · vdedvd+1, actually represents the
rule

Vd

i=1 (Fi ∈ I(ei)) → F (vd+1).
For the example rule set in Table 2, its SPDD is given in Fig-

ure 3(a). To facilitate discussion, we start with a more regular form
of SPDD as shown in Figure 3(b). Compared with the original
form of SPDD in Figure 3(a), the regular form of SPDD possesses
the additional property thatthe label of each edge denotes a single
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Figure 3: SPDD of the rule set in Table 2.

r1: (F1 ∈ [31, 80]) ∧ (F2 ∈ [46, 70]) → permit

r2: (F1 ∈ [41, 65]) ∧ (F2 ∈ [31, 50]) → deny
r3: (F1 ∈ [1, 100]) ∧ (F2 ∈ [1, 100]) → permit

Table 2: An example rule set.

range. In the sequel, we use “SPDD” to denote the regular form of
SPDD for simplicity.

Let Fi denote theith dimension of thed-dimensional space. In
general, each nodevi in a decision pathv1e1v2e2 · · · vdedvd+1 can
be viewed as representing thed-dimensional hypercube:

Hvi
=

 

i−1̂
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(Fj ∈ I(ej))
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^

 

d̂
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!

.

When context is clear, we use “nodev” and “the hyper-cube rep-
resented by nodev” interchangeably for ease of presentation. It
is not hard to verify that for any internal nodev in the SPDD,v’s
children form a partitionof Hv. Furthermore, it can be verified
that all the leaf descendants ofv also form a partition ofHv. As
a special case, all the leaf nodes in the SPDD form a partitionof
the entired-dimensional space, which is represented by the root
node of the SPDD. Recall that each leaf node is labeled with a de-
cision.Together, all the leaf nodes actually define a coloring of the
d-dimensional space, which is consistent with the semanticsof the
rule set. To verify this semantic integrity of the SPDD, we refer
interested readers to [15], which also contains a detailed algorithm
for building the SPDD of a given rule set.

Given the semantic integrity of SPDD, if needed we can classify
any packet by checking through a decision path from the root to
some leaf node. At theith internal nodevi on the path, we follow
the outgoing edge whose label contains the value of fieldFi in the
packet header. Letδ denote the number of ranges denoted by the
outgoing edges. The number of memory accesses needed to pick
the right outgoing edge is bounded byO(δ). The number of mem-
ory accesses needed to classify a packet is thus bounded byO(d∆),
where∆ is the maximumδ value over all nodes in the SPDD. In
the regular form of SPDD,∆ is the maximum fanout of any node
in the SPDD.

As the size of SPDD can be potentially large for large rule sets,
we propose to obtain the PPDD of a rule set by trimming its SPDD.
Our proposed algorithm is presented in Section 4. As we will see,
PPDD preserves the semantic integrity of SPDD but contains fewer
and shorter decision paths. Therefore, PPDD can also be usedto
classify each incoming packet (usingO(d∆) memory accesses),
and its average performance is much better than SPDD.

Computing and optimizing the PPDD is a one-time preprocess-
ing task before packet classification. The PPDD remains valid

throughout the packet classification process until the semantics of
the rule set has changed. In practice, rule sets are not modified
very frequently, especially compared with the classification speeds
we target. Therefore, the time spent on building the PPDD should
not raise any concern on the packet classification performance of
smart rule cache. Nonetheless, we point out that our algorithm for
trimming SPDD to obtain a PPDD is quite simple and efficient.

In this paper, our primary concerns are cache hit ratio and hard-
ware cost. To help deliver high and stable hit ratios, we would
rather spend enough preprocessing time to build as good a PPDD
as possible. As we will see in Section 3, the semantic integrity of
the smart rule cache is ensured by making the stored rules semanti-
cally consistent with the SPDD/PPDD. To improve cost efficiency,
if necessary low cost DRAMs can be used to store the computed
PPDD as well as other cache management related data structures.
Actually, all these data structures are stored in low cost DRAMs in
our evaluation. Thus, our results demonstrate the performance of
smart rule cache in such a cost efficient solution.

3. DESIGN
Our smart rule cache design consists of two parts: a smallrule

cache(the hardware component) and acache manager(the soft-
ware component). The rule cache is a small number of on-chip
cache entries each storing an evolving rule. Each cache entry con-
sists of a register storing the evolving rule and some simplelogic
for matching incoming packets against the stored rule. The cache
entries are designed to match each incoming packet in parallel.
Synchronized with the network processor, the rule cache is able
to report either a cache miss or the right decision on the packet in
a single network processor cycle. Such a simple hardware design
of the rule cache is presented in Section 3.3. This small rulecache
is the only additional hardware needed by our smart rule cache de-
sign. Its size and simplicity make it easy to implement in network
processors at negligible cost.

The core part of smart rule cache is the cache manager. On
one hand, its effective and efficient management of the rule cache
decides the cache hit ratios that can be delivered. Basically, the
cache manager decides cache hit performance by placing the right
rules into the rule cache and dynamically evolving those rules in
response to incoming traffic pattern changes. On the other hand,
as the cost of the rule cache is negligible, the overall cost of smart
rule cache is largely decided by the cost of implementing thecache
manager. Thus, it is critical to design a cost efficient cachemanager
that requires as little additional resource as possible. Aswe will
see in Section 3.1 and Section 3.2, our design of the cache manager
requires nothing more than a small amount of low cost memory
such as DRAM. Through evaluation using low cost DRAM-based



Head

Sliding Window

Tail

RHL

Head

weight=4 weight=2 weight=1

Tail

Figure 4: Data structures of smart rule cache.

systems, we demonstrate that smart rule cache is able to deliver
extremely high hit ratios on real traffic traces and real rulesets ob-
tained from backbone routers of a tier-1 ISP. Nonetheless, users are
free to equip line cards with more powerful network processors and
more fast memories to achieve even better performance.

To achieve good performance, the cache manager needs to col-
lect sample packets to acquire knowledge about incoming traffic.
We discuss detailed sampling strategies in Section 5.4. Following
each traffic sampling is cache management. The cache manager
conducts relevant statistics on the sample packets stored in aslid-
ing window, which contains the most recentw sample packets (w is
the sliding window size). In particular, the cache manager needs to
find out all distinct flows and their frequency (which we will refer
to asweight) in the sliding window. The cache manager uses this
flow weight statistics to (1) maintain a list of evolving rules and (2)
determine which rules should be switched into/out of the rule cache
in order to maximize cache hit ratio.

In this section, we first present relevant data structures for cache
management in Section 3.1 and then present detailed algorithms for
cache management in Section 3.2. A simple hardware design for
the rule cache in Section 3.3. We conduct a preliminary quantitative
analysis on the security property of smart rule cache in Section 3.4.

3.1 Data structures
Sliding window: The data structure of the sliding window is

straightforward – a First-In-First-Out (FIFO) queue of thew sam-
ple packets in the sliding window (as shown in Figure 4) is most
appropriate. For each sample packet, its corresponding element in
the queue records its projection and whether it is a cache hitor
cache miss.

Evolving rules: The cache manager maintains a data structure
called regular hyper-cube list (RHL), which is of central impor-
tance in our design. Basically, each RHL element is an evolving
rule to be placed into the rule cache. The RHL isregular in that it
possesses the following key properties.

(I) Each RHL element represents an evolving rule whose defini-
tion region is ad-dimensional hyper-cube.When context is clear,
we use “hyper-cube”, “evolving rule”, and “RHL element” inter-
changeably for ease of presentation.

(II) Each hyper-cube in the RHL is colored by one single color
in the coloring of thed-dimensional space defined by the original
rule set.Thus, by assigning each evolving rule that corresponding
color, it is guaranteed that each evolving rule can be storedin a
single entry in the rule cache and is semantically consistent with
the original rule set.

(III) Each sample packet in the sliding window is assigned to one
evolving rule that matches it.This ensures the RHL contains all the
sampled information. Theweightof each evolving rule is defined
to be its number of assigned sample packets. To keep track of this
assignment, we add a pointer to each sample record, pointingto the
RHL element it is assigned to, as shown in Figure 4.

(IV) Evolving rules either have the same action or are non-
overlapping. This greatly simplifies cache management, because
the ordering of evolving rules in the rule cache is not important and
hence we can place each evolving rule in an arbitrary cache en-
try. As we will see shortly, this also greatly simplifies the hardware
design of rule cache. Because it guarantees that if multiplecache
entries match the same packet, they must have the same decision.

The data structure of an evolving rule stores its range alongeach
dimension, color, weight, cache entry index (if it is in cache) and
its current position in the RHL (for use in cache management). In-
tuitively, we should try to maximize the total weight of those evolv-
ing rules in cache. We thus sort the RHL in non-increasing order of
weight. Assume the rule cache consists ofm entries. Property IV
allows us to simply cache the firstm elements of the RHL, and the
semantic integrity of the rule cache is guaranteed.

3.2 Cache management
To be precise, cache management refers to the operations per-

formed by the cache manager to update relevant data structures
and the rule cache after obtaining a new sample packet. Here,we
present a detailed description of these cache management opera-
tions.

Delete the oldest sample:On obtaining a new sample packet,
we first remove the oldest sample packet from the sliding window.
Following its pointer to the evolving ruleH it is assigned to, we
decrement the weight ofH by one. These operations takeO(1)
time.

(1) If the weight ofH comes down to zero, it is removed from
the RHL, which also takesO(1) time. If H is currently in cache,
its cache entry is replaced with the first evolving ruleH ′ that is cur-
rently not in cache (if such anH ′ exists). In the worst case, locating
H ′ in the RHL takesO (min(m, n)) time, wheren is the length of
the RHL. In our evaluation, we have observed thatn almost never
exceeds10 and hence locatingH ′ can be done very quickly.

(2) If the weight ofH is still positive, we moveH toward the
tail of the RHL until the weight of its successor (if any) is nolarger
than its own weight. In the worst case, this position adjustment
operation takesO(n) time. If H is originally in cache (i.e., topm
in the RHL) but not topm in the RHL after position adjustment,
we should place the newmth evolving ruleH ′ into the cache entry
of H . In particular, when movingH toward the tail of the RHL,
if H is currently themth element and is about to switch with the
(m + 1)th element, we place the(m + 1)th element into the cache
entry ofH .

Insert the new sample:After removing the oldest sample packet
from the sliding window, we append the new sample packet to the
tail of the sliding window, which takesO(1) time. Then, we check
through the RHL to find the first evolving ruleH that matches the
new sample packet.

(1) If such anH is found, its weight is incremented by one and
we assign the new sample packet toH . To keep the RHL sorted by
weight, we moveH toward the head of the RHL until the weight of
its predecessor is no less than its own weight. IfH is currently not
in cache but ranks topm in the RHL after position adjustment, we
should placeH into the cache entry of the new(m+1)th evolving
rule. In particular, when movingH toward the head of the RHL, if
H is currently the(m + 1)th element and is about to switch with
themth elementH ′, we placeH into the cache entry ofH ′.

(2) If none of the evolving rules already matches the new sample
packet, we need to obtain an evolving rule that matches the new
sample packet in order to preserve property III. There are two pos-
sible ways to achieve that: expanding an existing evolving rule or
creating a new evolving rule. We prefer to cover sample packets
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Figure 5: An example of maximally/minimally expanding an evolving
rule to cover new sample packets, based on the rule set in Table 1.

using as few evolving rules as possible. Because intuitively that
will enable a small cache to cover as many incoming flows as pos-
sible. For the same reason, we also prefer to cover new sample
packets with the topmost evolving rules. Therefore, we go through
the RHL and check each evolving rule to see if it can be expanded
to match the new sample packet while preserving properties I, II
and IV. If none of the existing evolving rules can be expanded, we
create a new evolving rule matching exactly the new sample packet
only and append it to the tail of the RHL. It takesO(d) time to
create a new evolving rule andO(1) time to append it to the RHL.
As we have discussed in Section 2,d = 5 in Cisco ACL, which is
thede factoindustry standard.

Expanding a hyper-cubeH to cover a pointp while preserving
property I is straightforward. Assume on theith dimension, the
range ofH is denoted by[li, hi] and the coordinate ofp is xi. If
xi < li, we decreaseli to xi. If xi > hi, we decreasehi to xi. If
xi ∈ [li, hi], there is no need to expandH along theith dimension.
In total, expandingH to containp takesO(d) time.

Discussion: Here, we adopt an expand-remove ap-
proach to evolving existing rules. While we do not
shrink rules, a rule can be removed if it no longer matches
any sample packet in the sliding window (e.g. due to
traffic pattern changes). The reason of adopting this
expand-remove approach is two-fold. First, shrinking
rules is much more sophisticated to implement. Sec-
ond, as we will show in Section 3.4, the key security
properties of smart rule cache directly stem from this
expand-remove approach.

When expanding a hyper-cubeH , we minimally ex-
pand it along each dimension to obtain a hyper-cube
H ′ that contains the new sample packet. However,
one may suspect that, if instead we maximally expand
H along each dimension, then hopefully the expanded
hyper-cubeH ′ will be able to match more incoming
packets later on. To better understand the design choice,
it is worth noting that we are actually solving an online
optimization problem, where the input is unpredictable
incoming traffic and the objective is to optimize cache
hit ratio. While such an aggressive expanding strategy
has some merits in its own right, we prefer the design
choice of minimally expanding hyper-cubes because
that leaves us more flexibility on subsequently expand-
ing existing evolving rules.

For example, let us again consider the rule set in Ta-
ble 1. Initially, there is no evolving rule and here comes
the first flow (denoted byP1 in Figure 5). The cache
manager creates an evolving ruleH to cover precisely

that point only. When the second flow (denoted by
P2 in Figure 5) appears, let us assume we maximally
expandH alongX-axis to be the dashed box in Fig-
ure 5(a). Later on, there start five other flows, denoted
by those unlabeled points in Figure 5(b). We will not
be able to further expandH to cover these new flows,
due to the semantic integrity constraint imposed by
property II. At least one more evolving rule has to be
created to cover these new flows. In contrast, if upon
appearance of the second flow we expandH to be the
small dashed box in Figure 5(b), later on we shall be
able to further expandH to be the large dashed box in
Figure 5(b), which covers all the flows. One evolving
rule is enough.

Verifying if the expanded hyper-cubeH ′ satisfies property IV is
not difficult. We can simply go through the RHL and check each
evolving rule to see whether it overlaps withH ′ but has a different
color fromH ′. In total, this operation takesO(nd) time.

Now it only remains to verify whetherH ′ satisfies property II.
This is where the SPDD of the rule set can be used. Recall that the
leaf nodes of an SPDD form a partition of the entired-dimensional
space and define a coloring that is consistent with the semantics of
the original rule set. Therefore, property II is preserved if and only
if all the leaf nodes overlapping withH ′ have the same color as
H ′. This can be easily verified by traversing the SPDD and check
the color of each leaf node overlapping withH ′. However, this
straightforward solution can potentially take a long time and hence
result in a long cache management delay. We propose effective
optimization techniques in Section 4.

3.3 Hardware design of the rule cache
For each incoming packet, the rule cache should either report

a cache miss or output the correct decision on that packet. For
wire speed packet classification, we require this to be done within
one network processor cycle. In this section, we present a simple
hardware design of the rule cache to achieve this design objective.
Basically, each cache entry is composed of two parts: a register
for storing an evolving rule and some simple logic for matching
packets against the stored rule. Cache entries are organized in such
a way that allows parallel search within one processor cycle.

First of all, each cache entry should be able to determine whether
the stored rule matches the incoming packet or not. Testing whether
a hyper-cube (i.e., rule) contains a certain point (i.e., packet) is ac-
tually a special case of testing overlapping hyper-cubes, since a
point can also be expressed as a “hyper-cube”. Testing overlapping
hyper-cubes can be implemented using the more basic function of
testing overlapping ranges: two hyper-cubes overlap if andonly if
they overlap on every dimension. Consider two hyper-cubesH1

andH2. Assume their ranges along theith dimension are[ai, bi]
and[xi, yi], respectively. Testing whether[ai, bi] and[xi, yi] over-
lap can be done with the simpleOverlapping Ranges Tester (ORT),
as shown in Figure 6. Using one ORT for testing each dimension,
testing overlapping hyper-cubes can be easily done within one pro-
cessor cycle usingd ORTs in parallel. Such anOverlapping Hyper-
cubes Tester (OHT)design is shown in Figure 7.

Assume the value ofith field in the incoming packet header is
xi and the range specified by the stored rule on that field is[ai, bi].
The entire design of a cache entry is shown in the dashed box in
Figure 8. The decision of the cached rule is stored as ak-bit pos-
itive integer (e.g.A1, A2, · · · , Ak in Figure 8). 0 is reserved for
cache miss. Each one of thek bitsA1, A2, · · · , Ak is logically
ANDed with the output of the OHT. This yields the finalk-bit out-
put of that cache entry, which is eithercache miss (i.e., all0s) if
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the output of its OHT is0 or the stored rule’s decisionA1A2 · · ·Ak

if the output of its OHT is1.
It is easy to input a packet to all cache entries in parallel. Given

simultaneous outputs from all cache entries, we need to ensure that
the rule cache eventually presents the right output. Property II and
property IV of the RHL play a critical role in making a simple solu-
tion possible. As we have discussed in Section 3.2, propertyIV of
the RHL guarantees that if two or more stored rules match a packet,
they must have the same decision. Moreover, property II of the
RHL guarantees that their decision is consistent with the rule set.
Thus, we can simply bit-wise OR thek-bit output from all cache
entries, which yields the final output of the rule cache. If none of
the cache entries matches the incoming packet, the rule cache out-
putscache miss (i.e., all 0s). Otherwise, the rule cache will
output the right decision.

The entire rule cache works as follows. The projection of the
incoming packet is input to all cache entries simultaneously. The
cache entries try to match the incoming packet in parallel and si-
multaneously report their matching result (i.e., either a decision or
a cache miss), which are bit-wise ORed to yield the final out-
put of the rule cache. If we only need a few cache entries, sucha
simple and small rule cache can be easily implemented in network
processors at negligible cost. Synchronized with the network pro-
cessor, the rule cache is able to output its matching result within
one network processor cycle.

An issue that has not been addressed so far is cache update. Ba-
sically, to update a cache entry we only need to rewrite its register,
which stores the evolving rule. Since the rule cache is synchronized
with the network processor, this can be easily done within a proces-
sor cycle. Only one packet will not be able to match the cache entry
being updated. As each cache management execution updates at
most one cache entry and lasts for no less than one millisecond in
our evaluation, the percentage of packets that are affectedby cache
update is very low. Assuming OC-768 (40Gbps) and a packet size
of 500 bytes, ten thousand packets will pass through during aone-
millisecond cache management delay. That is, only one out often
thousand packets will be affected by cache update. Nonetheless,
if a disturbance-free solution is preferred, we can use two identi-
cal rule caches to achieve seamless hot-swap. The two rule caches
can be controlled using a simple 0/1 switch. Directing incoming
packets to one of them automatically disables the other for update.

3.4 Security analysis
As a preliminary security analysis, we hereby derive an upper

bound on the additional cache miss ratio of legal traffic thatcan
be caused by an attacker. To derive such a bound, we conduct our
analysis under the following adversary model.

Adversary model: We assume an adversary who is perfectly in-
formed of the rule set, cache size, cache management algorithm and

concurrent flows in a real time manner. We also assume the adver-
sary can arbitrarily decide the content of those sampled attacking
packets to baffle the cache manager, based on its perfect knowledge
and hence equally perfect prediction of the cache management con-
sequence. Furthermore, we assume the tough situation wherethe
rule cache never has enough entries to accommodate all evolving
rules.

Analysis: When combating such a perfectly informed adversary,
a commonly employed weapon is randomness. Here, our cache
manager employs a random sampling strategy. Using this random
sampling strategy, the probability with which a flow will be sam-
pled is precisely the percentage of its traffic volume in the aggregate
traffic traversing the router line card. While we assume the adver-
sary can arbitrarily decide the content of those sampled attacking
packets to baffle the cache manager, the presumed bottomlineof
randomness prevents the adversary from deciding which packets
are going to be sampled by our random sampling process.

Let us first look at the moment when the adversary is about to
launch its attack. Suppose there aren > m RHL elements,R1,
R2, · · · , Rn, sorted in non-increasing order of their weight. Let
w1, w2, · · · , wn denote their normalized weight, respectively. The
firstm RHL elements will be cached and the cache hit ratio of legal
traffic is given by

Pm

i=1 wi.
Now, suppose the adversary injects attacking traffic at its maxi-

mum possible rate, and its generated attacking traffic accounts for a
percentage ofδ in the aggregate traffic. Recall that the cache man-
ager prefers to associate sampled packets with existing RHLele-
ments, in non-increasing order of their weight. New RHL elements
are created only if it has to. Suppose we now havel ≥ n RHL
elements,R′

1, R′

2, · · · , R′

l, sorted in non-increasing order of their
weight. For eachRi, let w+

i andw−

i denote the portion of its nor-
malized weight contributed by sampled legal packets and sampled
attacking packets, respectively. Consider anyRi of then existing
RHL elements. Let us assume it is (possibly expanded into) the
new RHL elementR′

j . Due to the dilution caused by the attacking
traffic, the random sampling strategy makesw+

j = (1− δ)wi. The
cache hit ratio of legal traffic achieved by this new RHL is given by
Pm

i=1

w
+

i

1−δ
.

Among the topm new RHL elements,R′

1, R′

2, · · · , R′

m, let us
assume without loss of generality thatk of them,R′

i1
, R′

i2
, · · · ,

R′

ik
, were not among the original topm RHL elements,R1, R2,

· · · , Rm. Accordingly, there must bek other new RHL elements,
R′

j1
, R′

j2
, · · · , R′

jk
, that are not currently among topm but were

originally among topm. Since the original RHL is sorted in non-
increasing order of weight, we know for any1 ≤ d ≤ k, it must
be the case thatw+

id
≤ w+

jd
. Similarly, since the new RHL is also

sorted in non-increasing order of weight, it must be the casethat

w
−

id
+ w

+
id

≥ w
−

jd
+ w

+
jd

≥ w
+
jd

=⇒ w
−

id
≥ w

+
jd

− w
+
id

.



Summing this inequality over alld ∈ [1, k] gives us the following
key inequality:

m
X

i=1

[(1 − δ) wi] −
m
X

i=1

w
+
i =

k
X

d=1

`

w
+
jd

− w
+
id

´

≤
k
X

d=1

w
−

id
≤

l
X

i=1

w
−

i = δ.

Dividing both sides by1 − δ leads us to our final conclusion:

m
X

i=1

wi −
m
X

i=1

w+
i

1 − δ
≤

δ

1 − δ
(1)

The left side of Equation (1) is precisely the increase in thecache
miss ratio of legal traffic, caused by the adversary, which isat most

δ
1−δ

. For instance, if the attacking traffic generated by an attacker
accounts for10% of the aggregate traffic traversing a router line
card, the resulting increase in the cache miss ratio of legaltraffic is
at most11.1%.

4. SPDD OPTIMIZATION
As we will see in Section 5.1, the SPDD of large rule sets can

be potentially very large if not built in an appropriate way.Verify-
ing property II by traversing a large SPDD can result in long cache
management delays, which may decrease cache hit ratio. In this
section, we propose effective techniques for optimizing SPDD. In
Section 4.1, we present an algorithm for trimming the SPDD with-
out violating its semantic integrity. The obtained data structure is
calledPruned Packet Decision Diagram (PPDD). In Section 4.2,
we propose that an appropriate ordering of packet header fields for
building the SPDD can lead to a much smaller SPDD and PPDD.

4.1 Pruned packet decision diagram (PPDD)
Our motivating observation is that we may significantly decrease

the number of SPDD nodes we have to visit in order to verify prop-
erty II, by employing various early detection techniques. The first
early detection technique is quite straightforward. Assume we are
currently at nodeu in the SPDD. For each childv of nodeu, we
need to explore the subtree rooted atv (denoted byTv) only if Hv

overlaps with the expanded hyper-cubeH ′. Becausev’s leaf de-
scendants form a partition ofHv. If Hv does not overlap withH ′,
none ofv’s leaf descendants can overlap withH ′. Therefore, there
is no need to exploreTv. For example, assumeH ′ is defined by
(F1 ∈ [45, 70]) ∧ (F2 ∈ [35, 45]). In the SPDD in Figure 3(b),
there is no need to explore the subtrees rooted atv1, v2 andv5,
since they cannot contain any leaf node overlapping withH ′.

Now supposeHv overlaps withH ′ and hence we may need to
exploreTv. The following two early detection techniques can be
employed to further avoid exploringTv. (1) If Hv is colored by
a single color that is the same asH ′, we can determine without
exploring Tv that Tv cannot contain any leaf node with a color
different from H ′. For example, assume thatH is defined by
(F1 ∈ [45, 60]) ∧ (F2 ∈ [10, 25]) with decisionpermit and
the expandedH ′ is defined by(F1 ∈ [25, 60]) ∧ (F2 ∈ [10, 25])
with the same decision. In the example SPDD in Figure 3(b), there
is no need to exploreTv1

andTv2
, sinceHv1

andHv2
are both

colored by the same single colorpermit. (2) If Hv is colored
by a single color that is different fromH ′, thenTv must contain
some leaf node that overlaps withH ′ and has a different color from
H ′. Thus, we can immediately fail the verification of property II
without exploringTv. For example, assume thatH is defined by
(F1 ∈ [45, 60]) ∧ (F2 ∈ [35, 45]) with decisiondeny andH ′

int SPDD2PPDD (noderoot)
if (root is a leaf node)
root.color = root.label;
return root.color;

prune = true;
color = ∞;
for (eachchild of root)

if (color == ∞)
color = SPDD2PPDD(child);
if (color == -1)
prune = false;

else if(color != SPDD2PPDD(child))
prune = false;

if (!prune)
root.color = -1;
return -1;

for (eachchild of root)
disposechild;

root.color = color;
root.label = root.color;
return root.color;

Table 3: Algorithm for trimming SPDD to obtain PPDD.

is defined by(F1 ∈ [45, 70]) ∧ (F2 ∈ [35, 45]). In the example
SPDD in Figure 3(b), we can immediately fail the verificationof
property II without exploringTv4

sinceHv4
is colored by a single

colorpermit that is different fromH ′.
The above two early detection techniques require some addi-

tional information: for each nodev in the SPDD, we need to know
whetherHv is colored by a single color and if yes what is that color.
This information can be easily obtained through a simple extension
of the SPDD. In particular, we mark each nodev in the SPDD with
an additional fieldcolor. Assume the decisions specified in the
rule set are encoded as non-negative integers. IfHv is colored by
more than one color, we assign-1 to thecolor field of nodev.
Otherwise, thecolor field of nodev is assigned the color that
colorsHv. This additional information can be easily computed in a
single bottom-up pass of the SPDD. In particular, thecolor field
of each leaf nodev is the same as its labelF (v), which denotes
a decision. If all the children of an internal nodev have the same
color value, nodev is also assigned the samecolor value. Oth-
erwise, thecolor field of nodev is assigned-1.

According to the early detection techniques described above, we
will explore the subtreeTv rooted at a nodev only if node v’s
color value is-1. This implies that we can safely remove the
descendants of a nodev if v’s color field value is not-1. That
will make nodev a leaf node and we label nodev with its color
value, which is the same as the decision of all the leaf descendants
of nodev. This trimming operation can also be done in a single
bottom-up pass of the SPDD and can be easily implemented as a
simple recursive function, as shown in Table 3.

Our discussion so far has been based on the regular form of
SPDD. However, recall that there is only one difference between
the regular form of SPDD and the original form of SPDD: the label
of each edge can contain multiple ranges in the latter but contains
only one range in the former. Since the trimming algorithm inTa-
ble 3 ignores the label of edges, it is clearly applicable to the orig-
inal form of SPDD as well. The PPDDs obtained by trimming the
SPDDs in Figure 3 are shown in Figure 9.

4.2 Ordering packet header fields
Based on the PPDD we now have, some further optimizations

are definitely possible. For example, in the PPDD in Figure 9(b),
v1 andv2 can be merged into one node,v4 andv5 can be merged
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Figure 9: PPDDs obtained by trimming SPDDs in Figure 3.

r1: (F1 ∈ [1, 100]) ∧ (F2 ∈ [1, 25]) → permit

r2: (F1 ∈ [1, 100]) ∧ (F2 ∈ [26, 50]) → deny
r3: (F1 ∈ [51, 100]) ∧ (F2 ∈ [51, 75]) → permit

r4: (F1 ∈ [76, 100]) ∧ (F2 ∈ [76, 100]) → deny

r5: (F1 ∈ [1, 100]) ∧ (F2 ∈ [1, 100]) → permit

Table 4: An example rule set.

into one node, and the right two children ofv3 can be merged into
one node. For another example, we can mergev1, v2, v4, andv5

into a single node in the original form of the SPDD. Although that
does not reduce the number of ranges, that does reduce the number
of nodes. However, as we have limited space, we prefer to leave
such less important optimizations in the extended version of this
paper. Instead, we stick to the regular form and present another
more fundamental optimization technique: we can significantly re-
duce the size (number of nodes) of a PPDD by building the SPDD
according to an appropriate ordering of the packet header fields.
Notice that in the regular form, the number of ranges is the same as
the number of edges, which is the number of nodes minus one.

Consider the rule set in Table 4. If we useF1 as the first dimen-
sion andF2 as the second dimension, the resulting SPDD contains
15 nodes as shown in Figure 10(a). This SPDD cannot be pruned
and hence the PPDD is of the same size. Interestingly, if we switch
the order ofF1 andF2, the resulting SPDD will contain only11
nodes (shown in Figure 10(b)). After trimming the first four leaf
nodes, the new PPDD will contain only7 nodes. As we will see
in Section 5, the effect of a good ordering of packet header fields
on real rule sets (which typically use five packet header fields) can
be much more significant than its effect on such a2-dimensional
simple rule set.

In general, it is not easy to figure out the optimal ordering of
packet header fields that will lead to a PPDD of minimum size.
However, as we have discussed in Section 2, building the PPDD
is a one time preprocessing task and it is worth spending timeon
building as good a PPDD as we can. Given that, a straightforward
solution is to try out as many possible orderings as we can andkeep
the minimum size PPDD we have so far. In our evaluation, for real
rule sets containing thousands of rules, it takes only a few seconds
to build the SPDD and PPDD according to a certain ordering of
packet header fields. Given five packet header fields, there are5! =
120 possible orderings, which take about ten minutes to check.

In future work, we are interested to search for more efficiental-
gorithms for finding the optimal ordering of packet header fields.
For practical interest, after checking a number of real rulesets con-
taining up to thousands of rules, we have found the followingor-
dering of packet header fields to be quite effective: (1) protocol
type; (2) source IP address; (3) destination IP address; (4)source
port; and (5) destination port. For a considerable portion of the real

Trace 1 Trace 2 Trace 3 Trace 4
Trace length (sec) 4793 5008 4645 5016
Number of flows 9.95M 5.86M 9.67M 10.83M
Max # concurrent flows 164420 143166 103591 176160
Max flow length 11821 28119 1485 24041
(pkt, sec) 334.10 519.47 164.76 520.30
Avg flow length 8.20 8.66 6.91 9.22
(pkt, sec) 62.65 92.05 39.46 72.00
% TCP flows 92.52 92.97 93.37 91.62
% UDP flows 6.28 6.26 6.06 7.64
% other flows 1.20 0.77 0.57 0.74

Table 5: Statistics of sampled traffic traces (1/21/2006).

rule sets, this (not necessarily the best) ordering alreadyreduces
the PPDD size by1 ∼ 2 orders of magnitude. For the other rule
sets, their PPDD size is reduced by at least a factor of2. We report
detailed evaluation results in Section 5.1.

5. EVALUATION
We evaluate the performance of our smart rule cache using4

real traffic traces and10 real rule sets obtained from a tier-1 ISP
backbone network. The traffic traces are collected by NetFlow us-
ing 1/α packet sampling at a number of links connected to edge
routers, whereα is a constant. For each flow, NetFlow maintains a
record containing a number of fields including the source anddesti-
nation IP addresses, source and destination routing prefixes, source
and destination ASes, source and destination port numbers,the pro-
tocol type, type of service, flow starting and finishing timestamps,
number of bytes and number of packets transmitted. Each traffic
trace lasts about one day. The real rule sets include packet filters
configured at corresponding router interfaces. Each rule set con-
tains hundreds or thousands of rules. The decision of rules is either
permit or deny. In Section 5.5, we will extend these rule sets
to have more diversified decisions and evaluate the performance of
smart rule cache using such extended rule sets.

In the sampled traces, the maximum number of concurrent flows
is less than105. As we target more than105 concurrent flows, we
compact the sampled traces into shorter traces by possibly advanc-
ing flows such that the maximum number of concurrent flows is
great than105. Let the start time of a sampled trace be0. If the
start time of a flow ist0, its start time in the compacted trace will
be t′0 = t0 MOD 4500 (in seconds). Its end time in the compacted
trace will bet′1 = t′0+T , whereT is the duration of the flow. Some
statistics of the resulting traces are given in Table 5. As wecan see,
most flows are likely to be short-lived flows, which represents a se-
rious challenge to cache schemes. We believe this characteristics
of the traces makes our evaluation results more reliable.

5.1 PPDD
We conduct simulations on the rule sets to evaluate the effective-

ness of using a better ordering of packet header fields and theeffec-
tiveness of using PPDD. The default ordering we use is: (1) source
IP address; (2) destination IP address; (3) source port; (4)destina-
tion port; (5) protocol type. (It is worth emphasizing that,although
the rule sets we use for evaluation are defined over this standard
5-tuple, all our proposed techniques of smart rule cache areappli-
cable to rule sets defined over any number of packet header fields.)
Through simulations, we find the following ordering performs quite
well: (1) protocol type; (2) source IP address; (3) destination IP
address; (4) source port; (5) destination port. To evaluatethe effec-
tiveness of a better ordering, we report the PPDD size (i.e.,number
of nodes in the PPDD) achieved by both orderings in Table 6.
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Figure 10: SPDD and PPDD of the rule set in Table 4 derived from differentorderings of packet header fields.
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Figure 11: Cumulative cache miss ratios achieved using a single cache entry and a sliding window of 1024 packets.

Rule set # rules Default ordering Better ordering
1 373 6703 3336
2 617 218602 8449
3 378 6099 3002
4 226 4003 1981
5 391 349990 14897
6 203 3736 1869
7 2755 27865 13768
8 666 203101 7378
9 539 5389 2677
10 628 6539 3187

Table 6: PPDD size achieved by the default ordering and a better
ordering of packet header fields.

For rule sets 2 and 8, the better ordering reduces their PPDD size
by two orders of magnitude. The PPDD size of rule set 5 is reduced
by one order of magnitude. For the other rule sets, the betterorder-
ing reduces their PPDD size by at least a factor of2. Although
these real rule sets each contains as many as thousands of rules,
with the better ordering of packet header fields, their PPDD size
never exceeds 15K. In our simulations, we use a sliding window
size of 1024 packets4 and we find that the length of the RHL never
exceeds 10. Both are much smaller than the PPDD. Therefore, the
memory requirement of smart rule cache is dominated by PPDD
and hence is very small.

To evaluate the effectiveness of using PPDD instead of SPDD,
we define the ratio between the size of an SPDD and the size of its
PPDD as thecompression ratioand report the compression ratios
achieved by both orderings in Figure 12. It is clear that PPDDs are
much smaller than SPDDs. Moreover, using the better ordering of

4In our experiments, we vary the sliding window size from 1 to
4096 and do not observe perceptible change in the performance of
smart rule cache when the sliding window size if between 64 and
4096. To be conservative, we have been using a sliding window
size of 1024 for all our experimentation.
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Figure 12: Compression ratios achieved by the default ordering and
a better ordering of packet header fields.

packet header fields universally enhances the effectiveness of using
PPDD.

5.2 Cache management delay
As we have previously discussed, cache management delay can

potentially impact cache hit ratio. Because during cache manage-
ment, incoming packets are still matched against the old rule cache.
Only after cache management is done, the updated rule cache is
available for matching incoming packets. To obtain reliable simu-
lation results, we carefully simulate the cache managementdelay
for each new sample packet.

In our simulations, we keep track of two clocks simultaneously.
One clock is thephysical clockof the machine running our simu-
lations, which can be read through a system call. The other clock
we maintain is thelogical clockof the traffic trace – each packet in
the trace has its time of emergence in the trace. Right beforecache
management starts, we read the physical clock timet1 and record
the current logical timet0 in the traffic trace. Upon completion
of cache management, we read the physical clock time again and
record it ast2. ∆t = t2 − t1 is taken as the cache management de-
lay. We do not update the rule cache until logical timet′ = t0 +∆t



in the traffic trace. Packets emerging beforet′ in the traffic trace are
matched against the old cache. In our simulations, we recordthe
delay of every cache management execution. The observed average
cache management delays are no less than one millisecond.

5.3 Results
To conduct an extensive evaluation of smart rule cache, we run

each traffic trace through each rule set and simulate smart rule
cache at per packet level in that context. Using a single cache entry
and a sliding window of 1024 packets, we report the cumulative
cache miss ratios observed on individual pairs of traffic trace and
rule set in Figure 11. The cache miss ratios are calculated after a
warm-up stage, which lasts for five minutes and one million pack-
ets, whichever comes later. The cumulative miss ratio of a traffic
trace accounts for all packets after the warm-up stage. As wecan
see in Figure 11, the cache miss ratios observed on all40 pairs of
traffic trace and rule set never exceed0.5%. Actually, on all rule
sets except rule set 7, the cache miss ratios never exceed0.1%. This
represents a decrease in cache miss ratio by two orders of magni-
tude, compared with the cache miss ratios reported in [28, 4].

Note that, the use of sampled traffic traces does not invalid our
results. We demonstrate this via simulations based on “enriched”
traffic traces. Given the sampling factor ofα, we keep the inter-
packet interval of each flow unchanged and evenly injectα − 1
packets between each pair of successive packets of each flow.This
gives us a traffic trace withα times as many packets as the original
trace. We observed same cache hit ratios on enriched traces as we
observed on sampled traces.

5.4 Tuning sampling strategy
Although the cache miss ratios reported in Figure 11 have been

extremely low, we still find the relatively higher cache missratios
observed on rule set 7 quite intriguing. So we ask the question “Is
there any specific reason underlying this, other than the maybe spe-
cial characteristics of rule set 7?” After careful analysisand exten-
sive experiments, the answer turns out to be “yes”. The sampling
strategy plays a decisive role there. For the results in Figure 11,
our sampling strategy is to immediately collect the next incoming
packet after cache management is completed. This straightforward
strategy seems not bad, as it allows the cache manager to sample in-
coming traffic as frequently as possible. However, samplingmore
frequently does not mean the cache manager will obtain more use-
ful knowledge. To effectively evolve the rules to capture missed
flows, the cache manager needs to sample missed packets. Packets
hitting the rule cache add no additional useful knowledge about in-
coming traffic. Because the cache manager ignores incoming traf-
fic during cache management, sampled packets are its only source
of knowledge. As the cache miss ratio has been quite low, such
a blind sampling strategy makes the cache manager obliviousof
missed flows with high probability. Therefore, the rules cannot be
effectively evolved to capture the missed flows and hence cache
miss ratio cannot be further reduced.

To further decrease the cache miss ratios and to verify the cor-
rectness of this understanding, we have designed and evaluated a
smarter sampling strategy. After cache management is completed,
we wait for a fixed number of packets (which we refer to assam-
pling interval) before collecting the next sample packet.If some
packet during the sampling interval results in a cache miss,we take
that packet as our next sample and restart cache management im-
mediately.

Using rule set 7 and traffic trace 2, we evaluate the performance
of smart rule cache with different sampling intervals and report the
results in Figure 13. With an appropriate choice of samplingin-
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Figure 13: Effect of sampling interval on cache miss ratio. Cache size
= 1. Sliding window size = 1024.

Rule Number of cache entries
set 1 2 3 4
3 4.19 × 10−1 1.41 × 10−1 1.84 × 10−3 6.52 × 10−4

4 3.85 × 10−1 3.00 × 10−2 1.17 × 10−3 6.26 × 10−4

6 3.89 × 10−1 3.03 × 10−2 1.17 × 10−3 6.07 × 10−4

Table 7: Cumulative cache miss ratios observed on different rule sets
with different number of cache entries.

terval, this smart sampling strategy reduces the cache missratio by
two orders of magnitude. Using traffic trace 2 and a sampling in-
terval of 512 packets, we also evaluated the performance of smart
rule cache with smart sampling on other rule sets. The observed
cache miss ratios are between0.0158% and0.0003%. Compared
with the cache miss ratios reported in [28] and [4], this represents
a decrease in cache miss ratio by2 ∼ 4 orders of magnitude. That
means the workload on the full-fledged packet classifier is reduced
by 2 ∼ 4 orders of magnitude, which in turn means potentially
shorter packet classification delays experienced by missedpackets
and the possibility of using less efficient but cheaper solutions.

5.5 More complicated rule sets
So far our simulation has been based on real rule sets used for

packet filtering, each specifying two possible decisions:permit
anddeny. While packet filtering is a globally deployed application
of wire speed packet classification, there are also many other appli-
cations such as QoS and security that specify much more diversi-
fied decisions. To evaluate the effectiveness of smart rule cache
on such applications, we also conducted simulations based on such
rule sets. As we do not have access to any such real rule sets, we
extend the real rule sets we have been using by randomly assign-
ing one of1024 different decisions to each rule. In practice, it is
unlikely that more than1024 different decisions will be specified.

Using traffic trace 2 and a sampling interval of 1024 packets,
we evaluate the performance of smart rule cache on the extended
rule sets. For rule sets 1, 2, 5, 7, 8, 9 and 10, the cache hit per-
formance of smart rule cache using one cache entry has degraded
very slightly, by a negligible amount. For rule sets 3, 4 and 6, we
do observe some impact on the performance of smart rule cache.
We present the cumulative cache miss ratios observed with differ-
ent numbers of cache entries in Table 7. As we can see, using as
few as4 cache entries, our smart rule cache is still able to reduce
cache miss ratio to the order of10−4.

We also conducted the same simulation for smaller numbers of
different decisions. To reduce cache miss ratio to the orderof 10−4,
the number of cache entries needed appears to grow no faster than
logarithmically. For example, for rule set 3 with up to 2, 4, 16
and 1024 different decisions, we need 1, 2, 3 and 4 cache entries,
respectively.



6. RELATED WORK
Packet classification on multiple fields was first studied in [13]

and [23]. Since then, there have been two lines of research onde-
signing efficient packet classification schemes. A long thread of
research [13, 23, 9, 24, 10, 27, 20, 3, 2, 26, 21, 12, 25, 5, 11] is
devoted to designing efficient algorithms for packet classification.
The other thread of research focuses on designing efficient packet
classification schemes based on TCAMs [16, 30, 22, 29, 14, 6].

Instead of proposing new packet classification schemes, in this
paper we focus on designing a high performance cache scheme
for cost efficient wire speed packet classification. Two flow cache
schemes have been previously proposed in [28] and [4], respec-
tively. These flow cache schemes cache recently observed flows
to speed up the classification of succeeding packets in thoseflows.
However, the increasingly large number of concurrent flows wit-
nessed by backbone routers present serious threat to the perfor-
mance of flow cache schemes. Based on the notion of rule evo-
lution, our proposed smart rule cache has been able to handlemany
more concurrent flows, requires much smaller cache size and deliv-
ers much higher cache hit ratios.

In [5], Cohen and Lund propose to reorder rules based on popu-
larity. Although their goal is to reduce the expected time ofsequen-
tially searching through a rule set to classify packets, this technique
can actually be used to reorder rules and then cache the topm rules.
In that sense, their proposal shares some common observation with
rule cache. However, simply reordering given rules is stillfar from
our smart rule cache. In smart rule cache, rules in cache are not
necessarily present in the given rule set and dynamically evolve in
response to incoming traffic pattern changes. Use of such inde-
pendently defined and constantly evolving rules is decisiveto the
success of smart rule cache.

More recently, Hamedet al. [11] propose to add some “early
reject” rules to the beginning of firewall packet filters, in pursuit of
the same goal of reducing the expected time needed to sequentially
search through a rule set. Compared with the proposal by Cohen
and Lund, Hamedet al. have gone one step further in that the early
reject rules they add are not necessarily in the rule set. However,
the key idea of dynamically evolving rules is still absent. More-
over, in identifying early reject rules, they have not been able to
take a systematic approach based on the semantics of the ruleset.
Instead, their approach are based on the specific values thatare ex-
plicitly specified in the rules. This greatly limits the flexibility and
effectiveness of added early reject rules.

7. CONCLUSIONS
Cost efficient wire speed packet classification is an important

topic of research. On one hand, the only widening gap between
wire speeds and memory access speeds represents an increasingly
tough challenge to software solutions. On the other hand, the rapidly
increasing wire speeds, rule set size and range specifications make
TCAM-based hardware solutions increasingly expensive. Inthis
paper, we propose to use a smart on-chip rule cache with a low cost
backup classifier in DRAM as a viable, cost efficient option. Akey
contribution of this work is the notion of a few evolving rules that
reside in the rule cache. Although the evolving rules dependon the
given rule set, it is usually not identical to any individualrule in the
rule set. In addition, they evolve with changes in incoming traffic
patterns. Through evaluation based on real traffic traces and real
rule sets from backbone routers of a tier-1 ISP, we demonstrate our
smart rule cache can achieve stable cache miss ratios at the order
of 10−4, using just a few cache entries. Such a small cache can
be easily implemented in network processors to keep up with wire

speeds, at negligible cost. As cache miss ratios are extremely low,
missed packets can be classified using a low cost backup classi-
fier. We believe the value of our smart rule cache design will only
increase with wire speeds and TCAM costs.
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