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Abstract

We are dependent upon data in many aspects of our lives. Much of this
data is stored and managed by distributed storage systems that run in
data centers, powering many modern applications such as e-commerce,
photo sharing, video streaming, search, social networking, messaging,
collaborative editing, and even health-care and financial services.

A distributed storage system stores copies of a piece of data on many
nodes for fault-tolerance: even when a few nodes fail, the system can still
provide access to data. Each of these nodes depends upon a local stor-
age stack to safely store and manage user data. The local storage stack is
complex, consisting of many hardware and software components. Due to
this complexity, the storage layer is a place for many potential problems
to arise. This dissertation examines the reliability and performance chal-
lenges that arise the interaction points between a distributed system and
the local storage stack.

In the first part of this thesis, we study how distributed storage sys-
tems react to storage faults: cases where the storage device may return cor-
rupted data or errors. We focus on replicated state machine systems, an
important class of distributed systems. We find that none of the existing
approaches used in current systems can safely handle storage faults, lead-
ing to data loss and unavailability. Using the insights gained in our study,
we design corruption-tolerant replication (Ctrl), a protocol-aware recovery
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approach for RSM systems. Ctrl exploits protocol-specific knowledge of
how RSM systems operate, to ensure safety and high availability in the
presence of storage faults without impacting performance.

In the second part, we study the performance and reliability proper-
ties of replication protocols used by distributed systems. We find there
exists a dichotomy with respect to how and where current approaches
store system state. One approach writes data to the storage stack syn-
chronously, whereas the other buffers the data in volatile memory. The
choice of whether data is written synchronously to the storage device or
not greatly influences the system’s robustness to crash failures and its per-
formance. We show that existing approaches either provide robustness to
crashes or performance, but not both. Thus, we introduce situation-aware
updates and crash recovery, a dynamic protocol that, depending upon the
situation, writes either synchronously or asynchronously to the storage
devices, achieving both strong reliability and high performance.

In the final part of this thesis, we study the effects of file-system crash
behaviors in distributed storage systems. We build protocol-aware crash
explorer or Pace, a tool that can model and reason about file-system crash
behaviors in distributed systems under a special correlated crash failure
scenario. Our study reveals that the correctness of update and recovery
protocols of many distributed systems hinges upon how the local file-
system state is updated by each replica. We perform a detailed analysis
of the vulnerabilities, showing their serious consequences and prevalence
on commonly used file systems. We finally point to possible solutions to
the problems discovered.
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1
Introduction

We rely upon modern online services in our day-to-day lives for many
purposes including social networking [229], e-commerce [161], photo shar-
ing [187, 190, 192], video streaming [69], text messaging [195], and main-
taining source repositories [191]. These modern services store massive
amounts of data that include photos, documents, financial information,
software, and health-care records. Most of this data is stored and man-
aged by distributed storage systems. In the modern data center, these sys-
tems include MongoDB [160], Redis [189], and ZooKeeper [14].

Distributed storage systems have an important goal: to reliably store
and provide efficient access to user data. To achieve this goal, a key idea
used by distributed systems is that of replication, i.e., a piece of data is
redundantly stored on many servers. Such redundancy helps mask fail-
ures: even if a few servers fail due to power-loss events, system crashes,
and network failures, the data can still be accessed and updated without
any problems. The resiliency of distributed systems to these kinds of fail-
ures has been thoroughly studied and is well understood [39, 202, 222].

In most modern distributed systems, the replicas work atop a local
storage stack to store and manage user data. The storage stack typically
consists of local file systems such as Linux ext4 [150] or Windows NTFS [211]
at the top, storage devices (e.g., hard-disk drives, SSDs) at the bottom, and
several software layers such as the I/O scheduler and the block layer in
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between. Storage stacks are immensely complex and therefore are an im-
portant source where problems can arise [103, 186, 228].

Despite this complexity, the problems that can arise at the interaction
between a distributed system and the storage subsystem remain under-
examined. For instance, consider a faulty storage device on one of the
replicas in a distributed system that can sometimes return corrupted data.
Users and applications using the distributed system would still expect the
system to return the correct data given that there are many copies of the
same data on other replicas.

The interaction between the nodes of a distributed system and their
local storage devices not only presents reliability challenges but also im-
pacts performance to a great extent. For example, when committing data
to the storage device, synchronously flushing the data to the storage de-
vice is considerably more expensive (about 50× slower) than buffering
the data in memory and then asynchronously writing to the device. Such
decisions of how the distributed system writes data to the storage subsys-
tem significantly influence robustness to crash failures and performance.

Finally, the software layers, especially the local file systems which man-
age the storage devices also present challenges to a correct interaction be-
tween the distributed system and the local storage stack. Recent research
has shown that file systems such as Linux ext4 and btrfs can lead to un-
intuitive on-disk states after a system crash or a power loss. For example,
on these file systems, it is possible for the writes issued by the node to be
reordered, and thus result in unexpected persistent states during crash
recovery. Ideally, even if such states arise on a few nodes, causing them
to lose or corrupt data, the distributed system must be able to recover the
data from the redundant copies.

This dissertation is aimed at studying the reliability and performance
problems that arise at the interaction points between a distributed system
and the local storage stack. We perform our study in three parts. First,
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we study how distributed systems react when the storage stack returns
corrupted data or errors; we call these errors storage faults. We find that
existing approaches to handling storage faults can lead to data loss or
unavailability. Using the insights gained from our analysis, we devise a
new approach to handle storage faults safely.

Next, we analyze the reliability and performance characteristics of cur-
rent approaches to replication used in distributed systems. We find that
depending upon whether these approaches synchronously write to stor-
age or not, they either offer robustness to crashes or performance, but not
both. By understanding why current approaches do not work well and
how failures manifest in real deployments, we build a new replication
protocol that is both performant and robust to crash failures.

Finally, we study how file-system crash behaviors affect distributed
storage systems. We find that the correctness of update and recovery pro-
tocols of many distributed systems hinges upon how the local file-system
state is updated by each replica. We perform a detailed analysis of the
vulnerabilities and point to possible solutions.

1.1 Protocol-Aware Recovery from Storage
Faults

We first examine how distributed storage systems react to storage faults:
cases where portions of data persisted on a storage device could be in-
accessible or corrupted on later accesses. Many distributed storage sys-
tems (especially distributed file systems) are carefully designed to handle
storage faults. For example, GFS detects disk corruptions on the chunk
servers and recovers the corrupted data from other replicas [94]. How-
ever, little is known about how replicated state machines (RSM) systems,
an important class of distributed systems, handle storage faults.

The reliability of RSM systems is crucial: many systems entrust RSM
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systems with their critical data [148]. For example, Bigtable and GFS store
their metadata on Chubby [44], an RSM system; similarly, many other sys-
tems [24, 80] depend upon ZooKeeper [14], another popular RSM system.
Given this, examining and understanding how RSM systems react to stor-
age faults is valuable.

First, we conduct experimental and qualitative analyses of practical
systems and methods proposed by prior research to characterize the dif-
ferent approaches to handling storage faults in RSM systems. The out-
come of our study is the RSM recovery taxonomy. Our analyses show that
most approaches employed by currently deployed systems do not effec-
tively use redundancy to recover from storage faults, leading to safety vi-
olations (e.g., data loss) or unavailability. We find that a key reason why
current approaches are ineffective is that they do not use any protocol-
level knowledge to perform recovery.

Using the insights gained through our study, we develop a new ap-
proach that aims to effectively use redundancy to recover from storage
faults. The main thesis underlying our approach is that, to correctly re-
cover corrupted data from redundant copies in a distributed system, a re-
covery approach should be protocol-aware. A protocol-aware recovery (Par)
approach is carefully designed based on how the distributed system per-
forms updates to its replicated data, elects the leader, etc.

We apply the Par approach to RSM systems to improve their resiliency
to storage faults. Given that many systems entrust RSM systems with
their critical data, protecting these systems from storage faults such as
data corruption will improve the reliability of many dependent systems.
However, correctly implementing recovery is very challenging because of
the strong safety and availability guarantees RSM systems provide [204];
a small misstep in recovery could violate the guarantees.

We design corruption-tolerant replication or Ctrl, a protocol-aware re-
covery approach for RSM systems that safely recovers faulty data while
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providing high availability. Ctrl constitutes two components: a local stor-
age layer and a distributed recovery protocol; while the storage layer reliably
detects faults, the distributed protocol recovers faulty data from redun-
dant copies. Both the components carefully exploit RSM-specific knowl-
edge to ensure safety (e.g., no data loss) and high availability.

We implement Ctrl in two storage systems that are based on differ-
ent consensus algorithms: LogCabin [144] and ZooKeeper [14] that are
based on Raft [175] and ZAB [118], respectively. Implementation of Ctrl
required only moderate developer effort and similar changes to each of
the base systems, suggesting that Ctrl is easy to adopt in practical sys-
tems and applies generally to many consensus-based storage systems.

Through a series of rigorous fault-injection experiments, we show that
Ctrl versions of the two systems provide safety and high availability in
the presence of storage faults, while the original systems remain unsafe
or unavailable in many cases. We also demonstrate that the reliability
improvements of Ctrl come with little to no performance cost: Ctrl in-
duces only about 10% overheads on HDDs and 4% on SSDs even for the
worst-case workload.

1.2 Situation-Aware Updates and Crash
Recovery

We next analyze the reliability and performance characteristics of dif-
ferent replication protocols used by distributed systems. In the modern
data center, these protocols include Paxos [130], Viewstamped Replica-
tion [140], Raft [175], and ZAB [119]. The reliability and performance of
these protocols are crucial: if these protocols behave incorrectly, reliabil-
ity goals will not be met; if they perform poorly, excess resources and cost
will be incurred.
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We start by studying the existing approaches to replication in dis-
tributed systems. Our study reveals that a dichotomy exists with respect
to how and where current approaches store system state. In one approach,
which we call disk durable, critical state is replicated to persistent storage
(i.e., hard drives or SSDs) within each node of the system [37, 40, 50, 112,
175]. In the contrasting memory durable approach, the state is replicated
only to the (volatile) memory of each machine [140, 171].

We conduct performance measurements and failure-injection exper-
iments to understand the performance and reliability characteristics of
disk-durable and memory-durable protocols. Our analysis shows that
neither of these approaches is ideal.

With the disk-durable approach, safety is paramount. When correctly
implemented, by committing updates to disks within a majority of nodes,
the disk-durable approach offers excellent durability and availability. Specif-
ically, data will not be lost even if many or all nodes crash and recover;
further, the system will remain available if a bare majority of nodes are
available. Unfortunately, the cost of safety is performance. When forcing
updates to hard drives, disk-durable methods incur a 50× overhead; even
when using flash-based SSDs, the cost is high (roughly 2.5×).

With the memory-durable approach, in contrast, performance is gen-
erally high, but at a cost: durability. In the presence of failure scenarios
where a majority of nodes crash (and then recover), existing approaches
can lead to data loss or indefinite unavailability.

The distributed system developer is thus confronted with a vexing
quandary: choose safety and pay a high performance cost, or choose per-
formance and face a potential durability problem. Many systems [50, 123,
140, 171, 184] lean towards performance, employing memory-durable ap-
proaches and thus risking data loss or unavailability. Even when using
a system built in a disk-durable manner, performance concerns can en-
tice the unwary system administrator towards disaster; for instance, the
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normally reliable disk-durable ZooKeeper can be configured to run in a
memory-durable mode [16], leading (regrettably) to data loss [86].

Thus, to address this problem, we introduce situation-aware updates
and crash recovery or Saucr, a hybrid replication protocol that aims to pro-
vide the high performance of memory-durable techniques while offering
strong guarantees similar to disk-durable approaches. The key idea un-
derlying Saucr is that the mode of replication should depend upon the
situation the distributed system is in at a given time. In the common case,
with many (or all) nodes up and running, Saucr runs in memory-durable
mode, thus achieving excellent throughput and low latency; when nodes
crash or become partitioned, Saucr transitions to disk-durable operation,
thus ensuring safety at a lower performance level.

The effectiveness of Saucr depends upon the simultaneity of failures.
Specifically, if a window of time exists between individual node failures,
the system can detect and thus react to failures as they occur. Saucr takes
advantage of this window in order to move from its fast mode to its slow-
and-safe mode.

With independent failures, such a time gap between failures exists be-
cause the likelihood of many nodes failing together is negligible. Unfor-
tunately, failures can often be correlated as well, and in that case, many
nodes can fail together [88, 106, 124, 216]. Although many nodes fail to-
gether, a correlated failure does not necessarily mean that the nodes fail at
the same instant: the nodes can fail either non-simultaneously or simulta-
neously. With non-simultaneous correlated failures, a time gap (ranging
from a few milliseconds to a few seconds) exists between the individual
failures; such a gap allows Saucr to react to failures as they occur. With
simultaneous failures, in contrast, such a window does not exist. How-
ever, we conjecture that such truly simultaneous failures are extremely
rare; we call this the Non-Simultaneity Conjecture (NSC). While we can-
not definitively be assured of the veracity of NSC, existing data [88, 96]
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hints at its likely truth.
Compared to memory-durable systems, Saucr improves reliability un-

der many failure scenarios. Under independent and non-simultaneous
correlated failures, Saucr always preserves durability and availability, of-
fering the same guarantees as a disk-durable system; in contrast, memory-
durable systems can lead to data loss or unavailability. Additionally, if
NSC holds, Saucr always provides the same guarantees as a disk-durable
system. Finally, when NSC does not hold and if more than a majority of
nodes crash in a truly simultaneous fashion, Saucr remains unavailable,
but preserves safety.

We implement a prototype of Saucr in ZooKeeper. Through rigorous
fault injection, we demonstrate that Saucr remains durable and available
in hundreds of crash scenarios, showing its robustness. This same test
framework, when applied to existing memory-durable protocols, finds
numerous cases that lead to data loss or unavailability. Saucr’s reliabil-
ity improvements come at little or no performance cost: Saucr’s over-
heads are within 0%-9% of memory-durable ZooKeeper across six differ-
ent YCSB workloads. Compared to the disk-durable ZooKeeper, with a
slight reduction in availability in rare cases, Saucr improves performance
by 25× to 100× on HDDs and 2.5× on SSDs.

1.3 File-system Crash Behaviors in Distributed
Systems

In the final part of this dissertation, we examine how file-system crash
behaviors affect distributed systems. To safely replicate and persist data,
distributed systems implement complex update protocols. For example,
ZooKeeper implements an atomic broadcast protocol and several systems
including LogCabin and etcd [79] implement the Raft consensus proto-
col to ensure agreement on data between replicas. Although the base
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protocols (such as atomic broadcast [38], Raft [175], or Paxos [130]) are
provably correct, implementing such a protocol without bugs is still de-
manding [46, 93, 104, 110, 236], especially when machines can crash at
any instant [132].

When a node recovers from a crash, the common expectation is that
the data stored by the node would be recoverable. Unfortunately, the
local file system (which the node uses to store user data) complicates
this situation. Recent research has shown that file systems vary widely
with respect to how individual operations are persisted to the storage
medium [181]. For example, testing has revealed that in ext4, f2fs [27],
and u2fs [153], one cannot expect the following guarantee: a file always
contains a prefix of the data appended to it (i.e., no unexpected data or
garbage can be found in the appended portion) after recovering from a
crash. The same test also shows that this property may be held by btrfs
and xfs. Thus, when a node recovers from a crash, it may encounter un-
expected persistent states because of the underlying file system, affecting
application correctness [181].

Recent studies [41, 181] have demonstrated that these widely vary-
ing file-system behaviors influence the crash-correctness of many single-
machine applications (such as SQLite [212] and LevelDB [97]), causing
them lose or corrupt data. Since most practical distributed systems run
atop local file systems [120, 162, 194], such file-system behaviors can affect
them too.

Reasoning about file-system crash behaviors in distributed systems
has a similar flavor to doing the same in a single-machine setting. How-
ever, we believe that studying the effects of file-system crash behaviors in
distributed systems is a different problem for three reasons. First, dis-
tributed systems can fail in more ways than a single machine system.
Since a distributed system constitutes many components, a group of com-
ponents may fail together at the same or different points in the protocol.
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Second, unique opportunities and problems exist in distributed crash re-
covery; after a failure, it is possible for one node in an inconsistent state
to repair its state by contacting other nodes or to incorrectly propagate
the corruption to other nodes. In contrast, single-machine applications
rarely have external help. Third, crash recovery in a distributed setting
has many more possible paths than single-machine crash recovery as dis-
tributed recovery depends on states of many nodes in the system.

Our goal is to examine if and how file-system crash behaviors affect
distributed systems. We perform our study under a special type of cor-
related failure scenario in which all replicas of a particular data shard
crash together; the individual failures can be either simultaneous or non-
simultaneous. During such a failure, in most existing systems, all repli-
cas may crash before any node can react to the failure. Such correlated
failures occur due to root causes such as data-center-wide power out-
ages [95], operator errors [239], or kernel crashes [88] and several instances
of such failures have been reported [61, 67, 68, 107, 227].

When nodes recover from a correlated failure, the common expecta-
tion is that the data stored by the distributed system would be recover-
able. However, file-system crash behaviors can result in unanticipated
persistent states in one or more nodes when a distributed storage system
recovers from a correlated crash, complicating recovery.

We say a distributed system has a vulnerability if a correlated crash
during the execution of the system’s update protocol (and subsequent
recovery) exposes a user-level guarantee violation (e.g., loss of committed
data). These vulnerabilities are caused by the unexpected states produced
by the file system running at the replicas. To examine if file-system crash
behaviors lead to vulnerabilities in distributed systems, we build Pace.

To produce states that are possible during a correlated crash, Pace con-
siders consistent cuts in the distributed execution and generates persis-
tent states corresponding to those cuts. Pace models local file systems at
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individual replicas using an abstract persistence model (APM) [181] which
captures the subtle crash behaviors of a particular file system. Pace uses
protocol-specific knowledge to reduce the exploration state space by system-
atically choosing a subset of nodes to introduce file-system crash behav-
iors modeled by the APM. In the worst case, if no attributes of a dis-
tributed protocol are known, Pace can operate in a slower brute-force
mode to still find vulnerabilities.

We applied Pace to eight widely used distributed storage systems span-
ning important domains including database caches (Redis [189]), con-
figuration stores (ZooKeeper [14], LogCabin [144], etcd [79]), real-time
databases (RethinkDB [196]), document stores (MongoDB [160]), key-value
stores (iNexus [113]), and distributed message queues (Kafka [15]). Pace
found a total of 26 vulnerabilities that have severe consequences such as
data loss, silent corruption, and unavailability. We also find that many
vulnerabilities can be exposed on commonly used file systems such as
ext3, ext4, and btrfs. We reported 18 of the discovered vulnerabilities to
application developers. Twelve of them have been already fixed or ac-
knowledged by developers. While some vulnerabilities can be fixed by
straightforward code changes, some are fundamentally hard to fix.

We learn two overarching lessons from our study. First, we find that
file-system crash behaviors affect many distributed storage systems. For
their local update protocols to work correctly, modern distributed stor-
age systems expect certain guarantees from file systems such as ordered
directory operations and atomic appends. Second, we find that in many
cases, when a node loses data due to its file-system crash behaviors, the
distributed recovery protocols do not use intact replicas to fix the prob-
lematic node, leading to global data loss or corruption.

Our study also demonstrates that Pace is general: it can be applied to
any distributed system; Pace is systematic: it explores different systems
using general rules that we develop; Pace is effective: it found 26 unique
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vulnerabilities across eight widely used distributed systems.

Overall, our dissertation brings to light several reliability and perfor-
mance challenges at the intersection of distributed systems and local stor-
age stacks that were previously unexplored. Further, our thesis demon-
strates that it is possible to build distributed systems that are resilient to
failures that arise at the storage layer and yet deliver high performance.
A key to solving these problems, as shown by our work on Par and Saucr,
is to exploit protocol-awareness or situation-awareness, i.e., to build mecha-
nisms that are aware of the underlying protocols used by the system or
the situation in which the system is in at any particular time.

1.4 Contributions

We list the main contributions of this dissertation.

• RSM recovery taxonomy. We analyze existing approaches to han-
dling storage faults in RSM systems to build the RSM recovery tax-
onomy. This taxonomy categorizes existing approaches into protocol-
oblivious and protocol-aware classes and characterizes the safety,
availability, performance, and complexity of the approaches.

• Safety Violations in Practical Systems. In our study on analyz-
ing how RSM systems react to storage faults, we examine practical
systems such as ZooKeeper and LogCabin using a fault-injection
framework. Our tests have revealed safety violations (i.e., data loss)
in these systems that were previously unknown.

• Corruption-Tolerant Replication. We design corruption-tolerant
replication (Ctrl), a new protocol-aware recovery approach for RSM
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systems. Ctrl safely recovers faulty data while providing high avail-
ability. Ctrl does so with minimal performance overheads.

• Disentangling Crashes from Corruptions. In our work on building
Ctrl, we devise a new mechanism in the local storage layer to dis-
tinguish checksum mismatches that arise due to system crashes and
storage corruptions. Without such a mechanism, several existing
systems conflate crashes and corruption, leading to a data loss [92].
We also present an impossibility result showing that disentangle-
ment is not possible when the last entry in the log is corrupted. This
result applies not only to Ctrl but to any log-based storage system.

• Dichotomy in Existing Replication Protocols. We analyze existing
approaches to replication and identify that there exists a dichotomy
with respect to how and where current approaches store system
state (disk-durable vs. memory-durable). Through careful exper-
imentation and analysis, we show the tradeoff between resiliency
to crashes and performance in disk-durable and memory-durable
approaches.

• Situation-Aware Updates and Recovery. We design Saucr, a new,
dynamic replication protocol that provides strong durability guar-
antees (similar to disk-durable protocols) while delivering high per-
formance (similar to memory-durable protocols).

• PACE Tool. We design and build Pace, a tool that can examine
how local file-system crash behaviors affect distributed storage sys-
tems under correlated crash scenarios. Pace’s source code is publicly
available [6].

• Vulnerabilities Discovered. Using Pace, we discover 26 new vul-
nerabilities across eight modern distributed storage systems, includ-
ing ZooKeeper, MongoDB, and Redis. Many of these vulnerabili-
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ties have been acknowledged and fixed, improving the reliability of
these systems. We also present a detailed study of these vulnerabil-
ities.

1.5 Overview

We briefly describe the contents of the chapters of this dissertation.

• Background. In Chapter 2, we provide an overview of modern dis-
tributed storage systems. We describe the general architecture of
RSM systems, how requests are processed, and how failures are
handled. We provide a background on the failure models (storage
faults, crash failures, and file-system crash behaviors) that are rele-
vant to this dissertation and explain why it is critical for distributed
storage systems to handle these failures.

• Recovering from Storage Faults via Protocol-Awareness. In Chap-
ter 3, we first describe our analysis of current approaches to han-
dling storage faults in RSM systems. We then present Ctrl, a new
protocol-aware recovery approach for RSM systems. We describe
Ctrl’s design, implementation, and present our evaluation.

• Situation-Aware Updates and Crash Recovery. Chapter 4 first de-
scribes how existing approaches to replication work and shows the
tradeoffs involved. Then, in the second part, we present Saucr, a
new, dynamic replication approach. We present Saucr’s design, im-
plementation, and evaluation.

• File-system Crash Behaviors in Distributed Systems. In Chap-
ter 5, we explore how file-system crash behaviors affect distributed
systems. We describe how Pace explores different states that can oc-
cur in an execution and systematically introduces file-system crash
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behaviors. We then present our study of vulnerabilities discovered
with Pace.

• Related Work. In Chapter 6, we first describe prior work on study-
ing the effects of storage faults. We then discuss prior attempts that
aim to harden systems against storage faults. We discuss work re-
lated to the specific techniques used in Saucr. We finally discuss
efforts related to Pace that aim to find vulnerabilities in distributed
systems.

• Conclusions and Future Work. In Chapter 7, we summarize the
dissertation and present a few high-level lessons that we learned
during the course of this dissertation. We finally present directions
in which the work presented in this dissertation can be extended.
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2
Background

In this chapter, we provide a background on various topics relevant to
this dissertation. First, in Section §2.1, we provide an overview of mod-
ern distributed storage systems and the components of a typical system.
Next, in Section §2.2, we discuss how a special and an important class of
distributed systems called replicated state machines works; we describe
the general architecture, the path of an update, persistent structures used,
and how failures are handled. Then, in Section §2.3, we describe the var-
ious failure models that are relevant to our work: storage faults, crash
failures, and file-system crash behaviors.

2.1 Modern Distributed Storage Systems

Modern distributed storage systems are central to building large-scale
services [52, 62, 72, 170]. Important applications such as photo stores, e-
commerce, video stores, text messaging, and social networking are built
upon modern distributed storage systems. By providing replication, fault
tolerance, availability, and reliability, distributed storage systems ease the
development of complex software services [47, 78, 159, 188].

A few examples of such modern distributed storage systems include
Redis [189], MongoDB [160], ZooKeeper [14], etcd [79], LogCabin [144],
Kafka [15], and RethinkDB [196]. Applications and services use these sys-
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tems for different purposes; for example, as a database cache (Redis), as
a key-value store (MongoDB), as a configuration store (etcd, ZooKeeper),
as a message queue (Kafka), and as a real-time database (RethinkDB).

One of the main goals of these systems is to reliably store and provide
efficient access to massive amounts of data. For this purpose, these sys-
tems usually shard the data, i.e., the data is partitioned into smaller units
that can be managed independently. Each shard, in turn, is replicated: a
data item is redundantly stored on several nodes for fault-tolerance. A
node that stores a copy of data is called a replica. In this dissertation, we
mostly focus on problems within a single shard of the distributed system.

Within a shard, most systems designate one node as the leader (some-
times also called the primary or master), a special node that performs
a few more tasks than the other nodes. Other nodes are referred to as
followers or backups. For example, in Redis, the leader processes updates
from the clients and replicates them to the backups; the backups passively
follow the leader and help distribute the load of read requests.

Components within a Replica

Figure 2.1 shows the typical components of a replica in the distributed
system. As shown, a replica has two important components: distributed
protocols and local storage layer. While practical systems implement many
distributed protocols such as membership management [72] and recon-
figuration [145], we focus on the two most pertinent to this dissertation:
the replication protocol and the leader-election protocol.

Replication and Leader-election Protocols

Each replica runs a distributed replication protocol. The replication pro-
tocol determines the exact way in which data is written to the system.
Typically, when a client wishes to update a piece of data, it sends a request
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Figure 2.1: Components within a Replica. The figure shows distributed
and local-storage components within a single replica in the system.

to the leader. The leader then replicates this update to the followers; once
enough nodes have acknowledged the update, the leader responds to the
client; at this point, the update is considered to be committed.

The number of replicas that need to store the data before responding to
the clients may be configurable depending upon the system. For exam-
ple, in MongoDB, one can configure the system to return the write just
after the leader has stored the data (by setting the writeConcern [165] pa-
rameter appropriately). In contrast, in a few systems such as ZooKeeper
and etcd, this value is fixed and cannot be changed: a write is acknowl-
edged only after a majority of nodes (i.e., bn/2c+ 1, where n is the total
number of replicas, usually a small odd number) have stored the data.
In addition to configuring how many nodes must accept a write before
acknowledging, most systems allow the persistence of the update to be
configured too. For example, in ZooKeeper, if the forceSync flag is set,
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then the update is persisted to disks before returning, whereas disabling
this flag returns the write after the nodes have buffered the update in their
volatile memory [16].

In addition to the replication protocol, each node runs a leader-election
protocol. This protocol helps the nodes to constantly monitor the state of
the system to detect if the current leader has failed. If the current leader
fails, the protocol elects a new leader. While the details of how such an
election works may vary depending on the system, a common mechanism
used to detect failures is that of heartbeats: a small packet that a server pe-
riodically sends to notify other servers that it is alive. If a node fails (e.g.,
crashes or gets disconnected from the network), then the other nodes will
notice the failure through missing heartbeats.

Local Storage Stack

While the distributed protocols deal with communication across different
replicas and clients, the storage layer on each node is responsible for man-
aging the data stored locally on the node. Every replica has a local storage
device such as a hard-disk drive (HDD) or a flash-based solid-state drive
(SSD) attached to it. The device is usually managed by a local file system
such as ext4 or btrfs.

To store user data, a few systems use existing data formats such as
log-structured merge trees or LSMs [172] (e.g., iNexus [113] uses LevelDB
which in turn implements an LSM), while others use their custom format
(e.g., ZooKeeper uses a simple custom append-only log). Most modern
distributed systems store these formats on the local file system and work
atop the file system to access and update data [120, 162, 194]. While a few
systems manage their data directly atop the storage devices [49], in this
dissertation, we mostly focus on systems that depend upon local file sys-
tems for storage. However, the solutions we develop in this dissertation
apply to systems that work directly atop storage devices too.
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mkdir(t) // create topic directory
creat(t/log) // create message log file
append(t/log) // append message to log
fsync(t/log) // persist the log
creat(rep.tmp) // create replication information temporary file
append(rep.tmp) // append replication offset info to a temporary file
fsync(rep.tmp) // persist the temp file
rename(rep.tmp, rep) // atomically rename the temp file to original

Figure 2.2: An Example Local-Update Protocol. The figure shows the local-
update protocol for a simple message-insert workload in Kafka.

The distributed system interacts with the local file system when it
needs to read or write its data. The file system takes care of safely up-
dating its internal metadata structures through mechanisms such as jour-
naling [28, 185]; this ensures that the file system remains consistent even
in the face of system crashes or power failures. Similarly, the distributed
system, which is a client to the local file system, must safely update its
application-level data even in the presence of failures. For this purpose,
each node implements a local update protocol. A correct update protocol
ensures that the application-level data remains consistent and durable
even in the presence of system crashes and power failures.

The update protocol is essentially a sequence of file-system-related
system calls (e.g., open, write, read, close). For example, in a distributed
key-value store, upon a put operation, each replica may issue a write sys-
tem call to send the data to the OS buffers (specifically, the page cache)
and also a fsync system call to force the data to the underlying storage
device. Figure 2.2 shows an example update protocol implemented by
Kafka. As shown, the node issues a sequence of system calls upon an up-
date. Specifically, the update protocol creates new directories and files,
writes data to the files, and carefully flushes them to the disk.

Similar to the update protocol, each node also implements a protocol
to read its data from the file system. However, most of the time, the data
is cached in the application’s memory, requiring no interaction with the
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file system during reads. Finally, each node also implements a local recov-
ery protocol: the sequence of steps a node performs when it restarts after a
crash to recover its data from its local file system. A typical recovery pro-
tocol first reads the files from the system’s data directory; it then scans
the data, performing integrity checks (e.g., sanity and checksum verifica-
tion); next, it may discard any partially updated data structures and files
(e.g., truncate a partially written entry in the write-ahead log); finally, it
loads a portion of data into memory to serve requests. Constructing cor-
rect update and recovery protocols is often challenging, especially when
the storage device or the local file system do not work in expected ways.

2.2 Replicated State Machine Systems

In Chapter 3, we focus on a special and an important class of distributed
systems called the replicated state machine (RSM) systems. We thus pro-
vide an overview of RSM systems now.

RSMs provide a paradigm to make a program or state machine more
reliable. The main idea is to run copies of the program on many nodes
at the same time. Clients interact with the system to get their commands
accepted and executed on the state machine. Given that there are many
replicas, even if a few replicas fail (e.g., due to a power loss), the system as
a whole can still continue to provide service to clients. If all the replicas
start from the same initial state and apply the same set of inputs in the
same order, then they will all produce the same outputs. A consensus
algorithm such as Paxos [130], Raft [175], or ZAB [119] ensures that the
replicas all process the incoming commands from the clients in the same
order. Practical systems implement these protocols using a leader-based
approach: a single node, the leader, establishes the order of requests and
then replicates them to the followers.

RSM systems provide the following guarantees about availability: as
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Figure 2.3: The Path of an Update. The figure shows how a write request
is processed in an RSM system. As shown, the client first contacts the leader.
The leader then replicates the data to the followers. When a majority of nodes
have accepted the write, the leader applies the command to its state machine and
returns to the client.

long as any majority of the servers are alive and can communicate with
each other and with clients, then the system will remain available. For
example, in a five-node cluster, the system will remain available as long as
any three nodes are operational. RSM systems also provide the following
safety property: if a command from a client has been acknowledged as
committed, then the system guarantees that the command will not be lost
or be overwritten. If a committed command is lost or overwritten, we say
that the system has violated the safety property.

2.2.1 The Path of an Update Request

Figure 2.3 shows the path of a single write operation. In most practical
RSM systems, as shown in step 1, clients interact with the leader to ex-
ecute operations on the state machine. If a write request is received by
a follower, it is simply redirected to the leader. Upon receiving a com-
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mand, the leader stores it on its disk (for example, using a similar proto-
col shown in Figure 2.2) and replicates it to the followers as shown in step
2. The followers also write the data to their disks and respond back as in
step 3. Once a majority of nodes inform the leader that they have written
the command, the leader considers the command to be committed; thus,
it applies the command to its state machine and returns the result to the
client. At this point, the client expects that the command will not be lost
or overwritten, regardless of any failures.

2.2.2 Persistent Structures

In Chapter 3 of this thesis, we examine the effects of data corruption in
the persistent structures of an RSM system. Thus, we briefly describe the
various on-disk structures that RSM systems maintain. First, the nodes
append the incoming commands to an on-disk log. The log is usually
implemented as a set of files on the file system. The update performance
of the log is critical because these updates happen in the critical path of
the client write request. The nodes apply the commands to their state
machines in the same order as they appear in their logs.

Technically, the logs are enough to implement the state machine. But
there are two problems to using only the log: first, the log can grow indef-
initely and thus can exhaust disk space; second, on a restart, the node has
to apply a huge number of commands stored in the log, starting from the
first one, increasing recovery time. To prevent these problems, practical
systems take a snapshot of the in-memory state machine periodically; once
the snapshot is written to disk, the log entries can be garbage collected.
When a node restarts after a crash, it restores the system state by reading
the latest on-disk snapshot and the log. The snapshot is typically a blob
stored in a file.

In addition to the log and the snapshots, the nodes also maintain a few
critical metadata structures (e.g., log-start index). We call these structures
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metainfo. The metainfo is usually only a few tens of bytes in size and is
updated infrequently (e.g., when the current leader fails).

2.2.3 Handling Failures

As we discussed, an RSM system must remain available even when a few
nodes fail, as long as a majority of servers are available. When a follower
fails, and if the leader still holds a majority (including self), then avail-
ability is not affected in any way. However, when the active leader fails,
the system may be momentarily unavailable until a new leader is elected.
On a leader failure, the followers will start missing heartbeats from the
leader. After a short time, the followers become candidates and run for
an election. Most practical systems restrict which candidates can become
the leader by enforcing the leader-completeness property [12, 175]; with
this property, only a candidate that has stored all data items that have
been acknowledged can become the leader. Once a new leader is elected,
the system becomes available and can start processing requests. As we
will see, this property is important to a few aspects of the solutions that
we build in this dissertation.

2.3 Failure Models

One of the main contributions of this dissertation is the analysis of how
modern distributed storage systems react to various realistic failures. In
this section, we provide an overview of the failure models that we con-
sider.

2.3.1 Storage Faults

The data stored by a node in the distributed system ultimately resides on
a storage device such as a hard-disk drive or a flash-based SSD. Ideally,
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these devices should be perfectly reliable: they should be able to retrieve
the data that was stored on them without any problems.

Unfortunately, in reality, this is not the case. Storage devices exhibit
a subtle and complex failure model: a few blocks of data could become
inaccessible or be silently corrupted [29, 31, 99, 206]. Storage faults occur
due to several reasons: media errors [32], program/read disturbance [207],
and bugs in firmware [31], device drivers [218], and file systems [89, 90].

Storage faults manifest in two ways: block errors and corruption. Block
errors (or latent sector errors) arise when the device internally detects a
problem with a block and throws an error upon access. Studies of both
hard-disk drives [32, 206] and flash-based SSDs [100, 207] show that block
errors do occur in the real world. For example, a previous study [32] of
one million disk drives over a period of 32 months has shown that 8.5% of
near-line disks and about 1.9% of enterprise-class disks developed one or
more latent sector errors. Similarly, a recent study on flash reliability [207]
has shown that as high as 63% and 2.5% of millions of flash devices expe-
rience at least one read and write error, respectively.

Block corruptions are more insidious than errors because blocks be-
come corrupt in a way not detectable by the device itself. Corruption
could occur due to lost and misdirected writes. Studies [31, 177] and anec-
dotal evidence [114, 116, 198] show the prevalence of data corruption in
the real world. For example, Bairavasundaram et al., in a study of 1.53
million disk drives, showed that more than 400,000 blocks had checksum
mismatches [31].

Many local file systems, on encountering a storage fault, simply prop-
agate the fault to applications [33, 186, 214]. For example, ext4 silently
returns corrupted data if the underlying device block is corrupted. In
contrast, a few file systems transform an underlying fault into a differ-
ent one; for example, btrfs returns an error to applications if the accessed
block is corrupted on the device. In either case, storage systems built atop
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local file systems should handle corrupted data and storage errors to pre-
serve end-to-end data integrity.

Although such storage faults are rare compared to whole-machine
failures, in large-scale distributed systems, even rare failures become preva-
lent [207, 209]. Further, these faults are more prone to occur on inexpen-
sive disk that many distributed deployments use [70, 94]. Thus, it is crit-
ical for distributed storage systems to reliably detect and recover from
storage faults.

2.3.2 Crash Failures

Most practical distributed systems intend to tolerate only fail-recover fail-
ures [98, 111, 130, 175] and not Byzantine failures [48, 131].

In the fail-recover model, nodes may crash any time (e.g., due to a
power loss) and recover later (e.g., when the power is restored). When a
node recovers, it loses all its volatile state and is left only with its on-disk
data. In addition to crashing, sometimes, a node could be partitioned and
may later be able to communicate with the other nodes; however, during
such partition failures, the node does not lose its volatile state.

Node crashes happen in different ways in a data-center environment.
Sometimes, a crash event could be independent. For example, in large de-
ployments, single-node failure events are often independent: a crash of
one node (e.g., due to a power failure) does not affect some other node.
The replicas of a system are usually placed in a failure-aware manner in
different availability zones, a feature common in modern data-center de-
ployments [13, 127, 156]; thus, in many cases, the failure of one replica
is independent of other replicas. With independent failures, a time gap
between individual failures exists because the likelihood of many nodes
failing together is negligible.

However, a more vexing failure scenario is that of correlated crashes:
cases where many or all replicas of a system crash together and recover
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at a later point [88, 106, 124, 216]. Correlated failures do occur in the real
world and several instances of such failures have been reported [36, 58,
61, 67, 68, 88, 107, 125, 169, 227].

These failures typically occur due to cluster-wide power outages, planned
reboots, and unplanned restarts. A recent study from Google [88] showed
that node failures in Google data centers are often correlated. From data
over a period of three months, the study showed that a failure burst in
one instance of a distributed file system [94] can take down as many as
50 machines in a correlated fashion; this kind of failure typically can be
seen during a power outage in a data center. Similarly, rolling kernel
upgrades and unplanned restarts also cause failure bursts that can take
down around 20 machines together.

Although many nodes fail together, a correlated failure does not neces-
sarily mean that the nodes fail at the same instant: the nodes can fail either
non-simultaneously or simultaneously. With non-simultaneous correlated
failures, a time gap (ranging from a few milliseconds to a few seconds)
exists between the individual failures. In contrast, with simultaneous fail-
ures, such a window between individual failures does not exist. However,
we conjecture that such truly simultaneous failures are extremely rare; we
explain the simultaneity of failures in more detail in Section §4.1.3.

A distributed system may not be able to progress when many or all
replicas crash during a correlated failure; for example, if a majority of
nodes crash in an RSM system, the system will not be able to serve client
requests. However, the common expectation is that the system would be-
come available after the cause of the failure is fixed (for example, after
power has been restored) and once enough nodes have recovered. Fur-
ther, applications and users will expect that the data stored by the storage
system will be recoverable after the system comes alive.
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2.3.3 File-system Crash Behaviors

As we discussed, most distributed storage systems depend upon local file
systems such as ext4 or btrfs to store and manage their data. We also dis-
cussed how these systems implement intricate update protocols to safely
update their on-disk data structures. Upon a system crash or a power fail-
ure, the system recovers its data from the file system. Unfortunately, this
seemingly simple process of updating and recovering data is complicated
by local file systems [181].

The complication arises because local file systems provide unclear guar-
antees to applications in the presence of crashes [224]. Such unclear se-
mantics lead to wrong update and recovery protocols, causing applica-
tions to lose or corrupt data. To worsen the situation, the guarantees pro-
vided upon a crash differ from one file system to the other, and some-
times even across different mount options of the same file system. Thus,
an application update and recovery protocol that work correctly on one
file system may not work on another.

Recent research has studied file-system crash behaviors in detail and
found that application-level consistency is dangerously dependent upon
such file-system behaviors [54, 179, 181]. These studies categorize file-
system crash behaviors into two classes of properties: atomicity and or-
dering. The atomicity class of properties says whether a particular file
system must persist a particular operation in an atomic fashion in the
presence of crashes. For instance, must ext2 perform a rename in an atomic
way or can it leave the system in any intermediate state? The ordering
class of properties says whether a particular file system must persist an
operation A before another operation B. For instance, must ext4 order a
link and a write operation?

These studies have also shown that the atomicity and ordering prop-
erties vary widely across file systems in the presence of crashes [41, 181].
For instance, the rename system is atomic on many file systems but not on
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ext2. Similarly, while ext4 orders directory operations and file-write op-
erations, the same does not hold true in btrfs, which can reorder directory
operations and write operations in the presence of crashes.

Since most practical distributed systems run atop local file systems,
it is important for them to be aware of such behaviors. These file-system
nuances can result in unanticipated persistent states on a node when it re-
covers from a crash. In the presence of correlated crashes, the file-system
behaviors can result in unexpected persistent states in many nodes when
the system recovers.

2.4 Summary

In this chapter, we presented background on topics related to this disser-
tation. We described modern distributed storage systems and their archi-
tecture. We introduced RSM systems and showed how write requests are
processed; we briefly discussed their on-disk structures and how failures
are handled. We then introduced three failures models that are relevant
to this dissertation: storage faults, crash failures, and file-system crash
behaviors. We defined each of the failure models and provided explana-
tions of why they occur in practice and why it is important for distributed
storage systems to handle them.
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3
Recovering from Storage Faults via

Protocol-Awareness

In this chapter, we examine how distributed storage systems react to stor-
age faults. We focus on replicated state machine (RSM) systems given
their importance. In the first part of this chapter, we analyze different ap-
proaches to handling storage faults in RSM systems and build the RSM
recovery taxonomy. Our analyses show that most approaches employed by
currently deployed systems do not use any protocol-level knowledge to
perform recovery, leading to disastrous outcomes such as data loss and
unavailability.

Thus, in the second part of this chapter, to improve the resiliency of
RSM systems to storage faults, we design a new protocol-aware recovery
approach that we call corruption-tolerant replication or Ctrl. Ctrl safely
recovers faulty data while ensuring high availability. We experimentally
show that the Ctrl versions of two systems, LogCabin and ZooKeeper,
safely recover from storage faults and provide high availability, while the
unmodified versions can lose data or become unavailable. We also show
that the Ctrl versions have little performance overhead. This chapter is
based on the paper, Protocol-Aware Recovery for Consensus-based Storage,
published in FAST 2018 [10].

We first present our analysis of how RSM systems react to storage
faults (§3.1). Then, we describe the design of Ctrl (§3.2). Next, we de-
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scribe Ctrl’s implementation in two systems (§3.3) and present our eval-
uation (§3.4). Finally, we summarize and conclude (§3.5).

3.1 Analysis of Existing Approaches

In this section, we first present some background on storage faults and
RSM systems. Then, we present our analysis of how RSM systems detect
and recover from storage faults.

3.1.1 Storage Faults in Distributed Systems

As we discussed in §2.3.1, disks and flash devices exhibit a subtle and
complex failure model where a few blocks of data could become inac-
cessible (block errors) or be silently corrupted (corruption). Studies of both
flash and hard drives [31, 32, 100, 177, 206, 207] have shown that block
errors and corruptions happen in the real world.

Many local file systems that manage the storage devices do not han-
dle storage faults: they either propagate the fault or return an error to
applications. Thus, the ultimate responsibility of preserving end-to-end
integrity lies with the applications. Single-machine systems rarely have
external help; they solely rely on local file systems to reliably store data.
Unlike single-machine systems, distributed systems inherently store data
in a replicated fashion, thus providing an opportunity to recover from
storage faults.

One way to tackle storage faults is to use RAID-like storage to main-
tain multiple copies of data on each node. However, many distributed
deployments would like to use inexpensive disks [70, 94]. Given that the
data in a distributed system is inherently replicated, it is wasteful to store
multiple copies on each node. Hence, it is important for distributed sys-
tems to use the inherent redundancy to recover from storage faults.
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3.1.2 RSM-based Storage Systems

Our goal is to examine how RSM systems react to storage faults. As we
discussed in Section 2.2, in an RSM system, a set of nodes compute identi-
cal states by executing commands on a state machine (an in-memory data
structure on each node) [204]. Typically, clients interact with a single node
(the leader) to execute operations on the state machine. Upon receiving
a command, the leader durably writes the command to an on-disk log
and replicates it to the followers. When a majority of nodes have durably
persisted the command in their logs, the leader applies the command to
its state machine and returns the result to the client; at this point, the
command is committed. The commands in the log have to be applied to
the state machine in-order. Losing or overwriting committed commands
violates the safety property of the state machine. The replicated log is
kept consistent across nodes by a consensus protocol such as Paxos [130],
ZAB [118], or Raft [175].

Because the log can grow indefinitely and exhaust disk space, periodi-
cally, a snapshot of the in-memory state machine is written to disk, and the
log is garbage collected. When a node restarts after a crash, it restores the
system state by reading the latest on-disk snapshot and the log. The node
also recovers its critical metadata (e.g., log start index) from a structure
called metainfo. Thus, each node maintains three critical persistent data
structures: the log, the snapshots, and the metainfo.

These persistent data structures could be corrupted due to storage
faults. Practical systems try to safely recover the data and remain avail-
able under such failures [40, 50]. However, as we will show, none of the
current approaches correctly recover from storage faults, motivating the
need for a new approach.
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3.1.3 Analysis Methodology

To understand the different possible ways to handling storage faults in
RSM systems, we analyze a broad range of approaches. We perform our
analysis by two means: first, we analyze practical systems including ZooKeeper,
LogCabin, etcd [79], and a Paxos-based system [77] using a fault-injection
framework we developed; second, we analyze techniques proposed by
prior research or used in proprietary systems [40, 50].

Our fault-injection framework is based on errfs [92], a user-level FUSE
file system that systematically injects errors and corruptions into user
data blocks. At a high level, our framework works as follows. First, we
initialize the system under test by inserting a few data items. We ensure
that the inserted items are safely persisted on the disks of at least a major-
ity of nodes. We then configure the system under test to run atop the errfs
file system. We then run a workload that tries to access the data stored by
the RSM system (e.g., perform a read of a committed data item). Upon
such an access, errfs injects errors and corruptions into various user data
blocks (that constitute the RSM persistent data structures). We then ob-
serve how the system reacts to and recovers from the injected fault.

3.1.4 RSM Recovery Taxonomy

Through our analysis, we classify the approaches into two categories:
protocol-oblivious and protocol-aware. The oblivious approaches do not use
any protocol-level knowledge to perform recovery. Upon detecting a fault,
these approaches take a recovery action locally on the faulty node; such
actions interact with the distributed protocols in unsafe ways, leading to
data loss. The protocol-aware approaches use some RSM-specific knowl-
edge to recover; however, they do not use this knowledge correctly, lead-
ing to undesirable outcomes. Our taxonomy is not complete in that there
may be other techniques; however, to the best of our knowledge, we have
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Figure 3.1: Sample Scenarios. The figure shows sample scenarios in which
current approaches fail. The figure shows only the log for each server. The small
boxes within a log represent individual log entries. Faulty entries are striped.
Crashed and lagging nodes are shown as gray and empty boxes, respectively.

not observed other approaches apart from those in our taxonomy.
To illustrate the problems, we use Figure 3.1. In all cases, log entries2

1, 2, and 3 are committed; losing these items will violate safety. Table 3.1
shows how each approach behaves in Figure 3.1’s scenarios. As shown in
the table, all current approaches lead to safety violation (e.g., data loss),
low availability, or both. A recovery mechanism that effectively uses re-
dundancy should be safe and available in all cases. Table 3.1 also com-
pares the approaches along other axes such as performance, maintenance
overhead (intervention and extra nodes), recovery time, and complexity.
Although Figure 3.1 shows only faults in the log, the taxonomy applies to
other structures including the snapshots and the metainfo.

NoDetection. The simplest reaction to storage faults is none at all: to
trust every layer in the storage stack to work reliably. For example, a few
prototype Paxos-based systems [77] do not use checksums for their on-
disk data; similarly, LogCabin does not protect its snapshots with check-
sums. NoDetection trivially violates safety; corrupted data can be obliv-
iously served to clients. However, deployed systems do use checksums

2A log entry contains a state-machine command and data.
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E- Return Corrupted, L- Data Loss, U- Unavailable, C- Correct

Table 3.1: Recovery Taxonomy. The table shows how different approaches
behave in Figure 3.1 scenarios. While all approaches are unsafe or unavailable,
Ctrl ensures safety and high availability.

and other integrity strategies for most of their on-disk data.

Crash. A better strategy is to use checksums and handle I/O errors and
crash the node on detecting a fault. Crash may seem like a good strategy
because it intends to prevent any damage that the faulty node may inflict
on the system. Our experiments show that the Crash approach is com-
mon: LogCabin, ZooKeeper, and etcd crash sometimes when their logs
are faulty. Also, ZooKeeper crashes when its snapshots are corrupted.

Although Crash preserves safety, it suffers from severe unavailability.
Given that nodes could be unavailable due to other failures, even a sin-
gle storage fault results in unavailability. For instance, as shown in Fig-
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Figure 3.2: Safety Violation Example. The figure shows the sequence of
events which exposes a safety violation with the Truncate approach.

ure 3.1(i), a single storage fault on S1 causes unavailability given that the
system is already operating with only a bare majority of servers. Simi-
larly, a single fault even in different portions of data on a majority (e.g.,
Figure 3.1(v)) renders the system unavailable. Note that simply restarting
the node does not help; storage faults, unlike other faults, could be persis-
tent: the node will encounter the same fault and crash again until manual
intervention, which is error-prone and may cause a data loss. Thus, it is
desirable to recover automatically.

Truncate. A more sophisticated action is to truncate (possibly faulty) por-
tions of data and continue operating. The intuition behind Truncate is that
if the faulty data is discarded, the node can continue to operate (unlike
Crash), improving availability.

However, we find that Truncate can cause a safety violation (data loss).
Consider the scenario shown in Figure 3.2 in which entry 1 is corrupted on
S1; S4, S5 are lagging and do not have any entry. Assume S2 is the leader.
When S1 reads its log, it detects the corruption; however, S1 truncates its
log, losing the corrupted entry and all subsequent entries (Figure 3.2(ii)).
Meanwhile, S2 (leader) and S3 crash. S1, S4, and S5 form a majority and
elect S1 the leader. Now the system does not have any knowledge of com-
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mitted entries 1, 2, and 3, resulting in a silent data loss. The system also
commits new entries x, y, and z in the place of 1, 2, and 3 (Figure 3.2(iii)).
Finally, when S2 and S3 recover, they follow S1’s log (Figure 3.2(iv)), com-
pletely removing entries 1, 2, and 3.

In summary, although the faulty node detects the corruption, it trun-
cates its log, losing the data locally. When this node forms a majority
along with other nodes that are lagging, data is silently lost, violating
safety. We find this safety violation in ZooKeeper and LogCabin.

Further, Truncate suffers from inefficient recovery. For instance, in Fig-
ure 3.1(i), S1 truncates its log after a fault, losing entries 1, 2, and 3. Now
to fix S1’s log, the leader needs to transfer all entries, increasing S1’s re-
covery time and wasting network bandwidth. ZooKeeper and LogCabin
suffer from this slow recovery problem.

DeleteRebuild. Another commonly employed action is to manually delete
all data on the faulty node and restart the node. Unfortunately, similar to
Truncate, DeleteRebuild can violate safety: a node whose data is deleted
could form a majority along with the lagging nodes, leading to a silent
data loss. Surprisingly, administrators often use this approach, hoping
that the faulty node will be “simply fixed” by fetching the data from other
nodes [210, 215, 251]. DeleteRebuild also suffers from the slow recovery
problem similar to Truncate.

MarkNonVoting. In this approach, used by a Paxos-based system at Google [50],
a faulty node deletes all its data on a fault and marks itself as a non-voting
member; the node does not participate in elections until it observes one
round of consensus and rebuilds its data from other nodes. By marking
a faulty node as nonvoting, safety violations such as the one in Figure 3.2
are avoided. However, MarkNonVoting can sometimes violate safety as
noted by prior work [231]. The underlying reason for unsafety is that a
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corrupted node deletes all its state including the promises2 given to lead-
ers. Once a faulty node has lost its promise given to a new leader, it could
accept an entry from an old leader (after observing a round of consensus
on an earlier entry). The new leader, however, still believes that it has the
promise from the faulty node and so can overwrite the entry, previously
committed by the old leader.

Further, this approach suffers from unavailability. For example, when
only a majority of nodes are alive, a single fault can cause unavailabil-
ity because the faulty node cannot vote; other nodes cannot now elect a
leader.

Reconfigure. In this approach, a faulty node is removed, and a new node
is added. However, to change the configuration, a configuration entry
needs to be committed by a majority. Hence, the system remains unavail-
able in many cases (for example, when a majority are alive, but one node’s
data is corrupted). Although Reconfigure is not used in practical systems
to tackle storage faults, it has been suggested by prior research [40, 145].

BFT. An extreme approach is to use a Byzantine-fault-tolerant algorithm
which should theoretically tolerate storage faults. However, BFT is expen-
sive to be used in practical storage systems; specifically, BFT can achieve
only half the throughput of what a crash-tolerant protocol can achieve [65].
Moreover, BFT requires 3f+ 1 nodes to tolerate f faults [7], thus remain-
ing unavailable in most scenarios in Figure 3.1.

2In Paxos, a promise for a proposal numbered p is a guarantee given by a follower
(acceptor) to the leader (proposer) that it will not accept a proposal numbered less than
p in the future [130].
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3.1.5 Summary: The Need for Protocol-Awareness

From our analysis, we have found that none of the current approaches ef-
fectively use redundancy to recover from storage faults. Most approaches
do not use any protocol-level knowledge to recover. These protocols take
actions locally on the faulty node and so interact with the distributed pro-
tocol in unsafe ways, causing a global data loss or leading to unavailabil-
ity. For example, the Truncate and DeleteRebuild approaches obliviously
delete data on the faulty node, introducing the possibility of a user-visible
data loss. Similarly, the Crash approach locally crashes the faulty node,
leading to unavailability. Although some approaches (e.g., MarkNonVot-
ing) use some RSM-specific knowledge, they do not do so correctly, caus-
ing data loss or unavailability.

Thus, to ensure safety and high availability, a recovery approach should
be cognizant of how the underlying protocols used by the distributed
system (e.g., leader election) operate. Such protocol-awareness can en-
able the recovery mechanism to effectively utilize redundancy to recover
faulty data. In addition to providing safety and high availability, an ideal
approach must not impact common-case performance (e.g., unlike Byzan-
tine FT). Further, it must require no manual intervention or additional
resources, and must recover quickly (e.g., unlike Reconfigure).

From the insights gained in this section, we have developed a new
protocol-aware recovery approach for RSM systems that we call corruption-
tolerant replication or Ctrl. Ctrl exploits protocol-level knowledge spe-
cific to RSM systems to ensure safely and offer high availability in the face
of storage faults. Ctrl’s improvements come with no impact on common-
case performance. Further, Ctrl avoids the problems of current approaches:
it requires no manual intervention and extra resources, and recovers quickly
while being simple to implement. We next describe Ctrl.
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3.2 Corruption-Tolerant Replication

Failure recovery using redundancy is central to improved reliability of
distributed systems [39, 70, 94, 108, 208, 221]. Distributed systems recover
from node crashes and network failures using copies of data and function-
ality on several nodes [20, 163, 193]. Similarly, bad or corrupted data on
one node should be recovered from redundant copies. However, unfor-
tunately, our analyses in Section §3.1 reveal that current approaches do
not effectively utilize the redundant copies to recover from storage faults,
leading to undesirable outcomes such as data loss and unavailability.

In a static setting where all nodes always remain reachable and where
clients do not actively update data, recovering corrupted data from repli-
cas is straightforward; in such a setting, a node could repair its state by
simply fetching the data from any other node.

In reality, however, a distributed system is a dynamic environment,
constantly in a state of flux. In such settings, orchestrating recovery cor-
rectly is surprisingly hard. As a simple example, consider a quorum-
based system, in which a piece of data is corrupted on one node. When
the node tries to recover its data, some nodes may fail and be unreach-
able, some nodes may have recently recovered from a failure and so lack
the required data or hold a stale version. If enough care is not exercised,
the node could “fix” its data from a stale node, overwriting the new data,
potentially leading to a data loss.

To correctly recover corrupted data from redundant copies in a dis-
tributed system, a recovery approach should be protocol-aware. A protocol-
aware recovery (Par) approach is carefully designed based on how the dis-
tributed system performs updates to its replicated data, elects the leader,
etc. For instance, in the above example, a Par mechanism would realize
that a faulty node has to query at least R (read quorum) other nodes to
safely and quickly recover its data.

As we discussed in the previous section, most current approaches in
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Figure 3.3: Ctrl Components. The figure shows Ctrl’s local storage and
distributed recovery components.

RSM systems do not use protocol-level knowledge to perform recovery.
Thus, we have built a new protocol-aware recovery approach for RSM
systems that we call corruption-tolerant replication or Ctrl. Figure 3.3
shows an architectural overview of Ctrl. As shown, Ctrl constitutes two
components: a local storage layer and a distributed recovery protocol. Ctrl di-
vides the recovery responsibility between these two components; while
the storage layer reliably detects faults, the distributed protocol recov-
ers faulty data from redundant copies. Both the components carefully
exploit RSM-specific knowledge to ensure safety (e.g., no data loss) and
high availability.

Ctrl applies several novel ideas to achieve safety and high availability.
First, a crash-corruption disentanglement technique in the storage layer dis-
tinguishes corruptions caused by crashes from disk faults; without this
technique, safety violations or unavailability could result. We also estab-
lish an impossibility result regarding under what circumstances a system
crash cannot be distinguished from a storage corruption. This result not
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only applies to Ctrl but more generally to any log-based storage system.
Next, Ctrl implements a global-commitment determination protocol in the
distributed recovery that separates committed items from uncommitted
ones. This separation is critical: while recovering faulty committed items
is necessary for safety, discarding uncommitted items quickly is crucial
for availability. Finally, we also design a novel leader-initiated snapshotting
mechanism that enables bytewise identical snapshots across nodes. Such
identical snapshots greatly simplify recovery.

In the remainder of this section, we first describe the protocol-level
attributes that Ctrl exploits (§3.2.1). We then outline Ctrl’s fault model
(§3.2.2), and safety and availability guarantees (§3.2.3). We then describe
the local storage layer (§3.2.4). Then, we describe Ctrl’s distributed re-
covery in two parts: first, we show how faulty logs are recovered (§3.2.5)
and then we explain how faulty snapshots are recovered (§3.2.6).

3.2.1 RSM Protocol-Level Attributes

Designing a correct recovery mechanism needs a careful understanding
of the underlying protocols of the system. For example, the recovery
mechanism should be cognizant of how updates are performed on the
replicated data and how the leader is elected. We base Ctrl’s design on
the following protocol-level observations common to most RSM systems.
Leader-based. A single node acts as the leader; all data updates to the repli-
cated data flow only through the leader.
Epochs. RSM systems partition time into logical units called epochs. For
any given epoch, only one leader is guaranteed to exist. Every data item
is associated with the epoch in which it was appended and its index in the
log. Since the entries could only be proposed by the leader and only one
leader could exist for an epoch, an 〈epoch, index〉 pair uniquely identifies
a log entry.
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Fault Outcome Possible Causes
D

at
a corrupted data misdirected writes in ext-*

lost writes in ext-*

inaccessible data latent sector errors
corruptions in ZFS and btrfs

FS
M

et
ad

at
a

missing files/directories directory entry corrupted
fsck may remove a faulty inode

unopenable files/directories
sanity check fails on inode corrup-
tion
permission bits corrupted

files with more or fewer bytes i_size field in the inode corrupted
file system read-only journal corrupted; fsck not run
file system unmountable superblock corrupted; fsck not run

Table 3.2: Storage Fault Model. The table shows storage faults included in
our model and possible causes that lead to a fault outcome.

Leader Completeness. A node will not vote for a candidate if it has more up-
to-date data than the candidate. Since committed data is present at least
in a majority of nodes and a majority vote is required to win the election,
the leader is guaranteed to have all the committed data. Although not
explicitly specified in some protocols, this property is satisfied by most
systems as confirmed by prior research [12, 175].

The above-listed attributes are common to most RSM system imple-
mentations. Ctrl exploits these common protocol-level attributes to cor-
rectly recover from storage faults. However, Ctrl cannot be readily ap-
plied to a few consensus approaches. For example, a few implementa-
tions of Paxos [166] allow updates to flow through multiple leaders at
the same time. We believe Ctrl can be extended to work with such RSM
variants as well. We leave this extension as an avenue for future work.
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3.2.2 Fault Model

Our fault model includes the standard failure assumptions made by crash-
tolerant RSM systems: nodes could crash at any time and recover later,
and nodes could be unreachable due to network failures [65, 142, 175].
Our model adds another realistic failure scenario where persistent data
on the individual nodes could be corrupted or inaccessible. Table 3.2
shows a summary of our storage fault model. Our model includes faults
in both user data and the file-system metadata blocks.

User data blocks in the files that implement the system’s persistent
structures could be affected by errors or corruption. A number of (possi-
bly contiguous) data blocks could be faulty as shown by studies [35, 206].
Also, a few bits/bytes of a block could be corrupted. Depending on the
local file system in use, corrupted data may be returned obliviously or
transformed into errors.

File-system metadata blocks can also be affected by faults; for exam-
ple, the inode of a log file could be corrupted. Our fault model considers
the following outcomes that can be caused by file-system metadata faults:
files/directories may go missing, files/directories may be unopenable, a
file may appear with fewer or more bytes, the file system may be mounted
read-only, and in the worst case, the file system may be unmountable.
Some file systems such as ZFS may mask most of the above outcomes
from applications [242]; however, our model includes these faulty out-
comes because they could realistically occur on other file systems that
provide weak protection against corruption (e.g., ext2/3/4). Through
fault-injection tests, we have verified that the metadata fault outcomes
shown in Table 3.2 do occur on ext4.
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3.2.3 Safety and Availability Guarantees

Ctrl guarantees that if there exists at least one correct copy of a committed
data item, it will be recovered or the system will wait for that item to be
fixed; committed data will never be lost. In unlikely cases where all copies
of an item are faulty, the system will correctly remain unavailable. Ctrl
also guarantees that the system will make a decision about an uncommitted
faulty item as early as possible, ensuring high availability.

3.2.4 CTRL Local Storage Layer

To reliably recover, the storage layer (Clstore) needs to satisfy three key
requirements. First, Clstore must be able to reliably detect a storage fault.
Second, Clstore must correctly distinguish crashes from corruptions; safety
can be violated otherwise. Third, Clstore must identify which pieces of
data are faulty; only if Clstore identifies which pieces have been affected,
can the distributed protocol recover those pieces.

Persistent Structures Overview

As we discussed in Section §2.2, RSM systems maintain three persistent
structures: the log, the snapshots, and the metainfo. Clstore uses RSM-
specific knowledge of how these structures are used and updated, to per-
form its functions. For example, Clstore detects faults at a different gran-
ularity depending on the RSM data structure: faults in the log are de-
tected at the granularity of individual entries, while faults in the snap-
shot are detected at the granularity of chunks. Similarly, Clstore uses
the RSM-specific knowledge that a log entry is uniquely qualified by its
〈epoch, index〉 pair to identify faulty log entries.

Log. The log is a set of files containing a sequence of entries. The for-
mat of a typical RSM log is shown in Figure 3.4(a). The log is updated
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Figure 3.4: Log Format. (a) shows the format of the log in a typical RSM
system and the protocol used to update the log; (b) shows the same for Clstore.

synchronously in the critical path; hence, changes made to the log format
should not affect its update performance. Clstore uses a modified format
as shown in Figure 3.4(b) which achieves this goal in addition to enabling
detection of faulty entries. A corrupted log is recovered at the granularity
of individual entries.

Snapshots. The in-memory state machine is periodically written to a
snapshot. Since snapshots can be huge, Clstore splits them into chunks;
a faulty snapshot is recovered at the granularity of individual chunks.

Metainfo. The metainfo is special in that faulty metainfo cannot be re-
covered from other nodes. This is because the metainfo contains infor-
mation unique to a node (e.g., its current epoch, votes given to candi-
dates); recovering metainfo obliviously from other nodes could violate
safety. Clstore uses this knowledge correctly and so maintains two copies
of the metainfo locally; if one copy is faulty, the other copy is used. For-
tunately, the metainfo is only a few tens of bytes in size and is updated
infrequently; therefore, maintaining two copies does not incur significant
overheads.
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Detecting Faulty Data

Clstore uses well-known techniques for detection: inaccessible data is de-
tected by catching return codes (e.g., EIO) and corrupted data is detected by
a checksum mismatch. Clstore assumes that if an item and its checksum
agree, then the item is not faulty. In the log, each entry is protected by
a checksum; similarly, each chunk in a snapshot and the entire metainfo
are checksummed.

Clstore also handles file-system metadata faults. Missing and un-
openable files/directories are detected by handling error codes upon open.
Log and metainfo files with fewer or more bytes are detected easily be-
cause these files are preallocated and are of a fixed size; snapshot sizes are
stored separately, and Clstore cross-checks the stored size with the file-
system reported size to detect discrepancies. A read-only/unmountable
file system is equivalent to a missing data directory. In most cases of file-
system metadata faults, Clstore crashes the nodes. Crashing reliably on
a metadata fault preserves safety but compromises on availability. How-
ever, we believe this is an acceptable behavior because there are far more
data blocks than metadata blocks; therefore, the probability of faults is
significantly less for metadata than data blocks.

Disentangling Crashes and Corruption in Log

An interesting challenge arises when detecting corruptions in the log. A
checksum mismatch for a log entry could occur due to two different sit-
uations. First, the system could have crashed in the middle of an update;
in this case, the entry would be partially written and hence cause a mis-
match. Second, the entry could be safely persisted but corrupted at a later
point. Most log-based systems conflate these two cases: they treat a mis-
match as a crash [92]. On a mismatch, they discard the corrupted entry
and all subsequent entries, losing the data. Discarding entries due to such
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conflation introduces the possibility of a global data loss (as shown earlier
in Figure 3.2).

Note that if the mismatch were really due to a crash, it is safe to discard
the partially written entry. It is safe because the node would not have ac-
knowledged to any external entity that it has written the entry. However,
if an entry is corrupted, the entry cannot be simply discarded since it could
be globally committed. Further, if a mismatch can be correctly attributed
to a crash, the faulty entry can be quickly discarded locally, avoiding the
distributed recovery. Hence, it is important for the local storage layer to
distinguish the two cases.

To denote the completion of an operation, many systems write a com-
mit record [37, 55]. Similarly, Clstore writes a persist record, pi, after writ-
ing an entry ei. For now, assume that ei is ordered before pi, i.e., the se-
quence of steps to append an entry ei is write(ei), fsync(), write(pi), fsync().
On a checksum mismatch for ei, if pi is not present, we can conclude that
the system crashed during the update. Conversely, if pi is present, we
can conclude that the mismatch was caused due to a corruption and not
due to a crash. pi is checksummed and is very small; it can be atomically
written and thus cannot be “corrupted” due to a crash. If pi is corrupted
in addition to ei, we can conclude that it is a corruption and not a crash.

The above logic works when ei is ordered before pi. However, such
ordering requires an (additional) expensive fsync in the critical path, af-
fecting log-update performance. For this reason, Clstore does not order ei

before pi; thus, the append protocol is t1:write(ei), t2:write(pi), t3:fsync().2

Given this update sequence, assume a checksum mismatch occurs for
ei. If pi is not present, Clstore can conclude that it is a crash (before t2)
and discard ei. Contrarily, if pi is present, there are two possibilities: ei-
ther ei could be affected by a corruption after t3 or a crash could have
occurred between t2 and t3 in which pi hit the disk while ei was only

2The final fsync is required for durability.
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partially written. The second case is possible because file systems can
reorder writes between two fsync operations and ei could span multiple
sectors [12, 56, 180, 181]. Clstore can still conclude that it is a corruption
if ei+1 or pi+1 is present. However, if ei is the last entry, then we cannot
determine whether it was a crash or a corruption. A proof of this claim
can be found in appendix A.

The inability to disentangle the last entry when its persist record is
present is not specific to Clstore, but rather a fundamental limitation in
log-based systems. For instance, in ext4’s journal_async_commit mode
(where a transaction is not ordered before its commit record), a corrupted
last transaction is assumed to be caused due to a crash, possibly losing
data [117, 226]. Even if crashes and corruptions can be disentangled,
there is little a single-machine system can do to recover the corrupted
data. However, in a distributed system, redundant copies can be used to
recover. Thus, when the last entry cannot be disentangled, Clstore safely
marks the entry as corrupted and leaves it to the distributed recovery to fix
or discard the entry based on the global commitment.

The entanglement problem does not arise for snapshots or metainfo.
These files are first written to a temporary file and then atomically re-
named. If a crash happens before the rename, the partially written tem-
porary file is discarded. Thus, the system will never see a corrupted snap-
shot or metainfo due to a crash; if these structures are corrupted, it is be-
cause of a storage corruption.

Identifying Faulty Data

Once a faulty item is detected, it has to be identified; only if Clstore can
identify a faulty item, the distributed layer can recover the item. For this
purpose, Clstore redundantly stores an identifier of an item apart from
the item itself; duplicating only the identifier instead of the whole item
obviates the (2×) storage and performance overhead. However, storing
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the identifier near the item is less useful; a misdirected write can corrupt
both the item and its identifier [31, 32]. Hence, identifiers are physically
separated from the items they identify.

The 〈epoch, index〉 pair serves as the identifier for a log entry and is
stored separately at the head of the log, as shown in Figure 3.4(b). The
offset of an entry is also stored as part of the identifier to enable traversal
of subsequent entries on a fault. The identifier of a log entry also con-
veniently serves as its persist record. Similarly, for a snapshot chunk,
the 〈snap-index, chunk#〉 pair serves as the identifier; the snap-index and
the snapshot size are stored in a separate file than the snapshot file. The
identifiers have a nominal storage overhead (32 bytes for log entries and
12 bytes for snapshots), can be atomically written to disk, and are also
protected by a checksum.

It is highly unlikely an item and its identifier will both be faulty since
they are physically separated [31, 32, 35, 206]. In such unlikely and unfor-
tunate cases, Clstore crashes the node to preserve safety. Table 3.3 (second
column) summarizes Clstore’s key techniques.

3.2.5 CTRL Distributed Log Recovery

The local storage layer detects faulty data items and passes on their iden-
tifiers to the distributed recovery layer. We now describe how the dis-
tributed layer recovers the identified faulty items from redundant copies
using RSM-specific knowledge. We first describe how log entries are re-
covered and subsequently describe snapshot recovery. As we discussed,
metainfo files are recovered locally and so we do not discuss them any
further. We use Figure 3.5 to illustrate how log recovery works.

Naive Approach: Leader Restriction. RSM systems do not allow a node
with an incomplete log to become the leader. A naive approach to recover-
ing from storage faults could be to impose an additional constraint on the
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election: a node cannot be elected the leader if its log contains a faulty entry. The
intuition behind the naive approach is as follows: since the leader is guar-
anteed to have all committed data and our new restriction ensures that
the leader is not faulty, faulty log entries on other nodes could be fixed
using the corresponding entries on the leader. Cases (a)(i) and (a)(ii) in
Figure 3.5 show scenarios where the naive approach could elect a leader.
In (a)(i), only S1 can become the leader because other nodes are either lag-
ging or have at least one faulty entry. Assume S1 is the leader also in case
(a)(ii).

Fixing Followers’ Logs. When the leader has no faulty entries, fixing the
followers is straightforward. For example, in case (a)(i), the followers in-
form S1 of their faulty entries; S1 then supplies the correct entries. How-
ever, sometimes the leader might not have any knowledge of an entry that
a follower is querying for. For instance, in case (a)(ii), S5 has a faulty en-
try at index 3 but with a different epoch. This situation is possible because
S5 could have been the leader for epoch 2 and crashed immediately after
appending an entry. As discussed earlier, an entry is uniquely identified
by its 〈epoch, index〉; thus, when querying for faulty entries, a node needs
to specify the epoch of the entry in addition to its index. Thus, S5 informs
the leader that its entry 〈epoch:2, index:3〉 is faulty. However, S1 does not
have such an entry in its log. If the leader does not have an entry that
the follower has, then the entry must be an uncommitted entry because the
leader is guaranteed to have all committed data; thus, the leader instructs
S5 to truncate the faulty entry and also replicates the correct entry.

Although the naive approach guarantees safety, it has availability prob-
lems. The system will be unavailable in cases such as the ones shown in
(b): a leader cannot be elected because the logs of the alive nodes are ei-
ther faulty or lagging. Note that even a single storage fault can cause an
unavailability as shown in (b)(i). It is possible for a carefully designed re-
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covery protocol to provide better availability in these cases. Specifically,
since at least one intact copy of all committed entries exists, it is possible
to collectively reconstruct the log.

Removing the Restriction Safely

To recover from scenarios such as those in Figure 3.5(b), we remove the
additional constraint on the election. Specifically, any node that has a
more up-to-date log can now be elected the leader even if it has faulty
entries. This relaxation improves availability; however, two key questions
arise: first, when can the faulty leader proceed to accept new commands?
second, and more importantly, is it safe to elect a faulty node as the leader?

To accept a new command, the leader has to append the command
to its log, replicate it, and apply it to the state machine. However, before
applying the new command, all previous commands must be applied.
Specifically, faulty commands cannot be skipped and later applied when
they are fixed; such out-of-order application would violate safety. Hence,
it is required for the leader to fix its faulty entries before it can accept
new commands. Thus, for improved availability, the leader needs to fix
its faulty entries as early as possible.

The crucial part of the recovery to ensure safety is to fix the leader’s log
using the redundant copies on the followers. In simple cases such as (b)(i)
and (b)(ii), the leader S1 could fix its faulty entry 〈epoch:1, index:1〉 using
the correct entries from the followers and proceed to normal operation.
However, in several scenarios, the leader cannot immediately recover its
faulty entries; for example, none of the reachable followers might have
any knowledge of the entry to be recovered or the entry to be recovered
could also be faulty on the followers.
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Figure 3.5: Distributed Log Recovery. The figure shows how Ctrl’s log
recovery operates. All entries are appended in epoch 1 unless explicitly men-
tioned. For entries appended in other epochs, the epoch number is shown in the
superscript. Entries shown as striped boxes are faulty. A gray box around a node
denotes that it is down or extremely slow. The leader is marked with L on the left.
Log indexes are shown at the top.

Determining Commitment

The main insight to fix the leader’s faulty log safely and quickly is to dis-
tinguish uncommitted entries from possibly committed ones; while recover-
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ing the committed entries is necessary for safety, uncommitted entries can
be safely discarded. Further, discarding uncommitted faulty entries im-
mediately is crucial for availability. For instance, in case (c)(i), the faulty
entry on S1 cannot be fixed since there are no copies of it; waiting to
fix that entry results in indefinite unavailability. Sometimes, an entry
could be partially replicated but remain uncommitted; for example, in
case (c)(ii), the faulty entry on S1 is partially replicated but is not com-
mitted. Although there is a possibility of recovering this entry from the
other node (S2), this is not necessary for safety; it is completely safe for the
leader to discard this uncommitted entry.

To determine the commitment of a faulty entry, the leader queries the
followers. If a majority of the followers respond that they do not have
the entry (negative acknowledgment), then the leader concludes that the
entry is uncommitted. In this case, the leader safely discards that entry
and all subsequent entries; it is safe to discard the subsequent entries be-
cause entries are committed only in order (i.e., if an entry at index i is an
uncommitted entry, then all entries after imust also be uncommitted en-
tries). Conversely, if the entry were committed, at least one node in this
majority would have that entry and inform the leader of it; in this case,
the leader can fix its faulty entry using that response.

Waiting to Determine Commitment. Sometimes, it may be impossible
for the leader to quickly determine commitment. For instance, consider
the cases in Figure 3.5(d) in which S4 and S5 are down or slow. S1 queries
the followers to recover its entry 〈epoch:1, index:3〉. S2 and S3 respond that
they do not have such an entry (negative acknowledgment). S4 and S5

do not respond because they are down or slow. The leader, in this case,
has to wait for either S4 or S5 to respond; discarding the entry without
waiting for S4 or S5 could violate safety. However, once S4 or S5 responds,
the leader will make a decision immediately. In (d)(i), S4 or S5 would
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respond with the correct entry, fixing the leader. In (d)(ii), S4 or S5 would
respond that it does not have the entry, accumulating three (a majority out
of five) negative acknowledgments; hence, the leader can conclude that
the entry is uncommitted, discard it, and continue to normal operation.
In (d)(iii), S4 would respond that it has the entry but is faulty in its log too.
In this case, the leader has to wait for the response from S5 to determine
commitment. In the unfortunate and unlikely case where all copies of an
entry are faulty, the system will remain unavailable.

The Complete Log Recovery Protocol

We now assemble the pieces of the log recovery protocol. First, fixing
faulty followers is straightforward; the committed faulty entries on the
followers can be eventually fixed by the leader because the leader is guar-
anteed to have all committed data. Faulty entries on followers that the
leader does not know about are uncommitted; hence, the leader instructs
the followers to discard such entries.

The main challenge is thus fixing the leader’s log. The leader queries
the followers to recover its entry 〈epoch:e, index:i〉. Three types of responses
are possible:
Response 1: have – a follower could respond that it has the entry 〈epoch:e,
index:i〉 and is not faulty in its log.
Response 2: dontHave – a follower could respond that it does not have
the entry 〈epoch:e, index:i〉 in its log.
Response 3: haveFaulty – a follower could respond that it has 〈epoch:e,
index:i〉 but is faulty in its log too.

Once the leader collects these responses, it takes the following possible
actions:
Case 1: if it gets a have response from at least one follower, it fixes the en-
try in its log.
Case 2: if it gets a dontHave response from a majority of followers, it con-
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firms that the entry is uncommitted, discards that entry and all subse-
quent entries.
Case 3: if it gets a haveFaulty response from a follower, it waits for either
Case 1 or Case 2 to happen.

Case 1 and Case 2 can happen in any order; both orderings are safe.
Specifically, if the leader decides to discard the faulty entry (after collect-
ing a majority dontHave responses), it is safe since the entry was uncom-
mitted anyways. Conversely, there is no harm in accepting a correct entry
(at least one have response) and replicating it. The first to happen out of
these two cases will take precedence over the other.

The leader proceeds to normal operation only after its faulty data is
discarded or recovered. However, Ctrl discards uncommitted data as
early as possible and minimizes the recovery latency by recovering faulty
data at a fine granularity (as we show in §4.4.2), ensuring that the leader
proceeds to normal operation quickly.

The leader could crash or be partitioned while recovering its log. On
a leader failure, the followers will elect a new leader and make progress.
The partial repair done by the failed leader is harmless: it could have ei-
ther fixed committed faulty entries or discarded uncommitted ones, both
of which are safe.

3.2.6 CTRL Distributed Snapshot Recovery

Because the logs can grow indefinitely, periodically, the in-memory state
machine is written to disk and the logs are garbage collected. Current
systems including ZooKeeper and LogCabin do not handle faulty snap-
shots correctly: they either crash or load corrupted snapshots obliviously.
Ctrl aims to recover faulty snapshots from redundant copies. Snapshot
recovery is different from log recovery in that all data in a snapshot is
committed and already applied to the state machine; hence, faulty snap-
shots cannot be discarded in any case (unlike uncommitted log entries
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which can be discarded safely).

Leader-Initiated Identical Snapshots

Current systems [144] have two properties with respect to snapshots. First,
they allow new commands to be applied to the state machine while a
snapshot is in progress. Second, they take index-consistent snapshots: a
snapshot Si represents the state machine in which log entries exactly up
to i have been applied. One of the mechanisms used in current systems
to realize the above two properties is to take snapshots in a fork-ed child
process; while the child can write an index-consistent image to the disk,
the parent can keep applying new commands to its copy of the state ma-
chine. Ctrl should enable snapshot recovery while preserving the above
two properties.

In current systems, every node runs the snapshot procedure indepen-
dently, taking snapshots at different log indexes. Because the snapshots
are taken at different indexes, snapshot recovery can be complex: a faulty
snapshot on one node cannot be simply fetched from other nodes. Fur-
ther, snapshots cannot be recovered at the granularity of chunks because
they will be byte-wise non-identical; entire snapshots have to be trans-
ferred across nodes, slowing down recovery.

This complexity can be significantly alleviated if the nodes take the
snapshot at the same index; identical snapshots also enable chunk-based
recovery.

However, coordinating a snapshot operation across nodes can, in gen-
eral, affect the common-case performance. For example, one naive way to
realize identical snapshots is for the leader to produce the snapshot, insert
it into the log as yet another entry, and replicate it. However, such an ap-
proach will affect update performance since the snapshot could be huge
and all client commands must wait while the snapshot commits [173].
Moreover, transferring the snapshot to the followers wastes network band-
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Figure 3.6: Leader-Initiated Identical Snapshots. The figure shows how
leader-initiated identical snapshots is implemented in Ctrl. The figure only
shows the various states of the leader; the followers’ state are not shown. (a) At
first, the leader decides to take a snapshot after entry 1; hence, it inserts the snap
marker (denoted by S). When the snap marker commits, and consequently when
the nodes apply the marker, they take a snapshot at that moment. As shown, the
snapshot operation is initiated and performed in the background. (b) While the
nodes take the snapshot in the background, the leader commits entries 2 and 3 and
so the in-memory state machine moves to a different state. (c) When the leader
learns that a majority of nodes have taken the snapshot, it inserts the gc marker
(denoted by G). (d) Finally, when the gc marker is applied, the nodes garbage
collect the log entries that are part of the persisted snapshot.

width.
Ctrl takes a different approach to identical snapshots that preserves
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common-case performance. The leader initiates the snapshot procedure
by first deciding the index at which a snapshot will be taken and inform-
ing the followers of the index. Once a majority agree on the index, all
nodes independently take a snapshot at the index. When the leader learns
that a majority (including itself) have taken a snapshot at an index i, it
garbage collects its log up to i and instructs the followers to do the same.

Ctrl implements the above procedure using the log. When the leader
decides to take a snapshot, it inserts a special marker called snap into the
log. When the snap marker commits, and thus when a node applies the
marker to the state machine, it takes a snapshot (i.e., the snapshot corre-
sponds to the state where commands exactly up to the marker have been
applied). Within each node, we reuse the same mechanism used by the
original system (e.g., a fork-ed child) to allow new commands to be ap-
plied while a snapshot is in progress. Notice that the snapshot operation
happens independently on all nodes but the operation will produce iden-
tical snapshots because the marker will be seen at the same log index by
all nodes when it is committed. When the leader learns that a majority
of nodes (including itself) have taken a snapshot at an index i, it appends
another marker called gc for i; when the gc marker is committed and
applied, the nodes garbage collect their log entries up to i. Figure 3.6
illustrates how leader-initiated identical snapshots works.

Recovering Snapshot Chunks

With the identical-snapshot mechanism, snapshot recovery becomes eas-
ier. Once a faulty snapshot is detected, the local storage layer provides the
distributed protocol the snapshot index and the chunk that is faulty. The
distributed protocol recovers the faulty chunk from other nodes. First,
the leader recovers its faulty chunks from the followers and then fixes the
faulty snapshots on followers. Three cases arise during snapshot recov-
ery.
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for all faulty chunks, add <snap-index s,chunk c> to faulty_chunks list
 for all faulty log entries, add <epoch e, index i> to faulty_entries list

leader fixed

leader fixed

On sending a request to follower f:
    if f.faulty_chunks is not empty:
       if have chunk:
            request.fix_chunk[<s,c>] :=snap[<s,c>]
       else:

   install latest snapshot
    if f.faulty_entries is not empty:
        for each <e,i> in f.faulty_entries:
            request.fix_entries[<e,i>] := log[<e,i>]

On a response from follower f:
    if response.faulty_chunks is not empty:
       f.faulty_chunks=response.faulty_chunks
    if response.faulty_entries is not empty:
        f.faulty_entries=response.faulty_entries

Snapshot Recovery
if faulty_chunks is not empty:
    if log not garbage collected and log entries are correct:
        reconstruct snapshot locally and reset faulty_chunks 
    else if log garbage collected:
        query  all followers for faulty_chunks
On a query response from follower f for <s,c>:
    fix snapshot chunk
    remove <s,c> from faulty_chunks

Log Recovery
if faulty_entries is not empty:
    query all followers for faulty_entries
On a query response from follower f for <e,i>:
    Case1: if response = have:
         fix faulty entry <e,i> in log 
         remove <e,i> from faulty_entries
    Case2: if response = dontHave:
         dont_have_map[<e,i>][f] := true
          if majority(dont_have_map[<e,i>]):

     truncate log at i-1
             for all j >=i:
                   remove <*,j> from faulty_entries
    Case3: if response = haveFaulty:
          do nothing
wait until faulty_entries and faulty_chunks become empty

On receiving a request from leader:
    if request has fix_chunks:
        for each <s,c> in fix_chunks:
            fix faulty chunk <c> in snapshot <s>
            remove <s,c> from faulty_chunks
    if request has fix_faults:
        for each <e,i> in fix_faults:
            fix faulty entry <e,i> in log 
            remove <e,i> from faulty_entries

On a response to leader:
    if faulty_chunks is not empty:
       response.faulty_chunks := faulty_chunks
    if faulty_entries is not empty:
        response.faulty_entries := faulty_entries

        

Leader Recovery
On a snapshot chunk query from leader for <s,c>:
    if follower has snapshot s and chunk c is not faulty:
       response := chunk c
    else:
       ignore query

On a query from leader for faulty <e,i>:
    if follower does not have entry <e,i>:
        response := dontHave
    if follower has entry<e,i>:
        if <e,i> not in faulty_entries:
            response := <have, entry>
        else:
            response := haveFaulty

 Leader -Normal Operation

Followers During Leader Recovery

Followers -Normal Operation

scan the on-disk log,
snapshots 

leader election/ discover existing leader

leader follower

Legend
<e, i> denotes the epoch (e) and index 
(i) of a log entry
<s, c> denotes the snap index (s) and 
chunk (c) of a snapshot

Existing

CTRL 

    consensus protocol’s normal operations

    consensus protocol’s normal operations

    consensus protocol’s normal operations

 B

 C

 A

    consensus protocol’s normal operations

 D

Figure 3.7: Ctrl Recovery Protocol Summary. The figure shows the sum-
mary of the protocol. Ctrl’s recovery code is shown in thick boxes and original
consensus operations are shown in dashed boxes.
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Local Storage Distributed Recovery

Log

granularity: entry
identifier:〈epoch, index〉
crash-corruption disentangle-
ment

global-commitment determi-
nation to fix leader,
leader fixes followers

Snapshot
granularity: chunk
identifier:〈snap-index, chunk#〉
no entanglement

leader-initiated identical
snapshots,
chunk-based recovery

Metainfo
granularity: file
identifier: n/a
no entanglement

none (only internal redun-
dancy)

Table 3.3: Techniques Summary. The table shows a summary of techniques
employed by Ctrl’s storage layer and distributed recovery.

First, the log entries for a faulty snapshot may not be garbage collected
yet; in this case, the snapshot is recovered locally from the log (after fixing
the log if needed).

Second, if the log is garbage collected, then a faulty snapshot has to be
recovered from other nodes. However, if the log entries for a snapshot are
garbage collected, then at least a majority of the nodes must have taken
the same snapshot. This is true because the gc marker is inserted only
after a majority of nodes have taken the snapshot. Thus, faulty garbage-
collected snapshots are recovered from those redundant copies.

Third, sometimes, the leader may not know a snapshot that a follower
is querying for (for example, if a follower took a snapshot and went offline
for a long time and the leader replaced that snapshot with an advanced
one); in this case, the leader supplies the full advanced snapshot.

3.2.7 CTRL Summary

Ctrl’s storage layer detects faulty data using checksums and handling er-
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rors. It also disentangles crashes and corruptions in the log. Finally, it
identifies which portions of the data are faulty and passes on the identi-
fiers to the distributed recovery layer.

The distributed protocol recovers the faulty data from the redundant
copies. Figure 3.7 summarizes the distributed recovery protocol. Ctrl de-
couples the recovery of followers from that of the leader. In all cases, fix-
ing the followers is straightforward: the leader supplies the correct data
because the leader is guaranteed to have all the committed data. Ctrl cou-
ples the fixing of followers with common-case operations such as repli-
cation of entries. Actions taken by the leader and the followers to fix the
followers’ data are shown in boxes C and D of Figure 3.7. The leader can
fix its faulty snapshots from its local log if the log is not garbage collected
yet. If the log is garbage collected, the leader recovers the snapshot from
the followers (a majority of nodes are guaranteed to have the snapshot).
The leader fixes its log by determining commitment of the faulty entries.
Actions taken by the leader and the followers during leader recovery are
shown in boxes A and B of Figure 3.7.

Ctrl’s storage and distributed recovery layers exploit RSM-specific knowl-
edge to perform their functions. Table 3.3 shows a summary of techniques
employed in both the layers.

3.3 Implementation

We implement Ctrl in two different RSM systems, LogCabin (v1.0) and
ZooKeeper (v3.4.8); while LogCabin is based on Raft, ZooKeeper is based
on ZAB. Implementing Ctrl’s storage layer and distributed recovery took
only a moderate developer effort; Ctrl adds about 1500 lines of code to
each of the base systems.
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3.3.1 Local Storage Layer

We implemented Clstore by modifying the storage engines of LogCabin
and ZooKeeper. In both systems, the log is a set of files, each of a fixed size
and preallocated with zeros. The header of each file is reserved for the
log-entry identifiers. The size of the reserved header is proportional to
the file size. Clstore ensures that a log entry and its identifier are at least
a few megabytes physically apart. Both systems batch many log entries
to improve update performance. With batching, Clstore performs crash-
corruption disentanglement as follows: the first faulty entry without an
identifier and its subsequent entries are discarded; faulty entries preced-
ing that point are marked as corrupted and passed on to the distributed
layer.

In both systems, the state machine is a data tree. We modified both the
systems to take index-consistent identical snapshots: when a snap marker
is applied, the state machine (i.e., the tree) is serialized to the disk. The
snap-index and snapshot size are stored separately. Clstore uses a chunk
size of 4K, enabling fine-grained recovery.

In LogCabin, the metainfo contains the currentTerm and votedFor
structures. Similarly, in ZooKeeper, structures such as acceptedEpoch
and currentEpoch constitute the metainfo. Clstore stores redundant copies
of metainfo and protects them using checksums.

Log entries, snapshot chunks, and metainfo are protected by a CRC32
checksum. Clstore detects inaccessible data items by catching errors (EIO);
it then populates the item’s in-memory buffer with zeros, causing a check-
sum mismatch. Thus, Clstore deals with both corruptions and errors as
checksum mismatches. Lost log writes result in checksum mismatches
because the log is preallocated with zeros. Misdirected writes can over-
write previously written log entries. Such misdirected writes typically
occur at the block or sector granularity, causing a checksum mismatch
for the log entries in most cases. In rare cases, the entries could be block
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aligned, and a misdirected write may not cause a checksum mismatch.
However, the storage layer catches such cases through a sanity check that
verifies that the index of the log entries are in order and are monotonically
increasing.

3.3.2 Distributed Recovery

LogCabin. In Raft, terms are equivalent to epochs. Thus, a log entry is
uniquely identified by its 〈term, index〉 pair. To fix the followers, we mod-
ified the AppendEntries RPC used by the leader to replicate entries [175].
The followers inform the leader of their faulty log entries and snapshot
chunks in the responses of this RPC; the leader sends the correct entries
and chunks in a subsequent RPC. A follower starts applying commands
to its state machine once its faulty data is fixed. To fix the leader, we added
a new RPC which the leader issues to the followers. The leader does not
proceed to normal operation until its faulty data is fixed. After a config-
urable recovery timeout, the leader steps down if it is unable to recover
its faulty data (for example, due to a partition), allowing other nodes to
become the leader. Several entries and chunks are batched in a single
request/response, avoiding multiple round trips.
ZooKeeper. In ZAB, the epoch and index are packed into the zxid which
uniquely identifies a log entry [17]. Followers discover and connect to the
leader in Phase 1. We modified Phase 1 to send information about the
followers’ faulty data. The followers are synchronized with the leader in
Phase 2. We modified Phase 2 so that the leader sends the correct data to
the followers. The leader waits to hear from a majority during Phase 1 af-
ter which it sends a newEpoch message; we modified this message to send
information about the leader’s faulty data. The leader does not proceed
to Phase 2 until its data is fixed.
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3.4 Evaluation

We evaluate the correctness and performance of Ctrl versions of Log-
Cabin and ZooKeeper. We conducted our performance experiments on
a three-node cluster on a 1-Gbps network; each node is a 40-core Intel
Xeon CPU E5-2660 machine with 128 GB memory running Linux 3.13,
with a 480-GB SSD (Intel SSDSC2BB480G7K) and a 1-TB HDD (Seagate
ST1200MM0088) managed by ext4. We configure LogCabin and ZooKeeper
to store their persistent structures on this ext4 partition.

3.4.1 Correctness

To test Ctrl’s safety and availability guarantees, we built a fault-injection
framework that can inject storage faults (targeted corruptions and random
block corruptions and errors). The framework can also inject crashes. By
injecting crashes at different points in time, the framework simulates lag-
ging nodes. After injecting faults, we issue reads from clients to deter-
mine whether the target system remains available and preserves safety.

We first exercise different log-recovery scenarios. Then, we test snap-
shot recovery, and finally file-system metadata fault recovery.

Log Recovery

We perform three different experiments to test log-recovery: targeted log-
entry corruptions, random block corruptions and errors, and faults with
crashed and lagging nodes.

Targeted Corruptions. We initialize the cluster by inserting four log en-
tries and ensuring that the entries are replicated to all three nodes in the
cluster. We exercise all combinations of entry corruptions across the three
nodes ((24)3 = 4096 combinations). Out of the 4096 cases, a correct recov-
ery is possible in 2401 cases (at least one non-faulty copy of each entry
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Table 3.4: Targeted Corruptions. The table shows results for targeted corrup-
tions in log; we trigger two policies (truncate and crash) in the original systems.
Recovery is possible when at least one intact copy exists; recovery is not possible
when no intact copy exists.

exists). In the remaining 1695 cases, recovery is not possible because one
or more entries are corrupted on all the nodes. We inject targeted cor-
ruptions into two different sets of on-disk structures. In the first set, on a
corruption, the original systems invoke the truncate action (i.e., they trun-
cate faulty data and continue). In the second set, the original systems in-
voke the crash action (i.e., node crashes on detection). For example, while
ZooKeeper truncates when the tail of a transaction is corrupted, it crashes
the node if the transaction header is corrupted. Ctrl always recovers the
corrupted data from other replicas.

Table 3.4 shows the results. When recovery is possible, the original
systems recover only in 46/2401 cases. In those 46 cases, no node or only
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one node is corrupted. In the remaining 2355 cases, the original systems
are either unsafe (for truncate) or unavailable (for crash). In contrast, Ctrl
correctly recovers in all 2401 cases. When a recovery is not possible (all
copies corrupted), the original systems are either unsafe or unavailable in
all cases. Ctrl, by design, correctly remains unavailable since continuing
would violate safety.

Random Block Corruptions and Errors. We initialize the cluster by repli-
cating a few entries to all nodes. We first choose a random set of nodes.
In each such node, we then corrupt a randomly selected file-system block
(from the files implementing the log). We repeat this process, producing
5000 test cases. We similarly inject block errors. Since we inject a fault
into a block, several entries and their checksums within the block will be
faulty.

Table 3.5(a) shows the results. For block corruptions, original LogCabin
is unsafe or unavailable in about 30% ((738 + 793)/5000) of cases. Sim-
ilarly, original ZooKeeper is incorrect in about 30% of cases. On a block
error, original LogCabin and ZooKeeper simply crash the node, leading
to unavailability in about 50% of cases. In contrast, Ctrl correctly recov-
ers in all cases.

Faults with Crashed and Lagging Nodes. In the previous experiments,
all entries were committed and present on all nodes. In this experiment,
we inject crashes at different points on a random set of nodes while insert-
ing entries. Thus, in the resultant log states, nodes could be lagging, en-
tries could be uncommitted, and have different epochs on different nodes
for the same log index.
〈S1 : [a1, _, _],S2 : [b2, c3, _],S3 : [b2, _, _]〉 is an example state where

S1 appends a at index 1 in epoch 1 (shown in superscript) and crashes,
S2 appends b at index 1 in epoch 2, replicates to S3, then S2,S3 crash and
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(a) Random Block Corruptions and Errors.
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LogCabin 5000 4194 141 665 0 0 5000

ZooKeeper 5000 1306 1806 1888 0 0 5000

(b) Corruptions with Lagging Nodes

Table 3.5: Log Recovery. (a) shows results for random block corruptions and
errors in the log. (b) shows results for random corruptions in the log with crashed
and lagging nodes.

recover, S2 appends c in epoch 3 and crashes. From each such state, we
corrupt different entries, generating 5000 test cases. For example, from
the above state, we corrupt a on S1 and b, c on S2. If S2 is elected the
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leader, S2 needs to fix b from S3 (since b is committed), discard c (c is un-
committed and cannot be recovered), and also instruct S1 to discard a (a
is uncommitted) and replicate correct entry b. As shown in Table 3.5(b),
Ctrl correctly recovers from all such cases, while the original versions are
unsafe or unavailable in many cases.

Model Checking. We also model checked Ctrl’s log recovery since it
involves many corner cases, using a python-based model that we devel-
oped. We explored over 2.5M log states all of in which Ctrl correctly
recovered. Also, when key decisions are tweaked, the checker finds a vi-
olation immediately: for example, the leader concludes that a faulty entry
is uncommitted only after gathering bn/2c+ 1 dontHave responses; if this
number is reduced, then the checker finds a safety violation. We have also
added the specification of Ctrl’s log recovery to the TLA+ specification of
Raft [74] and confirmed that it correctly recovers from corruptions, while
the original specification violates safety.

Snapshot Recovery

In this experiment, we insert a few entries and trigger the nodes to take a
snapshot. We crash the nodes at different points, producing three possi-
ble states for each node: l, t, and g, where l is a state where the node has
only the log (it has not taken a snapshot), t is a snapshot for which garbage
collection has not been performed yet, and g is a snapshot which has been
garbage collected. We produce all possible combinations of states across
three nodes. On each such state, we randomly pick a set of nodes to inject
faults, and corrupt a random combination of snapshots and log entries,
generating 1000 test cases. For example, 〈S1 : t,S2 : g,S3 : l〉 is a base
state on which we corrupt snapshot t and a few preceding log entries on
S1 and g on S2. In such a state, if S1 becomes the leader, it has to fix its log
from S3, then has to locally recover its t snapshot, after which it has to fix
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LogCabin 1000 405 36 559 434 0 566
ZooKeeper 1000 329 192 479 502 0 498

(b) FS Metadata Faults

Table 3.6: Snapshot and FS Metadata Faults. (a) and (b) show how Ctrl
recovers from snapshot and FS metadata faults, respectively.

g on S2. S1 also needs to install the snapshot on S3.
As shown in Table 3.6(a), Ctrl correctly recovers from all such cases.

Original LogCabin is incorrect in about half of the cases because it oblivi-
ously loads faulty snapshots sometimes and crashes sometimes. Original
ZooKeeper crashes the node if it is unable to locally construct the data
from the snapshot and the log, leading to unavailability; unsafety results
because a faulty log is truncated in some cases.
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File-system Metadata Faults

To test how Ctrl recovers from file-system metadata faults, we corrupt
file-system metadata structures (such as inodes and directory blocks) re-
sulting in unopenable files, missing files, and files with fewer or more
bytes. We inject such faults in a randomly chosen file on one or two nodes
at a time, creating 1000 test cases. Table 3.6(b) shows the results. In some
cases, the faulty nodes in original versions crash because of a failed de-
serialization or assertion. However, sometimes original LogCabin and
ZooKeeper do not detect the fault and continue operating, violating safety
in 36 and 192 cases, respectively. In contrast, Ctrl reliably crashes the
node on a file-system metadata fault, preserving safety always.

3.4.2 Performance

We now compare the common-case performance of the Ctrl versions against
the original versions. During writes, the entries are first written to the on-
disk log; snapshots are taken periodically in the background. Both Log-
Cabin and ZooKeeper batch several log entries to improve write through-
put. In addition to the above steps, Ctrl writes an identifier for each log
entry at the head of the log. First, we run a write-only workload that
exposes the worst-case overheads (caused by the additional writes) intro-
duced by Ctrl. The workload runs for 300 seconds, inserting entries each
of size 1K. Numbers reported are the average over five runs.

Figure 3.8(a) and (c) show the throughput on an HDD for varying
number of clients in LogCabin and ZooKeeper, respectively. Ctrl writes
the identifiers in a physically separate location compared to that of the
entries; this separation induces a seek on disks in the update path. How-
ever, the seek cost is amortized when more requests are batched; Ctrl
has an overhead of 8%-10% for 32 clients on disks. Figure 3.8(b) and (d)
show throughput on an SSD; Ctrl adds very minimal overhead on SSDs
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(c) ZooKeeper: Write (HDD) (d) ZooKeeper: Write (SSD)

Figure 3.8: Write Performance. (a) and (c) show the write throughput in
original and Ctrl versions of LogCabin and ZooKeeper on an HDD. (b) and (d)
show the same for SSD. The number on top of each bar shows the performance of
Ctrl normalized to that of original.

(4% in the worst case). Note that this workload performs only writes and
therefore shows Ctrl’s overheads in the worst case.

In both LogCabin and ZooKeeper, reads are served from memory;
thus, the read paths should ideally not be affected by Ctrl. To confirm
this, we run a read-only workload. Figure 3.9(a) and (b) show the through-
put on an SSD for varying number of clients in LogCabin and ZooKeeper,
respectively. As shown in the figure, Ctrl does not introduce any over-
heads and maintains the same performance as the original systems. We
see similar results on HDDs (not shown in the figure).
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Figure 3.9: Read Performance. (a) and (b) show the read throughput in
original and Ctrl versions of LogCabin and ZooKeeper on a SSD. The number
on top of each bar shows the performance of Ctrl normalized to that of original.

Fast Log Recovery. We now show how Ctrl can recover a faulty log
quickly. To show the potential reduction in log-recovery time, we insert
30K log entries (each of size 1K) and corrupt the first entry on one node.
In original LogCabin, the faulty node detects the corruption but truncates
all entries; hence, the leader transfers all entries to bring the node up-to-
date. Ctrl fixes only the faulty entry, reducing recovery time. The faulty
node is fixed in 1.24 seconds (32MB transferred) in the original system,
while Ctrl takes only 1.2 ms (7KB transferred). We see a similar reduc-
tion in log-recovery time in ZooKeeper.
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3.5 Summary and Conclusions

Using redundancy to recover from failures is an important aspect of any
truly reliable distributed system. However, despite this importance, even
the most critical class of distributed storage systems do not effectively uti-
lize the inherent data redundancy to recover from storage faults. Our
analysis of existing approaches in the first part of this chapter revealed
that most approaches do not use protocol-level knowledge to perform re-
covery, leading to safety violation or unavailability.

As a solution to this problem, in the second part, we introduced protocol-
aware recovery (Par), a new approach that exploits protocol-specific knowl-
edge of the underlying distributed system to correctly recover from stor-
age faults. We designed Ctrl, a protocol-aware recovery approach for
RSM systems. Ctrl consists of a local storage layer and distributed re-
covery protocol; while the storage layer reliably detects storage faults, the
distributed protocol recovers faulty data from redundant copies on other
servers.

We implemented Ctrl in two systems (LogCabin and ZooKeeper) that
are based on two different consensus protocols. Through rigorous exper-
iments, we showed that Ctrl correctly recovers from a range of storage
faults. We also showed that the reliability improvements of Ctrl come
with little to no performance overheads in the common case.

More broadly, we believe our work in this chapter is only a first step
in hardening distributed systems to storage faults: while we have suc-
cessfully applied the Par approach to RSM systems, other classes of sys-
tems (e.g., primary-backup, Dynamo-style quorums) still remain to be
analyzed. Recent related studies [92] have shown that these classes of dis-
tributed systems are vulnerable to storage faults too; experimental data
has shown that these systems can silently return corrupted data, lose data,
or become unavailable. We believe the Par approach can also be applied
to these systems to improve their resiliency to storage faults. Further, new
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storage technologies such as non-volatile memory (NVM) and QLC Nand
devices are finding rapid adoption in data centers. However, recent stud-
ies have shown that these new technologies also suffer from media cor-
ruption and errors [220, 235]. Thus, we believe the ideas presented in this
chapter can help improve the resiliency of many future deployments.
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4
Situation-Aware Updates and Crash

Recovery

In this chapter, we analyze the resiliency to crash failures and perfor-
mance characteristics of different replication protocols (such as Paxos [130],
Viewstamped Replication [140], Raft [175], and ZAB [119]) used by dis-
tributed systems. We introduce situation-aware updates and crash recovery
(Saucr), a new approach to replication in a distributed system.

In the first part of this chapter, we show that a dichotomy exists with
respect to how and where current approaches store system state. In the
disk-durable approach, critical state is replicated to persistent storage,
while in the memory-durable approach, data is replicated only to the
(volatile) memory. Our analysis shows that neither of these approaches
is ideal. Disk-durable approaches offer strong reliability but poor per-
formance; memory-durable approaches, in contrast, deliver high perfor-
mance but provide poor durability and availability.

Thus, in the second part of this chapter, we introduce situation-aware
updates and crash recovery (Saucr), a new approach to performing repli-
cated data updates in a distributed system. Saucr adapts the update pro-
tocol to the current situation: with many nodes up, Saucr buffers up-
dates in memory; when failures arise, Saucr flushes updates to disk. This
situation-awareness enables Saucr to achieve high performance while of-
fering strong durability and availability guarantees. We implement a pro-
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totype of Saucr in ZooKeeper. Through rigorous crash testing, we demon-
strate that Saucr significantly improves durability and availability com-
pared to systems that always write only to memory. We also show that
Saucr’s reliability improvements come at little or no cost: Saucr’s over-
heads are within 0%-9% of memory-durable ZooKeeper. This chapter is
based on the paper, Fault-Tolerance, Fast and Slow: Exploiting Failure Asyn-
chrony in Distributed Systems, published in OSDI 18 [11].

We first present our study of existing approaches to replication and de-
scribe how crash failures arise in modern data-center environments (§4.1).
We then describe the design of Saucr (§4.2). Next, we describe Saucr’s pro-
totype implementation (§4.3) and present our evaluation (§4.4). We then
discuss concerns related to Saucr’s adoption in practice (§4.5). Finally, we
summarize and conclude (§4.6).

4.1 Existing Approaches to Replication

In this section, we first describe disk-durable and memory-durable proto-
cols, the common protocols used by most distributed systems; we explain
how these protocols exhibit undesirable properties such as poor perfor-
mance, durability, or availability. Next, more importantly, we draw atten-
tion to how these protocols are static in nature: how they always update
and recover in a constant way, without adapting to failures in the system,
resulting in said undesirable properties.

4.1.1 Disk-Durable Protocols

Disk-durable protocols always update the disk on a certain number of
nodes upon every data modification. For example, ZooKeeper [14], etcd [64],
and other systems [40, 144, 167, 197] persist every update on a majority of
nodes before acknowledging clients.



78

Mode Avg. Latency (µs) Throughput
(ops/s)

HDD
cluster-1

fsync-s
disabled 327.86 3050.1

disk
durability 16665.18 (50.8× ↑) 60.0 (50.8× ↓)

SSD
cluster-2

fsync-s
disabled 461.2 2168.34

disk
durability 1027.3 (2.3× ↑) 973.4 (2.3× ↓)

Table 4.1: Disk Durability Overheads. The table shows the overheads of
disk durability. The experimental setup is detailed in §4.4.2.

With the exception of subtle bugs [12], disk-durable protocols offer ex-
cellent durability and availability. Specifically, committed data will never
be lost under any crash failures. Further, as long as a majority of nodes are
functional, the system will remain available. Unfortunately, such strong
durability and availability guarantees come at a cost: poor performance.

Disk-durable protocols operate with caution and pessimistically flush
updates to the disk (e.g., by invoking the fsync system call [29, 181]).
Such forced writes in the critical path are expensive, often prohibitively
so. To highlight these overheads, we conduct a simple experiment with
ZooKeeper in the following modes: first, in the disk-durable configura-
tion in which the fsync calls are enabled; second, with fsync calls dis-
abled. A client sends update requests in a closed loop to the leader which
then forwards the requests to the followers. We run the experiment on
a five-node cluster and thus at least three servers must persist the data
before acknowledgment.

As shown in Table 4.1, on HDDs, forced writes incur a 50× perfor-
mance overhead compared to the fsync-disabled mode. Even on SSDs,
the cost of forced writes is high (2.3×). While batching across many clients
may alleviate some overheads, disk-durable protocols are fundamentally
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limited by the cost of forced writes and thus suffer from high latencies
and low throughput.

A disk-durable update protocol is usually accompanied by a disk-based
recovery protocol. During crash-recovery, a node can immediately join
the cluster just after it recovers the data from its disk. A recovering node
can completely trust its disk because the node would not have acknowl-
edged any external entity before persisting the data. However, the node
may be lagging: it may not contain some data that other nodes might
have stored after it crashed. Even in such cases, the node can immedi-
ately join the cluster; if the node runs for an election, the leader-election
protocol will preclude this node from becoming the leader because it has
not stored some data that the other nodes have [12, 175]. If a leader al-
ready exists, the node fetches the missed updates from the leader.

4.1.2 Memory-Durable Protocols

Given the high overheads imposed by a disk-durable protocol, researchers
and practitioners alike have proposed alternative protocols [50, 171], in
which the data is always buffered in memory, achieving good perfor-
mance. We call such protocols memory-durable protocols.

Oblivious Memory Durability

The easiest way to achieve memory “durability” is oblivious memory dura-
bility, in which any forced writes in the protocol are simply disabled,
unaware of the risks of only buffering the data in memory. Most sys-
tems provide such a configuration option [21, 60, 76, 197]; for example,
in ZooKeeper, turning off the forceSync flag disables all fsync calls [16].
Turning off forced writes increases performance significantly, which has
tempted practitioners to do so in many real-world deployments [85, 115,
178].
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Figure 4.1: Problems in Memory-Durable Approaches. (a) and (b) show
how a data loss or an unavailability can occur with oblivious and loss-aware
memory durability, respectively. In (i), the nodes fail simultaneously; in (ii),
they fail non-simultaneously, one after the other.

Unfortunately, disabling forced writes might lead to a data loss [16,
126] or sometimes even an unexpected data corruption [252]. Develop-
ers and practitioners have reported several instances where this unsafe
practice has led to disastrous data-loss events in the real world [19, 86].

Consider the scenarios shown in Figure 4.1(a), in which ZooKeeper
runs with forceSync disabled. If a majority of nodes crash and recover,
data could be silently lost. Specifically, the nodes that crash could form
a majority and elect a leader among themselves after recovery; however,
this majority of nodes have lost their volatile state and thus do not know
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of the previously committed data, causing a silent data loss. The intact
copies of data on other nodes (servers 4 and 5) can be overwritten by
the new leader because the followers always follow the leader’s state in
ZooKeeper [12, 175].

Loss-Aware Memory Durability

Given that naïvely disabling forced writes may lead to a silent data loss,
researchers have examined more careful approaches. In these approaches,
a node, after a crash and a subsequent reboot, realizes that it might have
lost its data; thus, a recovering node first runs a distinct recovery protocol.
We call such approaches loss-aware memory-durable approaches.

The view-stamped replication (VR) protocol [171] is an example of this
approach. Similarly, researchers at Google observed that they could opti-
mize their Paxos-based system [50] by removing disk flushes, given that
the nodes run a recovery protocol. For simplicity, we use only VR as an
example for further discussion.

In VR, when a node recovers from a crash, it first marks itself to be in
a recovering state, in which the node can neither participate in replication
nor give votes to elect a new leader (i.e., a view change) [140]. Then, the
node sends a recovery message to other servers. A node can respond to
this message if it is not in the recovering state; the responding node sends
its data to the recovering node. Once the node collects responses from a
majority of servers (including the leader of the latest view), it can fix its
data. By running a recovery protocol, this approach prevents a silent data
loss.

Unfortunately, the loss-aware approach can lead to unavailability in
many failure scenarios. Such an unavailability event could be permanent:
the system may remain unavailable indefinitely even after all nodes have
recovered from failures. For example, in Figure 4.1(b), a majority of nodes
crash and recover. However, after recovering from the crash, none of the
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Figure 4.2: Summary of Protocol Behaviors and Guarantees. The figure
shows how the disk-durable and memory-durable protocols behave under failures
and the guarantees they provide.

nodes will be able to collect recovery responses from a majority of nodes
(because nodes in the recovering state cannot respond to the recovery mes-
sages), leading to permanent unavailability.



83

Protocols Summary. Figure 4.2 summarizes the behaviors of the disk-
durable and memory-durable protocols. A node either could be func-
tional or could have failed (crashed or partitioned). Disk-durable proto-
cols remain available as long as a majority are functional. The system
becomes temporarily unavailable if a majority fail; however, it becomes
available once a majority recover. Further, the protocol is durable at all
times.

The oblivious memory-durable protocol becomes temporarily unavail-
able if a majority fail. After recovering from a failure, a node could be lag-
ging: it either recovers from a crash, losing all its data, or it recovers from
a partition failure, and so it may not have seen updates. If such functional
but lagging nodes form a majority, the system can silently lose data.

The loss-aware memory-durable approach becomes temporarily un-
available if the system is unable to form a majority due to partitions. How-
ever, the system becomes permanently unavailable if a majority or more
nodes crash at any point; the system cannot recover from such a state,
regardless of how many nodes recover.

4.1.3 Failure Patterns in Data Centers

Existing approaches to replication present an unsavory tradeoff: they pro-
vide either reliability or performance, but not both. An ideal distributed
replication protocol must deliver high performance while providing strong
resiliency to crash failures. Such a design needs a careful understanding
of how failures occur in modern data-center environments, which we dis-
cuss next.

Sometimes, node failures are independent. For example, in large de-
ployments, single-node failure events are often independent: a crash of
one node (e.g., due to a power failure) does not affect some other node.
It is unlikely for many such independent failures to occur together, es-
pecially given the use of strategies such as failure-domain-aware place-
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ment [13, 127, 156]. Under such a condition, designing a protocol that
provides both high performance and strong guarantees is fairly straight-
forward: the protocol can simply buffer updates in memory always (sim-
ilar to existing memory-durable approaches). Given that a majority will
not be down at any point, the system will always remain available. Fur-
ther, at least one node in the alive majority will contain all the committed
data, preventing a data loss.

Unfortunately, in reality, such a failure-independence assumption is
rarely justified. In many deployments, failures can be correlated [36, 58,
68, 106, 216, 233]. During such correlated crashes, several nodes fail to-
gether, often due to the same underlying cause such as rolling reboots [88],
bad updates [169], bad inputs [71], or data-center-wide power outages [124].

Given that failures can be correlated, it is likely that the above naïve
protocol may lose data or become unavailable. An ideal protocol must
provide good performance and strong guarantees in the presence of cor-
related failures. However, designing such a protocol is challenging. At a
high level, if the updates are buffered in memory (aiming to achieve good
performance), a correlated failure may take down all the nodes together,
causing the nodes to lose the data, affecting durability.

Although many or all nodes fail together, a correlated failure does
not mean that the nodes fail at the same instant; the nodes can fail ei-
ther non-simultaneously or simultaneously. With non-simultaneous cor-
related crashes, a time gap between the individual node failures exists.
For instance, a popular correlated crash scenario arises due to bad in-
puts: many nodes process a bad input and crash together [71]. However,
such a bad input is not applied at exactly the same time on all the nodes
(for instance, a leader applies an input before its followers), causing the
individual failures to be non-simultaneous.

In contrast, with simultaneous correlated crashes, such a window be-
tween failures does not exist; all nodes may fail before any node can detect
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a failure and react to it. However, we conjecture that such truly simulta-
neous crashes are extremely rare; we call this the Non-Simultaneity Con-
jecture (NSC). Publicly available data supports NSC. For example, a study
of failures in Google data centers [88] showed that in most correlated fail-
ures, nodes fail one after the other, usually a few seconds apart.

We also analyze the time gap between failures in the publicly avail-
able Google cluster data set [96]. This data set contains traces of ma-
chine events (such as the times of node failures and restarts) of about 12K
machines over 29 days and contains about 10K failure events. From the
traces, we randomly pick five machines (without considering failure do-
mains) and examine the timestamps of their failures. We repeat this 1M
times (choosing different sets of machines). We find that the time between
two failures among the picked machines is greater than 50 ms in 99.9999%
of the cases. However, we believe the above percentage is a conservative
estimate, given that we did not pick the machines across failure domains;
doing so is likely to increase the time between machine failures. Thus, we
observe that truly simultaneous machine failures are rare: a gap of 50 ms
or more almost always exists between the individual failures.

Given that in most (if not all) failure scenarios, a window of time ex-
ists between the individual failures, a replication protocol can take ad-
vantage of the window to react and perform a preventive measure (e.g.,
flushing to disk). A system that exploits this asynchrony in failures can
improve durability and availability significantly. However, as we discuss
next, none of the existing replication protocols exploit this opportunity.

4.1.4 Non-Reactiveness and Static Nature

We observe that existing update protocols do not react to failures. While it
may be difficult to react to truly simultaneous failures (that are rare), with
independent and non-simultaneous failures (which is far more preva-
lent), an opportunity exists to detect failures and perform a corrective
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step. However, existing protocols do not react to any failure.
For example, the oblivious memory-durable protocol can lose data, re-

gardless of the simultaneity of the failures. Specifically, a data loss occurs
both in Figure 4.1(a)(i) in which the nodes crash simultaneously and (a)(ii)
in which they fail non-simultaneously. Similarly, the loss-aware approach
can become unavailable, regardless of the simultaneity of the failures (as
shown in Figure 4.1(b)). This is the reason we do not differentiate simulta-
neous and non-simultaneous failures in Figure 4.2; the protocols behave
the same under both failures.

Next, we note that the protocols are static in nature: they always up-
date and recover in a constant way, regardless of the situation; this situation-
obliviousness is the cause for poor performance or reliability. For ex-
ample, the disk-durable protocol constantly anticipates failures, forcing
writes to disk even when nodes never or rarely crash; this unnecessary
pessimism leads to poor performance. In contrast, when nodes rarely
crash, a situation-aware approach would buffer updates in memory, achiev-
ing high performance. Similarly, the memory-durable protocol always
optimistically buffers updates in memory even when only a bare major-
ity are currently functional; this unwarranted optimism results in poor
durability or availability. In contrast, when only a bare majority are alive,
a situation-aware approach would safely flush updates to disk, improving
durability and availability.

4.1.5 Summary: The Need for a Situation-Aware
Approach

In this section, we discussed how existing replication schemes offer either
strong reliability or high performance. We showed that this tradeoff re-
sults from the static nature of existing protocols; current approaches do
not adapt to failures and statically fix how updates will be committed. We
discussed how failures typically arise in data-center environments and
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showed how, in almost all cases, a gap exists between individual failures.
However, existing replication protocols do not take advantage of this win-
dow to react to failures.

To resolve the tension between strong reliability and performance, in
the next section, we introduce a new approach, situation-aware updates and
crash recovery or Saucr. Saucr reacts to failures quickly with corrective
measures and adapts to the current situation of the system. Such reactive-
ness and situation-awareness enable Saucr to achieve high performance
similar to a memory-durable protocol while providing strong guarantees
similar to a disk-durable protocol.

4.2 Situation-Aware Updates and Recovery

Our analysis in the previous section revealed that existing approaches
to replication offer either reliability or performance, but not both. The
key reason why existing approaches compromise on reliability or per-
formance is that they statically fix where and how to commit updates.
More specifically, disk-durable protocols always write data to disk, and
do not adapt to current conditions, leading to poor performance. Simi-
larly, memory-durable protocols always buffer updates in memory, and
do not react to failures, leading to poor reliability.

In contrast, a replication protocol that can react to failures and adapt
itself to the current situation, can obtain both strong reliability and high
performance. Such a dynamic, situation-aware approach would operate
in the memory-durable mode when failures are rare and would switch
to disk-durable mode if and when failures arise. However, to realize this
goal, a protocol must have enough time to detect and react to failures as
they are occurring. Fortunately, as we discussed in the previous section,
in most (if not all) failure scenarios, a window of time exists between the
individual failures.
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We showed that with independent failures, such a time gap between
failures obviously exists. Even when failures are correlated (where many
nodes can fail together), the nodes do not necessarily fail at the same in-
stant: the nodes fail non-simultaneously in most cases. With non-simultaneous
correlated failures, a time gap (ranging from a few milliseconds to a few
seconds) exists between the individual failures. With simultaneous fail-
ures, in contrast, such a window does not exist. However, we described
how such truly simultaneous failures are extremely rare by putting forth
the Non-Simultaneity Conjecture (NSC).

The above observation forms the key idea of Saucr, which is the mode
of replication should depend upon the situation the distributed system
is in at a given time. In the common case, with many (or all) nodes up
and running, Saucr runs in memory-durable mode, thus achieving ex-
cellent throughput and low latency; when nodes crash or become parti-
tioned, Saucr transitions to disk-durable operation, thus ensuring safety
at a lower performance level. Given that a window of time exist between
failures in almost all failure scenarios, Saucr can safely move from its fast
mode to its slow-and-safe mode.

In the common case, Saucr operates in the fast mode. When failures
arise, Saucr quickly detects them and performs two corrective measures.
First, the nodes flush their data to disk, preventing an imminent data loss
or unavailability. Second, Saucr commits subsequent updates in slow
mode, in which the nodes synchronously write to disk, sacrificing per-
formance to improve reliability. When a node recovers from a crash, it
performs mode-aware recovery. The node recovers its data either from
its local disk or from other nodes depending on whether it operated in
slow or fast mode before it crashed.

In the remainder of this section, we first describe the failure model that
Saucr intends to tolerate (§4.2.1) and outline its guarantees (§4.2.2). We
then explain Saucr’s modes of operation (§4.2.3), failure reaction (§4.2.4),
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and crash recovery (§4.2.5, §4.2.6). Then, we summarize Saucr’s key as-
pects and describe the guarantees in detail (§4.2.7).

4.2.1 Failure Model

Most distributed systems intend to tolerate only fail-recover failures. Sim-
ilar to these systems, Saucr also intends to only handle fail-recover fail-
ures [98, 111, 130, 175] and not Byzantine failures [48, 131]. In the fail-
recover model, nodes may fail any time and recover later. For instance,
a node may crash due to a power loss and recover when the power is re-
stored. When a node recovers, it loses all its volatile state and is left only
with its on-disk data. We assume that persistent storage will be accessi-
ble after recovering from the crash and that it will not be corrupted [92].
In addition to crashing, sometimes, a node could be partitioned and may
later be able to communicate with the other nodes; however, during such
partition failures, the node does not lose its volatile state.

4.2.2 Guarantees

We consider three kinds of failures: independent, correlated non-simultaneous,
and correlated simultaneous failures. Saucr can tolerate any number of
independent and non-simultaneous crashes; under such failures, Saucr
always guarantees durability. As long as a majority of servers eventu-
ally recover, Saucr guarantees availability. Under simultaneous correlated
failures, if a majority or fewer nodes crash, and if eventually a majority re-
cover, Saucr will provide durability and availability. However, if more than
a majority crash simultaneously, then Saucr cannot guarantee durability
and so will remain unavailable. However, we believe such truly simul-
taneous crashes are extremely rare. We discuss the guarantees in more
detail later (§4.2.7).
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4.2.3 SAUCR Modes

We first describe some properties common to many majority-based sys-
tems. We then highlight how Saucr differs from existing systems in key
aspects.

Most majority-based systems are leader-based [18, 175]; the clients send
updates to the leader which then forwards them to the followers. The
updates are first stored in a log and are later applied to an application-
specific data structure. A leader is associated with an epoch: a slice of
time; for any given epoch, there could be at most one leader [18, 175]. Be-
cause only the leader proposes an update, each update is uniquely qual-
ified by the epoch in which the leader proposed it and the index of the
update in the log. The leader periodically checks if a follower is alive
or not via heartbeats. If the followers suspect that the leader has failed,
they compete to become the new leader in a new epoch. Most systems
guarantee the leader-completeness property: a candidate can become the
leader only if it has stored all items that have been acknowledged as com-
mitted [12, 175]. Saucr retains all the above properties of majority-based
systems.

In a memory-durable system, the nodes always buffer updates in mem-
ory; similarly, the updates are always synchronously persisted in a disk-
durable system. Saucr changes this fundamental attribute: Saucr either
buffers the updates or synchronously flushes them to disk depending on
the situation. When more nodes than a bare minimum to complete an
update are functional, losing those additional nodes will not result in an
immediate data loss or unavailability; in such situations, Saucr operates
in fast mode. Specifically, Saucr operates in fast mode if more than a bare
majority are functional (i.e., functional > bn/2c+ 1, where n is the total
nodes, typically a small odd number). If nodes fail and only a bare major-
ity (bn/2c+ 1) are functional, losing even one additional node may lead
to a data loss or unavailability; in such situations, Saucr switches to the
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Figure 4.3: Saucr Modes. The figure shows how Saucr’s modes work. S1 is
the leader. Entries in a white box are committed but are only buffered (e.g., e1
and e2 in the first and second states). Entries shown grey denote that they are
persisted (e.g., e1 – e3 in the third state). In fast mode, a node loses its data upon a
crash and is annotated with a crash symbol (e.g., S5 has lost its data in the second
state).

slow mode. Because the leader continually learns about the status of the
followers, the leader determines the mode in which a particular request
must be committed.

We use Figure 4.3 to give an intuition about how Saucr’s modes work.
At first, all the nodes are functional and hence the leader S1 replicates
entry e1 in fast mode. The followers acknowledge e1 before persisting it
(before invoking fsync); similarly, the leader also only buffers e1 in mem-
ory. In fast mode, the leader acknowledges an update only after bn/2c+ 2
nodes have buffered the update. Because at least four nodes have buffered
e1, the leader acknowledges e1 as committed. Now, S5 crashes; the leader
detects this but remains in fast mode and commits e2 in fast mode.

Next, S4 also crashes, leaving behind a bare majority; the leader now
immediately initiates a switch to slow mode and replicates all subsequent
entries in slow mode. Thus, e3 is replicated in slow mode. Committing
an entry in slow mode requires at least a bare majority to persist the entry
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to their disks; hence, when e3 is persisted on three nodes, it is committed.
Further, the first entry persisted in slow mode also persists all previous
entries buffered in memory; thus, when e3 commits, e1 and e2 are also
persisted. Meanwhile, S4 and S5 recover and catch up with other nodes;
therefore, the leader switches back to fast mode, commits e4 in fast mode,
and continues to commit entries in fast mode until further failures.

4.2.4 Failure Reaction

In the common case, with all or many nodes alive, Saucr operates in fast
mode. When failures arise, the system needs to detect them and switch
to slow mode or flush to disk. The basic mechanism Saucr uses to detect
failures is that of heartbeats.
Follower Failures and Mode Switches. If a follower fails, the leader de-
tects it via missing heartbeats. If the leader suspects that only a bare ma-
jority (including self) are functional, it immediately initiates a switch to
slow mode. The leader sends a special request (or uses an outstanding re-
quest such as e3 in the above example) on which it sets a flag to indicate to
the followers that they must respond only after persisting the request; this
also ensures that all previously buffered data will be persisted. All subse-
quent requests are then replicated in slow mode. When in fast mode, the
nodes periodically flush their buffers to disk in the background, without
impacting the client-perceived performance. These background flushes
reduce the amount of data that needs to be written when switching to
slow mode. Once enough followers recover, the leader switches back to
fast mode. To avoid fluctuations, the leader switches to fast mode after
confirming a handful number of times that it promptly gets a response
from more than a bare majority; however, a transition to slow mode is
immediate: the first time the leader suspects that only a bare majority of
nodes are alive.
Leader Failures and Flushes. The leader takes care of switching between
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modes. However, the leader itself may fail at any time. The followers
quickly detect a failed leader (via heartbeats) and flush all their buffered
data to disk. Again, the periodic background flushes reduce the amount
of data that needs to be written.

4.2.5 Enabling Safe Mode-Aware Recovery

When a node recovers from a crash, it may have lost some data if it had
operated in fast mode; in this case, the node needs to recover its lost data
from other nodes. In contrast, the node would have all the data it had
logged on its disk if it had crashed in slow mode or if it had flushed after
detecting a failure; in such cases, it recovers the data only from its disk.
Therefore, a recovering node first needs to determine the mode in which
it last operated. Moreover, if a node recovers from a fast-mode crash, the
other nodes should maintain enough information about the recovering
node. We now explain how Saucr satisfies these two requirements.

Persistent Mode Markers

The Saucr nodes determine their pre-crash mode as follows. When a node
processes the first entry in fast mode, it synchronously persists the epoch-
index pair of that entry to a structure called the fast-switch-entry. Note
that this happens only for the first entry in the fast mode. In the slow
mode or when flushing on failures, in addition to persisting the entries,
the nodes also persist the epoch-index pair of the latest entry to a structure
called the latest-on-disk-entry. To determine its pre-crash mode, a recov-
ering node compares the above two on-disk structures. If its fast-switch-
entry is ahead1 of its latest-on-disk-entry, then the node concludes that it
was in the fast mode. Conversely, if the fast-switch-entry is behind the

1An entrya is ahead of another entryb if (a.epoch> b.epoch) or (a.epoch== b.epoch
and a.index > b.index).
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latest-on-disk-entry, then the node concludes that it was in the slow mode
or it had safely flushed to disk.

Replicated LLE Maps

Once a node recovers from a crash, it must know how many entries it
had logged in memory or disk before it crashed. We refer to this value as
the last logged entry or LLE of that node. The LLE-recovery step is crucial
because only if a node knows its LLE, it can participate in elections. Specif-
ically, a candidate requests votes from other nodes by sending its LLE. A
participant grants its vote to a candidate if the participant’s LLE and cur-
rent epoch are not ahead of the candidate’s LLE and current epoch, respec-
tively [175] (provided the participant had not already voted for another
candidate in this epoch).

In a majority-based system, as long as a majority of nodes are alive,
the system must be able to elect a leader and make progress [26, 175]. It is
possible that the system only has a bare majority of nodes including the
currently recovering node. Hence, it is crucial for a recovering node to im-
mediately recover its LLE; if it does not, it cannot participate in an election
or give its vote to other candidates, rendering the system unavailable.

If a node recovers from a slow-mode crash, it can recover its LLE from
its disk. However, if a node recovers from a fast-mode crash, it would not
have its LLE on its disk; in this case, it has to recover its LLE from other
nodes. To enable such a recovery, as part of the replication request, the
leader sends a map of the last (potentially) logged entry of each node to
every node. The leader constructs the map as follows: when replicating
an entry at index i in epoch e, the leader sets the LLE of all the functional
followers and self to e.i and retains the last successful value of LLE for
the crashed or partitioned followers. For instance, if the leader (say, S1)
is replicating an entry at index 10 in epoch e to S2, S3, and S4, and if S5

has crashed after request 5, then the map will be 〈S1:e.10, S2:e.10, S3:e.10,
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S4:e.10, S5:e.5〉. We call this map the last-logged entry map or LLE-MAP. In
the fast mode, the nodes maintain the LLE-MAP in memory; in slow mode,
the nodes persist the LLE-MAP to the disk.

4.2.6 Crash Recovery

In a disk-durable system, a node recovering from a crash performs three
distinct recovery steps. First, it recovers its LLE from its disk. Second,
it competes in an election with the recovered LLE. The node may either
become the leader or a follower depending on its LLE’s value. Third, the
node recovers any missed updates from other nodes. If the node becomes
the leader after the second step, it is guaranteed to have all the committed
data because of the leader-completeness property [12, 175], skipping the
third step. If the node becomes a follower, it might be lagging and so
fetches the missed updates from the leader.

In Saucr, a node recovering from a crash could have operated either
in slow or fast mode before it crashed. If the node was in slow mode,
then its recovery steps are identical to the disk-durable recovery described
above; we thus do not discuss slow-mode crash recovery any further. A
fast-mode crash recovery, however, is more involved. First, the recovering
node would not have its LLE on its disk; it has to carefully recover its LLE
from the replicated LLE-MAPs on other nodes. Second, it has to recover its
lost data irrespective of whether it becomes the leader or a follower. We
explain how a node performs the above crash-recovery steps.
Max-Among-Minority. A Saucr node recovering from a fast-mode crash
recovers its LLE using a procedure that we call max-among-minority. In
this procedure, the node first marks itself to be in a state called recovering
and then sends an LLE query to all other nodes. A node may respond
to this query only if it is in a recovered (not recovering) state; if it is not, it
simply ignores the query. Note that a node can be in the recovered state in
two ways. First, it could have operated in fast mode and not crashed yet;
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second, it could have last operated in slow mode and so has the LLE-MAP
on its disk. The recovering node waits to get responses from at least a bare
minority of nodes, where bare-minority= bn/2c; once the node receives
a bare-minority responses, it picks the maximum among the responses as
its LLE. Finally, the node recovers the actual data up to the recovered LLE.
For now, we assume that at least a bare minority will be in recovered state;
we soon discuss cases where only fewer than a bare minority are in the
recovered state (§4.2.7).

We argue that the max-among-minority procedure guarantees safety,
i.e., it does not cause a data loss. To do so, let us consider a node N that
is recovering from a fast-mode crash and let its actual last-logged entry
(LLE) be L. When N runs the max-among-minority procedure, it retrieves
L′ as its LLE and recovers all entries up to L′.

If N recovers exactly all entries that it logged before crashing (i.e.,
L′=L), then it is as though N had all the entries on its local disk (similar
to how a node would recover in a disk-durable protocol, which is safe).
Therefore, if the retrieved L′ is equal to the actual last-logged entry L, the
system would be safe.

However, in reality, it may not be possible for N to retrieve an L′ that
is exactly L. If N crashes after the leader sends a replication request but
before N receives it, N may retrieve an L′ that is greater than L. For ex-
ample, consider the case shown in Figure 4.4(a)(i). The leader (S1) has
successfully committed entry-1 in fast mode and now intends to repli-
cate entry-2; hence, the leader populates the LLE-MAP with 2 as the value
for all the nodes. However, S3 crashes before it receives entry-2; conse-
quently, its LLE is 1 when it crashed. However, when S3 recovers its LLE
from LLE-MAPs of S1 and S5 using the max-among-minority algorithm, the
recovered L′will be 2 which is greater than 1. Note that if L′ is greater than
L, it means that N will recover additional entries that were not present in
its log, which is safe. Similarly, it is possible for N to retrieve an L′ that
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is smaller than L. For instance, in Figure 4.4(a)(ii), S3 has actually logged
two entries; however, when it recovers, its L′ will be 1 which is smaller
than the actual LLE 2. L′ < L is the only case that needs careful handling.

We now show that the system is safe even when the recovered L′ is
smaller than L. We first establish a lower bound for L′ that guarantees
safety. Then, we show that max-among-minority ensures that the recov-
ered L′ is at least as high as the established lower bound.
Lower bound for L′. Let N’s log when it crashed be D and let CN be the
last entry in D that is committed. For example, in Figure 4.4(a)(ii), for S3,
D contains entries 1 and 2, and the last entry in D that was committed is
1. Note that CN need not be the latest committed entry; the system might
have committed more entries after N crashed but none of these entries
will be present in N’s log. For example, in Figure 4.4(b), for S3, CN is 2
while the latest committed entry in the system is 3.

For the system to be safe, all committed entries must be recovered,
while the uncommitted entries need not be recovered. For example, in Fig-
ure 4.4(a)(ii), it is safe if S3 does not recover entry-2 because entry-2 is
uncommitted. However, it is unsafe if N does not recover entry-1 because
entry-1 is committed. For instance, imagine that S3 runs an incorrect re-
covery algorithm that does not recover entry-1 in Figure 4.4(a)(ii). Now,
if S1 and S2 also run the incorrect algorithm, then it is possible for S1, S2,
and S3 to form a majority and lose committed entry-1. Therefore, if the
recovery ensures that N recovers all the entries up to CN, committed data
will not be lost, i.e., L′ must be at least as high as the last entry in N’s
log that is committed. In short, the lower bound for L′ is CN. Next, we
show that indeed the L′ recovered by max-among-minority is equal to or
greater than CN.
Proof Sketch for L′>CN. We prove by contradiction. Consider a node N
that is recovering from a fast-mode crash and that CN is the last entry in
N’s log that was committed. During recovery, N queries a bare minority.
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Let us suppose that N recovers an L′ that is less than CN. This condition
can arise if a bare minority of nodes hold an LLE of N in their LLE-MAPs
that is less than CN. This is possible if the bare minority crashed long
ago and recently recovered, or they were partitioned. However, if a bare
minority had crashed or partitioned, it is not possible for the remaining
bare majority to have committed CN in fast mode (recall that a fast-mode
commitment requires at least bare-majority+ 1 nodes to have bufferred
CN and updated their LLE-MAPs). Therefore, CN could have either been
committed only in slow mode or not committed at all. However, if CN
was committed in slow mode, then N would be recovering from a slow-
mode crash which contradicts the fact that N is recovering from a fast-
mode crash. The other possibility that CN could not have been committed
at all directly contradicts the fact that CN is committed. Therefore, our
supposition that L′ is less than CN must be false.

Once a node has recovered its LLE, it can participate in elections. If an
already recovered node or a node that has not failed so far becomes the
leader (for example, S1 or S5 in Figure 4.4(a)(i)), it will already have the
LLE-MAP, which it can use in subsequent replication requests. On the other
hand, if a recently recovered node becomes the leader (for example, S3 in
Figure 4.4(a)(i)), then it needs to construct the LLE-MAP values for other
nodes. To enable this construction, during an election, the voting nodes
send their LLE-MAP to the candidate as part of the vote responses. Us-
ing these responses, the candidate constructs the LLE-MAP value for each
node by picking the maximum LLE of that node from a bare-minority re-
sponses.
Data recovery. Once a node has successfully recovered its LLE, it needs
to recover the actual data. If the recovering node becomes the follower, it
simply fetches the latest data from the leader. In contrast, if the recovering
node becomes the leader, it recovers the data up to the recovered LLE from
the followers.
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Figure 4.5: Saucr Summary and Guarantees. The figure summarizes how
Saucr works under failures and the guarantees it provides.

4.2.7 Summary and Guarantees

We use Figure 4.5 to summarize how Saucr works and the guarantees it
offers; a node fails either by crashing or by becoming unreachable over the
network. We guide the reader through the description by following the
sequence numbers shown in the figure. 1 At first, we assume all nodes
are in recovered state; in this state, Saucr operates in the fast mode; when
nodes fail, Saucr stays in the fast mode as long as the number of nodes
failed is less than a bare minority. 2 After a bare minority of nodes fail,
Saucr switches to slow mode. 3 Once in slow mode, if one or more nodes
recover and respond promptly for a few requests, Saucr transitions back to
fast mode. 4 In slow mode, if any node fails, Saucr becomes temporarily
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unavailable. 5 Once a majority of nodes recover, the system becomes
available again.

To explain further transitions, we differentiate non-simultaneous and
simultaneous crashes and network partitions. In the presence of non-
simultaneous crashes, nodes will have enough time to detect failures; the
leader can detect follower crashes and switch to slow mode and followers
can detect the leader’s crash and flush to disk. Thus, despite any num-
ber of non-simultaneous crashes, Saucr always transitions through slow
mode. Once in slow mode, the system provides strong guarantees.

However, in the presence of simultaneous crashes, many nodes could
crash instantaneously while in fast mode; in such a scenario, Saucr can-
not always transition through slow mode. 6 If the number of nodes that
crash in fast mode does not exceed a majority, Saucr will only be temporar-
ily unavailable; in this case, at least a bare minority will be in recovered
state or will have previously crashed in slow mode making crash recovery
possible (as described in §4.2.6). 7 In rare cases, more than a bare major-
ity of nodes may crash in fast mode, in which case, crash recovery is not
possible: the number of nodes that are in recovered state or previously
crashed in slow mode will be less than a bare minority. During such si-
multaneous crashes, which we believe are extremely rare, Saucr remains
unavailable.

In the presence of partitions, all nodes could be alive, but partitioned
into two; in such a case, the minority partition would be temporarily un-
available while the other partition will safely move to slow mode if a bare
majority are connected within the partition. The nodes in the minority
partition would realize they are not connected to the leader and flush to
disk. Both of these actions guarantee durability and prevent future un-
availability.
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4.3 Implementation

We have implemented situation-aware updates and crash recovery in Apache
ZooKeeper (v3.4.8). We now describe the most important implementation
details.
Storage layer. ZooKeeper maintains an on-disk log to which the updates
are appended. ZooKeeper also maintains snapshots and meta informa-
tion (e.g., current epoch). We modified the log-update protocol to not
issue fsync calls synchronously in fast mode. Snapshots are periodi-
cally written to disk; because the snapshots are taken in the background,
foreground performance is unaffected. The meta information is always
synchronously updated. Fortunately, such synchronous updates happen
rarely (only when the leader changes), and thus do not affect common-
case performance. In addition to the above structures, Saucr maintains
the fast-switch-entry in a separate file and synchronously updates it the
first time when the node processes an entry in the fast mode. In slow
mode, the LLE-MAP is synchronously persisted. Saucr maintains the map
at the head of the log file. The latest-on-disk-entry for a node is its own
entry in the persistent LLE-MAP (LLE-MAP is keyed by node-id).
Replication. We modified the QuorumPacket [25] (which is used by the
leader for replication) to include the mode flag and the LLE-MAP. The
leader transitions to fast mode after receiving three consecutive success-
ful replication acknowledgements from more than a bare majority.
Failure Reaction. In our implementation, the nodes detect failures through
missing heartbeats, missing responses, and broken socket connections.
Although quickly reacting to failures and flushing or switching modes is
necessary to prevent data loss or unavailability, hastily declaring a node
as failed might lead to instability. For example, if a follower runs for an
election after missing just one heartbeat from the leader, the system may
often change leader, affecting progress. Saucr’s implementation avoids
this scenario as follows. On missing the first heartbeat from the leader,
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the followers suspect that the leader might have failed and so quickly react
to the suspected failure by flushing their buffers. However, they conserva-
tively wait for a handful of missing heartbeats before declaring the leader
as failed and running for an election. Similarly, while the leader initiates
a mode switch on missing the first heartbeat response, it waits for a few
missing responses before declaring the follower as failed. If a majority of
followers have not responded to a few heartbeats, the leader steps down
and becomes a candidate.
Recovery Protocol. We modified the leader election protocol so that a
node recovering from a fast-mode crash first recovers its LLE before it can
participate in elections. A responding node correctly handles LLE-query
from a node and replication requests from the leader that arrive concur-
rently. If a node that recovers from a fast-mode crash becomes the leader,
it fetches the data items up to its LLE from others. However, due to the
background flushes, several items might already be present on the disk;
the node recovers only the missing items. The responding node batches
several items in its response.

4.4 Evaluation

We now evaluate the durability, availability, and performance of our Saucr
implementation.

4.4.1 Durability and Availability

To evaluate the guarantees of Saucr, we developed a cluster crash-testing
framework. The framework first generates a graph of all possible cluster
states as shown in Figure 4.6. Then, it generates a set of cluster-state se-
quences. For instance, 12345 → 345 → 45 → 1245 → 1 → 13 → 12345 is
one such sequence. In this sequence, at first, all five nodes are alive; then,
two nodes (1 and 2) crash; then, 3 crashes; next, 1 and 2 recover; then 2,
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Figure 4.6: Cluster-State Sequences. The figure shows the possible cluster
states for a five-node cluster and how cluster-state sequences are generated. One
example cluster-state sequence is traced.

4, 5 crash; 3 recovers; finally, 2, 4, 5 recover. To generate a sequence, we
start from the root state where all nodes are alive. We visit a child with a
probability that decreases with the length of the path constructed so far,
and the difference in the number of alive nodes between the parent and
the child. We produced 1264 such sequences (498 and 766 for a 5-node
and 7-node cluster, respectively).

The cluster-state sequences help test multiple update and recovery
code paths in Saucr. For example, in the above sequence, 12345 would
first operate in fast mode; then 345 would operate in slow mode; then
1245 would operate in fast mode; 1 would flush to disk on detecting that
other nodes have crashed; in the penultimate state, 3 would recover from
a slow-mode crash; in the last state, 2, 4, and 5 would recover from a fast-
mode crash.

Within each sequence, at each intermediate cluster state, we insert
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new items if possible (if a majority of nodes do not exist, we cannot in-
sert items). 12345a → 345b → 45 → 1245c → 1 → 13 → 12345d shows
how entries a-d are inserted at various stages. In the end, the framework
reads all the acknowledged items. If the cluster does not become avail-
able and respond to the queries, we flag the sequence as unavailable for
the system under test. If the system silently loses the committed items,
then we flag the sequence as data loss.

We subject the following four systems to the cluster-crash sequences:
memory-durable ZK (ZooKeeper with the forceSync flag turned off), VR
(viewstamped replication), disk-durable ZK (ZooKeeper with forceSync
turned on), and finally Saucr. Existing VR implementations [230] do not
support a read/write interface, preventing us from directly applying our
crash-testing framework to them. Therefore, we developed an ideal model
of VR that resembles a perfect implementation.

Non-simultaneous Crashes

We first test all sequences considering that failures are non-simultaneous.
For example, when the cluster transitions from 12345 to 345, we crash
nodes 1 and 2 one after the other (with a gap of 50 ms). Table 4.2 shows the
results. As shown, the memory-durable ZK loses data in about 50% and
40% of the cases in the 5-node and 7-node tests, respectively. The ideal
VR model does not lose data; however, it leads to unavailability in about
90% and 75% of the cases in the 5-node and 7-node tests, respectively. As
expected, disk-durable ZooKeeper is safe. In contrast to memory-durable
ZK and VR, Saucr remains durable and available in all cases. Because
failures are non-simultaneous in this test, the leader detects failures and
switches to slow mode; similarly, the followers quickly flush to disk if the
leader crashes, leading to correct behavior.
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ZK-mem 5 498 248 0 250 n/a 498 248 0 250
7 766 455 0 311 n/a 766 455 0 311

VR-ideal 5 498 28 470 0 n/a 498 28 470 0
7 766 189 577 0 n/a 766 189 577 0

ZK-disk 5 498 498 0 0 n/a 498 498 0 0
7 766 766 0 0 n/a 766 766 0 0

Saucr
5 498 498 0 0 other 475 475 0 0

!min-
rec 23 0 23 0

7 766 766 0 0 other 725 725 0 0
!min-

rec 41 0 41 0

Table 4.2: Durability and Availability. The table shows the durability and
availability of memory-durable ZK (ZK-mem), VR (VR-ideal), disk-durable ZK
(ZK-disk), and Saucr. !min-rec denotes that only less than a bare minority are
in recovered state.

Simultaneous Crashes

We next assume that failures are simultaneous. For example, if the clus-
ter state transitions from 124567 to 12, we crash all four nodes at the same
time, without any gap. Note that during such a failure, Saucr would be
operating in fast mode and suddenly many nodes would crash simulta-
neously, leaving behind less than a bare minority. In such cases, less than
a bare minority would be in the recovered state; Saucr cannot handle such
cases. Table 4.2 shows the results. As shown, memory-durable ZK loses
data in all cases in which it lost data in the non-simultaneous test. This
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Figure 4.7: Micro-benchmarks. (a) and (b) show the update throughput on
memory-durable ZK, Saucr, and disk-durable ZK on HDDs and SSDs, respec-
tively. Each request is 1KB in size. The number on top of each bar shows the
performance normalized to that of memory-durable ZK.

is because memory-durable ZK loses data, irrespective of the simultane-
ity of the crashes. Similarly, VR is unavailable in all the cases where it
was unavailable in the non-simultaneous crash tests. As expected, disk-
durable ZK remains durable and available. Saucr remains unavailable in
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a few cases by its design.

4.4.2 Performance

We conducted our performance experiments on two clusters (cluster-1:
HDD, cluster-2: SSD), each with five machines. The HDD cluster has
a 10-Gbps network, and each node is a 20-core Intel Xeon CPU E5-2660
machine with 256 GB memory running Linux 4.4, with a 1-TB Seagate
ST1200MM0088 HDD. The SSD cluster has 10-Gbps network, and each
node is a 20-core Intel E5-2660 machine with 160 GB memory running
Linux 4.4, with a 480-GB Intel SSDSC2BB480G7K SSD. Numbers reported
are the average over five runs.

Update Micro-benchmark

We now compare Saucr’s performance against memory-durable ZK and
disk-durable ZK. We conduct this experiment for an update-only micro-
benchmark.

Figure 4.7(a) and (b) show the results on HDDs and SSDs, respectively.
As shown in the figure, Saucr’s performance is close to the performance of
memory-durable ZK (overheads are within 9% in the worst case). Note
that Saucr’s performance is close to memory-durable ZK but not equal;
this small gap exists because, in the fast mode, Saucr commits a request
only after four nodes (majority + 1) acknowledge, while memory-durable
ZK commits a request after three nodes (a bare majority) acknowledge.
Although the requests are sent to the followers in parallel, waiting for ac-
knowledgment from one additional follower adds some delay. Compared
to disk-durable ZK, as expected, both memory-durable ZK and Saucr are
significantly faster. On HDDs, they are about 100× faster. On SSDs, how-
ever, the performance gap is less pronounced. For instance, with a sin-
gle client, memory-durable ZK and Saucr are only about 2.1× faster than
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disk-durable ZK. We found that this inefficiency arises because of soft-
ware overheads in ZooKeeper’s implementation that become dominant
atop SSDs.

YCSB Workloads

We now compare the performance of Saucr against memory-durable ZK
and disk-durable ZK across the following six YCSB [63] workloads: load
(all writes), A (w:50%, r:50%), B (w:5%, r:95%), C (only reads), D (read
latest, w:5%, r:95%), F (read-modify-write, w:50%, r:50%). We use 1KB
requests.

Figure 4.8(a) and (b) show the results on HDDs and SSDs, respectively.
For all workloads, Saucr closely matches the performance of memory-
durable ZK; again, the small overheads are a result of writing to one
additional node. For write-heavy workloads (load, A, F), Saucr’s perfor-
mance overheads are within 4% to 9% of memory-durable ZK. For such
workloads, memory-durable ZK and Saucr perform notably better than
disk-durable ZK (about 100× and 2.5× faster on HDDs and SSDs, respec-
tively). For workloads that perform mostly reads (B and D), Saucr’s over-
heads are within 1% to 4% of memory-durable ZK. For such read-heavy
workloads, memory-durable ZK and Saucr are about 25× and 40% faster
than disk-durable ZK on HDDs and SSDs, respectively. For the read-only
workload (C), all three systems perform the same on both HDDs and SSDs
because reads are served only from memory.

Performance Under Failures

In all our previous performance experiments, we showed how Saucr per-
forms in its fast mode (without failures). When failures arise and if only
a bare majority of nodes are alive, Saucr switches to the slow mode un-
til enough nodes recover. Figure 4.9 depicts how Saucr detects failures
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Figure 4.8: Macro-benchmarks. The figures show the throughput under var-
ious YCSB workloads for memory-durable ZK, Saucr, and disk-durable ZK for
eight clients. The number on top of each bar shows the performance normalized
to that of memory-durable ZK.

and switches to slow mode when failures arise. However, when enough
nodes recover from the failure, Saucr switches back to fast mode.
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Figure 4.9: Performance Under Failures. The figure shows Saucr’s perfor-
mance under failures; we conduct this experiment with eight clients running an
update-only workload on SSDs.

4.4.3 Heartbeat Interval vs. Performance

Saucr uses heartbeats to detect failures. We now examine how varying
the heartbeat interval affects workload performance. Intuitively, short
and aggressive intervals would enable quick detection but lead to worse
performance. Short intervals may degrade performance for two reasons:
first, the system would load the network with more packets; second, the
Saucr nodes would consider a node as failed upon a missing heartbeat-
/response when the node was merely slow and thus react spuriously by
flushing to disk or switching to slow mode.

To tackle the first problem, when replication requests are flowing ac-
tively, Saucr treats the requests themselves as heartbeats; further, we no-
ticed that even when the heartbeat interval is lower than a typical replication-
request latency, the additional packets do not affect the workload perfor-
mance significantly. The second problem of spurious reactions can affect
performance.

For the purpose of this experiment, we vary the heartbeat interval
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Figure 4.10: Heartbeat Interval vs. Performance. The figure shows how
varying the heartbeat interval affects performance. The left y-axis shows the av-
erage number of flushes issued by a follower per second or the average number of
requests committed in slow mode by the leader per second. We measure the per-
formance (right y-axis) by varying the heartbeat interval (x-axis). We conduct
this experiment with eight clients running the YCSB-load workload on SSDs.

from a small (and unrealistic) value such as 1 µs to a large value of 1
second. We measure three metrics: throughput, the number of requests
committed in slow mode (caused by the leader suspecting follower fail-
ures due to a missing heartbeat response), and the number of flushes is-
sued by a follower (caused by followers suspecting a leader failure due
to a missing heartbeat). Figure 4.10 shows the result. As shown, when
the interval is equal to or greater than 1 ms, the workload performance
remains mostly unaffected. As expected, with such reasonably large in-
tervals, even if the nodes are slow occasionally, the likelihood that a node
will not receive a heartbeat or a response is low; thus, the nodes do not re-
act spuriously most of the times. As a result, only a few spurious flushes
are issued by the followers, and very few requests are committed in slow
mode. In contrast, when the interval is less than 1 ms, the Saucr nodes
react more aggressively, flushing more often and committing many re-
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quests in slow mode, affecting performance. In summary, for realistic in-
tervals of a few tens of milliseconds (used in other systems [81]) or even
for intervals as low as 1 ms, workload performance remains unaffected.

Finally, although the nodes react aggressively (with short intervals),
they do not declare a node as failed because there are no actual failures
in this experiment. As a result, we observe that the leader does not step
down and the followers do not run for an election.

4.4.4 Correlated Failure Reaction

We now test how quickly Saucr detects and reacts to a correlated failure
that crashes all the nodes. On such a failure, if at least a bare minority of
nodes flush the data to disks before all nodes crash, Saucr will be able to
provide availability and durability when the nodes later recover. For this
experiment, we use a heartbeat interval value of 50 ms. We conduct this
experiment on a five-node cluster in two ways.

First, we crash the active leader and then successively crash all the
followers. We vary the time between the individual failures and observe
how many followers detect and flush to disk before all nodes crash. For
each failure-gap time, we run the experiment five times and report the
average number of nodes that safely flush to disk. Figure 4.11 shows the
result: if the time between the failures is greater than 30 ms, then at least
a bare minority of followers always successfully flush the data, ensuring
availability and durability.

Second, we crash the followers, one after the other. In this case, the
leader detects the failures and switches to slow mode. As shown in the
figure, if the time between the individual failures is greater than 50 ms,
the system will be available and durable after recovery. As we discussed
earlier (§4.1.3), in a real deployment, the time between individual fail-
ures is almost always greater than 50 ms; therefore, in such cases, with a
heartbeat interval of 50 ms, Saucr will always remain safe.
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Note that we run this experiment with a 50-ms heartbeat interval;
shorter intervals (such as 1 ms used in Figure 4.10) will enable the sys-
tem to remain durable and available (i.e., a bare minority or more nodes
would safely flush or switch to slow mode) even when the failures are
only a few milliseconds apart.

4.5 Discussion

We now discuss two concerns related to Saucr’s adoption in practice. First,
we examine whether Saucr will offer benefits with the advent of faster
storage devices such as non-volatile memory (NVM). Second, we discuss
whether applications will be tolerant of having low throughput when
Saucr operates in slow mode.
Faster Storage Devices. The reliability of memory-durable approaches
can be significantly improved if every update is forced to disk. However,
on HDDs or SSDs, the overhead of such synchronous persistence is pro-
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hibitively expensive. New storage devices such as NVMe-SSDs and NVM
have the potential to reduce the cost of persistence and thus improve reli-
ability with low overheads. However, even with the advent of such faster
storage, we believe Saucr has benefits for two reasons.

First, although NVMe-SSDs are faster than HDDs and SSDs, they are
not as fast as DRAM. For example, a write takes 30 µs on Micron NVMe-
SSDs which is two orders of magnitude slower than DRAM [57] and thus
Saucr will have performance benefits compared to NVMe-SSDs. While
NVM and DRAM exhibit the same latencies for reads, NVM writes are
more expensive (roughly by a factor of 5) [122, 234]. Further, writing a
few tens of kilobytes (as a storage system would) will be slower than pub-
lished numbers that mostly deal with writing cachelines. Hence, even
with NVMs, SAUCR will demonstrate benefit.

Second, and more importantly, given the ubiquity of DRAM and their
lower latencies, many current systems and deployments choose to run
memory-only clusters for performance [50, 126], and we believe this trend
is likely to continue. Saucr would increase the durability and availabil-
ity of such non-durable deployments significantly without affecting their
performance at no additional cost (i.e., upgrading to new hardware).
Low Performance in Slow Mode. Another practical concern regarding
Saucr’s use in real deployments is that of the low performance that ap-
plications may experience in slow mode. While Saucr provides low per-
formance in slow mode, we note that this trade-off is a significant im-
provement over other existing methods that can either lead to permanent
unavailability or lose data. Further, in a shared-storage setting, we be-
lieve many applications with varying performance demands will coex-
ist. While requests from a few latency-sensitive applications may time
out, Saucr allows other applications to make progress without any hin-
drance. Furthermore, in slow mode, only update requests pay the per-
formance penalty, while most read operations can be served without any



116

overheads (i.e., at about the same latency as in the fast mode). Finally, this
problem can be alleviated with a slightly modified system that can be re-
configured to include standby nodes when in slow mode for a prolonged
time. Such reconfiguration would enable the system to transition out of
the slow mode quickly.

4.6 Summary and Conclusions

Fault-tolerant replication protocols are the foundation upon which many
data-center systems and applications are built. Such a foundation needs
to perform well, yet also provide a high level of reliability. Existing repli-
cation approaches statically fix how updates will be committed: they al-
ways update and recover in a constant way, regardless of the situation.
This situation-obliviousness leads to poor performance or reliability.

In this chapter, we presented situation-aware updates and crash re-
covery (Saucr), a new approach to replication within a distributed sys-
tem. Saucr reacts to failures and adapts to current conditions, improving
durability and availability while maintaining high performance.

We implemented a prototype of Saucr in ZooKeeper. Through a se-
ries of robustness test, we showed that Saucr provides improved dura-
bility and availability compared to memory-durable approaches. Saucr’s
reliability improvements come at low cost: Saucr’s overheads are within
0%-9% of memory-durable ZooKeeper across six different YCSB work-
loads. Compared to the disk-durable ZooKeeper, with a slight reduc-
tion in availability in rare cases, SAUCR improves performance by 25×
to 100× on HDDs and 2.5× on SSDs. We believe such a situation-aware
distributed update and recovery protocol can serve as a better foundation
upon which reliable and performant systems can be built.

We conclude by making two broad remarks about the work presented
in this chapter. First, our design of Saucr emphasizes the importance of
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paying careful attention to how actual failures occur and using those in-
sights to design systems. This way of thinking about systems design can
result in solutions that offer properties that seem to be at odds with each
other. In Saucr, our attention to how correlated failures arise in data cen-
ters yielded a dynamic replication scheme that provides both high perfor-
mance and strong reliability to crashes. Next, our design of Saucr shows
that hybrid approaches, which we believe is an effective systems-design
technique in general, is a good choice for distributed updates and recov-
ery too. We believe it may be worthwhile to look at other important pro-
tocols and systems where such hybrid approaches may be suitable.
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5
File-system Crash Behaviors in

Distributed Systems

In this chapter, we analyze the effects of file-system crash behaviors on
modern distributed storage systems. When a node recovers from a crash,
the common expectation is that the data stored by the node would be re-
coverable. Unfortunately, as we discussed (§2.3.3), the local file system
(which the node uses to store user data) complicates this situation. We
examine if and how such file-system crash behaviors affect distributed
storage systems. We perform our study under a special type of corre-
lated failure scenario in which all replicas of a particular data shard crash
together and recover at a later point.

To reason about the persistent states that can arise on the nodes during
such a failure, we develop Pace. Pace models local file systems at individ-
ual replicas using an abstract persistence model (APM). Pace uses protocol-
specific knowledge to reduce the exploration state space by systematically
choosing a subset of nodes to introduce file-system crash behaviors mod-
eled by the APM. We applied Pace to eight distributed storage systems
and discovered 26 new vulnerabilities that have severe consequences such
as data loss and unavailability. This chapter is based on the paper, Corre-
lated Crash Vulnerabilities, published in OSDI 16 [12].

We first discuss the failure model that we consider and explain the
global persistent states across nodes that we intend to capture (§5.1). We
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then describe the design of Pace and show how it uses a set of generic
rules to prune the state space (§5.2). Next, we present a detailed study of
the vulnerabilities that we found using Pace (§4.3). We then discuss how
the discovered vulnerabilities can be potentially fixed (§5.4). Finally, we
summarize and conclude (§5.5).

5.1 Studying the Effects of File-system Crash
Behaviors

In this section, we first describe the failure model that we consider and
build arguments for why the considered failure model is important. Next,
we explain the system states we explore to find if a distributed storage
system has vulnerabilities.

5.1.1 Failure Model

Components in a distributed system can fail in various ways [98]. Most
practical systems do not handle Byzantine failures [131] where individual
components may give conflicting information to different parts of the sys-
tem. However, they handle fail-recover failures [98] where components
can crash at any point in time and recover at any later point in time af-
ter the cause of the failure has been repaired. When a node crashes and
recovers, all its in-memory state is lost; the node is left only with its per-
sistent state. Our study considers only such fail-recover failures.

File-system Crash Behaviors

When a node recovers from a crash, it can encounter many possible persis-
tent states depending upon the file system used by the node. We explain
such persistent states that can arise at a node using Figure 5.1. The fig-
ure shows the file-system operations on a single node P (which is a part
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write(fd, “foo”, 3)

Node P

# State P
2

write(fd, “baz”, 3)
# State P

1

# State Pɸ

Figure 5.1: Persistent States in a Single Node. The figure shows file-system
operations and the persistent states on a single node in a distributed system.

of a distributed system). As shown, the node performs two write opera-
tions to a file. For now, assume the file system at P is synchronous (i.e.,
operations are persisted in order and immediately to the disk). If a crash
occurs, there are only three possible persistent states that can arise when
the node recovers from the crash: Pφ (the node crashed before the first
write), P1 (the node crashed after the first write but before the second), or
P2 (the node crashed after the second write).

In reality, however, most modern file systems buffer the writes issued
by the node. Depending on which exact file system and mount options
are in use, the file system may reorder some (or many) updates [28, 181].
With this asynchrony and reordering introduced by the file system, it is
possible for the second write baz to reach the disk before the first write
foo. Thus, when P recovers from the crash, it may find itself in a persistent
state where the effects of second write are present but not the first.

The reordering of writes by the file system, as explained above, is well
understood by experienced developers. To avoid such reordering, devel-
opers force writes to disk by carefully issuing fsync on a file as part of the
update protocol. Although some common behaviors such as reordering
of writes are well understood, there are subtle behaviors that application
developers find hard to reason about. For example, the following subtle
behavior is not well documented: if a crash happens when appending a
single block of data to a file in ext4 writeback mode, the file may contain
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garbage on reboot. Thus, in our example, upon such a file system, if the
first write spans a block and if P crashes during the write, then it may see
that the file is filled with garbage upon recovery.

Recent research has discovered that such behaviors of file systems af-
fect the correctness of single-machine applications, causing them to cor-
rupt or lose user data [9, 181]. Distributed storage systems also face the
same problem as each replica uses its local file system to store user data,
and untimely crashes may leave the node in an inconsistent state. How-
ever, distributed systems have more opportunities for recovery as redun-
dant copies of data exist on other nodes.

Correlated Crashes

Note that our previous discussion about Figure 5.1 explains about the
states that are possible on a single node in the distributed system. This is
how one individual node crashes and recovers; other nodes may continue
to function and make progress. However, we focus on a much restricted
failure scenario in this study. Specifically, we aim to analyze the effects
of file-system crash behaviors under a special correlated crash scenario
where all replicas of a particular shard of data fail together and none of the
replicas react to the failure as they are occurring. During such a failure,
the local file systems may produce unexpected states at one or more nodes
in the distributed system.

Our failure model is not intended to reason about scenarios where
only a subset of replicas of a particular data shard crash and recover by
themselves. Also, the vulnerabilities we find with our correlated failure
model do not apply to a geo-replicated setting; in such a setting, con-
scious decisions place replicas such that one power failure cannot affect
all replicas at the same time. While correlated failures are less problem-
atic in such settings, the storage systems we examine in this study are
heavily tested, and the common expectation is that these systems should
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be reliable irrespective of how they are deployed and the probability of
failures. Further, many deployments are not geo-replicated and thus may
expect strong guarantees even in the presence of correlated crashes. Over-
all, crash-correctness should be deeply ingrained in these systems regard-
less of deployment decisions.

5.1.2 Distributed Crash States

Now we explain the global system states that result due to correlated
crashes and file-system crash behaviors. As we explained, after a crash
and subsequent reboot, a node is left only with its persistent data. The
focus of our study is in checking only the resulting persistent states when
failures happen. The global states that we capture are similar to dis-
tributed snapshots [51] described by Chandy and Lamport. The main
difference between a generic distributed snapshot and a global persis-
tent state is that the latter consists only of the on-disk state and not the
in-memory state of the machines. Moreover, since network channels do
not affect persistent on-disk state, our global persistent states do not keep
track of them.

To understand the persistent states that we capture, consider a cluster
of three machines named A, B, and C. Assume that the initial persistent
states of these machines are Aφ, Bφ, and Cφ, respectively. Assume that a
workloadW run on this cluster transitions the persistent states to Af, Bf,
and Cf, respectively. For instance,W could be a simple workload that in-
serts a new key-value pair into a replicated key-value store running onA,
B, and C. Notice that the persistent state of all nodes goes through a tran-
sition before arriving at the final states Af, Bf, and Cf. A correlated crash
may happen at any time while W runs, and after a reboot, the persistent
state of a node Xmay be any intermediate state between Xφ and Xf where
X can be A, B, or C. For simplicity, we refer to this collection of persistent
states across all nodes as global persistent state or simply global state. If
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Figure 5.2: A Simple Distributed Protocol. The figure shows a simple
distributed protocol. Annotations show the persistent state after performing each
operation. Dash dot lines show different cuts.

a particular global state G can occur in an execution, we call G a reachable
global state.

The reachability of a global state depends on two factors: the order in
which messages are exchanged between nodes and the local file systems
of the nodes. To illustrate the first factor, consider a distributed protocol
shown in Figure 5.2. In this protocol, node P starts by sending message
M1, then writes foo and baz to a file, and then sends another message M2 to
nodeQ. NodeQ receives M1 and M2 and then writes bar to a file. Assume
that the file system at P and Q is synchronous.

Assume that the initial persistent state of Pwas Pφ andQwasQφ. Af-
ter performing the first and second write, P moves to P1 and P2, respec-
tively. Similarly, Q moves to Q1 after performing the write. Notice that
< Pφ,Qφ > is a reachable global persistent state as P could have crashed
before writing to the file andQ could have crashed before or after receiv-
ing the first message. Similarly, < P2,Q1 > and < P2,Qφ > are globally
reachable persistent states.

In contrast, < Pφ,Q1 > and < P1,Q1 > are unreachable persistent
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states as it is not possible for Q to have updated the file without P send-
ing the message to it. Intuitively, global states that are not reachable in an
execution are logically equivalent to inconsistent cuts in a distributed sys-
tem [30]. For example, < Pφ,Q1 > and < P1,Q1 > are inconsistent cuts
because the recv of M2 is included in the cut but the corresponding send is
excluded from the cut. Also, network operations such as send and recv
do not affect the persistent state. For example, the three different cuts
shown in Figure 5.2 map onto the same persistent state < Pφ,Qφ >.

Next, we consider the fact that the local file systems at P and Q also
influence the global states. For example, with the reordering introduced
by the file system at P, it is possible for the second write baz to reach the
disk before the first write foo. Also, it is possible for P to crash after baz
is persisted and the message is sent toQ, but before foo reaches the disk.
In such a state of P, it is possible forQ to have either reached its final state
Q1 or crash before persisting bar and so remain in Qφ. All these states
are globally reachable.

5.2 Protocol-Aware Crash Explorer

To examine if distributed storage systems violate user-level guarantees,
we build a generic crash exploration framework, Pace. Pace systematically
generates persistent states that can occur in a distributed execution in
the presence of correlated crashes. Pace then uses an abstract persistence
model to introduce file-system crash behaviors on one or more nodes.
Some vulnerabilities that we discover are exposed only if a particular file-
system operation is reordered on all replicas while some vulnerabilities
are exposed even when the reordering happens on a single replica. Using
observations from how vulnerabilities are exposed and a little knowledge
about the distributed protocol, we make our exploration protocol-aware.
Using this awareness, Pace can prune the search space while finding as
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many vulnerabilities as a brute-force search. To explain how protocol-
aware exploration works, we first describe the design of our crash explo-
ration framework.

5.2.1 Design and Implementation Overview

Pace is easy to use and can be readily applied to any distributed storage
system. Pace needs a workload script and a checker script as inputs. An
example workload and checker are shown in Listing 5.1. For many mod-
ern distributed systems, a group of processes listening on different ports
can act as a cluster. For systems that do not allow this convenience, we
use a group of Docker [75] containers on the same machine to serve as the
cluster. In either case, Pace can test the entire system on a single machine.
Pace is implemented in around 5500 lines of code in Python.

Figure 5.3 shows a typical workflow of Pace. To begin, Pace starts the
cluster with system call tracing, runs the workload, and then stops the
cluster after the workload is completed. Pace parses the traces obtained
and identifies cross node dependencies such as a send on one node and
the corresponding recv on some other node. After the traces are parsed
and cross node dependencies established, Pace replays the trace to gen-
erate different persistent crash states that can occur in the traced execu-
tion. A system-specific checker script is run on top of each crash state; the
checker script asserts whether user-level guarantees (e.g., committed data
should not be corrupted or lost) hold. Any violations in such assertions
are reported as vulnerabilities. We next discuss what correlated crash
states can occur in a distributed execution and how we generate them.

5.2.2 Crash States

We use a running example of a ZooKeeper cluster executing an update
workload for further discussion. Pace produces a diagrammatic repre-
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Cluster Initial State

Workload

FS + Network ops

Tracing    Parsing

PACE Rules FS APM

Explorer

Crash state #1 Crash state #n
. . .

Replayer

Checker

        Vulnerabilities

Corruption 
Redis/aof.c:X 
Atomic append 

Data loss 
ZooKeeper/FileTxnLog.java:Y 
Safe file flush 

Unavailability 
LogCabin/SegmentedLog.cc:Z 
Inter-syscall atomicity

Figure 5.3: PACE Workflow. The figure shows Pace’s workflow. First, Pace
traces a workload on an initial cluster state, capturing file-system and network
operations. Pace imposes the file system behavior through the FS APMs. Then,
it uses its exploration rules to produce many distributed crash states. Finally,
each distributed crash state is verified by a checker which restarts the cluster from
the crash state and performs various checks (e.g., are committed data items avail-
able?). If the checker finds a violation, it reports them as vulnerabilities, pointing
to the source-code lines responsible for the vulnerability.
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Figure 5.4: ZooKeeper Protocol for an Update Workload. The figure
shows the sequence of steps when the client interacts with the ZooKeeper cluster.
The workload updates a value. The client prints to stdout once the update request
is acknowledged.

sentation of the update protocol, as shown in Figure 5.4.
First, the client contacts the leader in the ZooKeeper cluster. The leader

receives the request and orchestrates the atomic broadcast protocol among
its followers as shown by send and recv operations and careful updates
to the file system (write and fdatasync on a log file that holds user data).
Finally, after ensuring that the updated data is carefully replicated and
persisted, the client is acknowledged. At this point, it is guaranteed that
the data will be consistent and durable.
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Note that each node runs multiple threads, and the figure shows the
observed order of events when the traces were collected. If arbitrary de-
lays were introduced, the order may or may not change, but this observed
order is one schedule among all such possible schedules.

We reiterate here that Pace captures crash states that occur due to a
correlated failure where all replicas fail together. Pace is not intended to
reason about partial crashes where only a subset of replicas crash.

Globally Reachable Prefixes.

Assume that all nodes shown in Figure 5.4 start with persistent state Xφ
where X is the node identifier with L for leader, C for client, and so forth.
MXYi is the ith message sent by X to Y. All operations that affect persistent
state are annotated with the persistent state to which the node transitions
by performing that operation. For example, the leader transitions to state
L1 after the first write to a file. The total set of global persistent states is
the cross product of all local persistent states. Precisely, the total set is the
cross product of the sets {Cφ,C1}, {Lφ,L1,L2,L3,L4}, {Pφ,P1,P2,P3,P4} and
{Qφ,Q1,Q2,Q3,Q4}. However, some of the global states in this resultant
set cannot occur in the distributed execution. For example, < Cφ,L2, P2,
Q1 > is an inconsistent cut and cannot occur as a global state since it is not
possible for Q to receiveMPQ3 before P reaches P3 and then sendsMPQ3.

We refer to a global state that is reachable in this trace as a globally
reachable persistent prefix or simply globally reachable prefix. We call this
a prefix as it is a prefix of the file-system operations within each node.

Previous work [181] has developed tools to uncover single-machine
crash vulnerabilities. Such tools trace only file-system related system calls
and do not trace network operations. Hence, they cannot capture depen-
dencies across different nodes in a distributed system. Such tools cannot
be directly applied to distributed systems; if applied, they may generate
states that may not actually occur in a distributed execution and thus can
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report spurious vulnerabilities. On the other hand, Pace captures all cross
node dependencies and so generates only states that can occur in a dis-
tributed execution.

File-system Persistence Models.

Generating globally reachable prefixes does not require any knowledge
about how a particular file system persists operations. As we discussed,
file systems exhibit important behaviors with respect to how operations
are persisted. We borrow the idea of abstract persistence model (APM) from
our previous work [181] to model the file system used by each node.

An APM specifies all constraints on the atomicity and ordering of
file-system operations for a given file system, thus defining which crash
states are possible. For example, in an APM that specifies the ext2 file
system, appends to a file can be reordered and the rename operation can
be split into smaller operations such as deleting the source directory en-
try and creating the target directory entry. In contrast, in the ext3 (data-
journaling) APM, appends to a file cannot be reordered, and the rename
operation cannot be split into smaller operations. An APM for a new file
system can be easily derived using the block order breaker (Bob) tool [181].

Pace considers all consistent cuts in the execution to find globally reach-
able prefixes. On each such globally reachable prefix, Pace applies the
APM (that specifies what file-system specific crash states are possible) to
produce more states. The default APM used by Pace has few restrictions
on the possible crash states. Intuitively, our default APM models a file
system that provides the least guarantees when crashes occur but is still
POSIX compliant. For simplicity, we refer to file-system related system
calls issued by the application as logical operations and the smaller opera-
tions into which each logical operation is broken down as micro operations.
We now describe our default APM.
Atomicity of operations. Applications may require a single logical oper-
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ation such as append or overwrite to be atomically persisted for correctness.
In the default APM used by Pace, all logical operations are broken into the
following micro operations: write_block, change_size, create_dir_entry, and
delete_dir_entry. For example, a logical truncate of a file will be broken into
change_size followed by write_block(random) followed by write_block(zeroes).
Similarly, a rename will be broken into delete_dir_entry(dest) + truncate if
last link followed by create_dir_entry(dest) followed by delete_dir_entry(src).
Overwrites, truncates, and appends are split into micro operations aligned
at the block boundary or simply into three micro operations. Pace can
generate crash states corresponding to different intermediate states of the
logical operation.
Ordering between operations. Applications may require that a logical
operation A be persisted before another logical operation B for correct-
ness. To reorder operations, Pace considers each pair of operations (A,
B) and applies all operations from the beginning of the trace until B ex-
cept for A. This reordering produces a state corresponding to the situation
where the node crashes after all operations up to B have been persisted
but A is still not persisted. The ordering constraint for our default APM
is as follows: all operations followed by an fsync on a file or directory F
are ordered after the operations on F that precede the fsync.

We now describe how applying an APM produces more states on a
single machine. Consider the ZooKeeper protocol in which < Cφ, L1, P2,
Qφ > is a globally reachable prefix. P has moved to P2 by applying two
write operations starting from its initial state Pφ. On applying the default
APM onto the above prefix, Pace recognizes that on node P it is possible
for the second write to reach the disk before the first one (by considering
different ordering between two operations). Hence, it can reorder the first
write after the second write on P. This resultant state is different from
the prefix. In this resultant state, after recovery, P will see a file-system
state where the second write to the log is persisted, but effects of the first
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write are missing. If there were an fsync or fdatasync after the first write,
then the default APM cannot and will not reorder the two write opera-
tions. This reordering is within a single node; similar reorderings can be
exercised on all nodes.

Depending on the APM specification, logical operations can be par-
tially persisted or reordered or both at each node in the system. Intu-
itively, applying an APM on a global prefix relaxes its constraints. This
relaxation allows the APM to partially persist logical operations (atomic-
ity) or reorder logical operations with one another (ordering). We refer to
the relaxations allowed by an APM as APM-allowed relaxations or simply
APM relaxations. For simplicity, we refer to this process of relaxing the
constraints (by reordering and partially persisting operations) as apply-
ing that particular relaxation.

Pace can be configured with any APM. We find the most vulnerabilities
with our default and ext2 APMs. We also report the vulnerabilities when
Pace is configured with APMs of other commonly used file systems.

5.2.3 Protocol-Aware Exploration

While applying relaxations on a single node results in many persistent
states for that node, Pace needs to consider applying different relaxations
across every combination of nodes to find vulnerabilities. As a conse-
quence, there are several choices for how Pace can apply relaxations. Con-
sider a five node cluster and assume that n relaxations are possible in one
node. Then, assuming there are no cross node dependencies, there are(5

1
)
∗ n +

(5
2
)
∗ n2 +

(5
3
)
∗ n3 +

(5
4
)
∗ n4 +

(5
5
)
∗ n5 ways of combining the

relaxations across nodes. Even for a moderate n such as 20, there are
close to 4 million states. A brute-force approach would explore all such
states. We now explain how Pace prunes this space by using knowledge
about the distributed protocols (such as agreement and leader election)
employed by a system.
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1    creat(v/log)
2   append(v/log, 16)
3   trunc(v/log, 16399)
4   append(v/log, 1)
5   write(v/log, 49)
6   fdatasync(v/log)
7   write(v/log, 12)
8   write(v/log, 16323)
9   append(v/log, 4209)
10 append(v/log, 1)

11 fdatasync(v/log)
12 ACK Client

1    creat(v/log)
2   append(v/log, 16)
3   trunc(v/log, 16399)
4   append(v/log, 1)
5   write(v/log, 49)
6   fdatasync(v/log)
7   write(v/log, 12)
8   write(v/log, 16323)
9   append(v/log, 4209)
10 append(v/log, 1)
11   fdatasync(v/log)
12  ACK Client

(a) (b)

Figure 5.5: Local File-system Update Protocol on a Single ZooKeeper
Node. The figure shows the sequence of file-system operations on a single
ZooKeeper node. Operations 1 through 6 happen on node initialization and op-
erations 7 through 12 when the client starts interacting. Several operations that
happen on initialization are not shown for clarity. (a) and (b) show two different
crash scenarios.

Replicated State Machine Approaches

We use the same ZooKeeper traces shown in Figure 5.4 for this discus-
sion. For simplicity, we assume that there are odd number of nodes in
the system.

ZooKeeper implements an atomic broadcast protocol which is required
to run a replicated state machine (RSM) [112, 175, 205]. There are vari-
ous paradigms to implement an RSM some of which include Paxos [130],
Raft [175], and atomic broadcast [66]. Google’s Chubby [44] implements a
Paxos-like algorithm and LogCabin [144] implements Raft. An RSM sys-
tem as a whole should continue to make progress as long as a majority of
the nodes are operational and can communicate with each other and the
clients [175].
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Figure 5.5(a) shows the file-system operations on a single ZooKeeper
node; network operations are not shown for clarity. The tenth operation
appends one byte to the log to denote the commit of a transaction after
which the file is forced to disk by the fdatasync call. It is possible for the
tenth operation to reach the disk before the ninth operation and a crash
can happen at this exact point before the fdatasync call. After this crash
and subsequent restart, ZooKeeper would fail to start as it detects a check-
sum mismatch for the data written, and the node becomes unusable. The
same reordering can happen on all nodes, rendering the entire cluster
unusable.

In the simple case where this reordering happens on only one node,
even though that single node would fail to start, the other two nodes still
constitute a majority and so can elect a leader and make progress. Pace
uses this knowledge about the protocol to eliminate testing cases where a
reordering happens on only one node. Also, it is unnecessary to apply the
relaxation on all three nodes as the cluster can become unavailable even
when the relaxation is applied on just a majority (any two) of the nodes.

As another example, consider the same protocol but with a different
crash that happens after the client is acknowledged, as shown in Fig-
ure 5.5(b). Once acknowledged, ZooKeeper guarantees that the data is
replicated and persisted to disk on a majority of nodes. The directory en-
try for the log file has to be persisted explicitly by performing an fsync on
the parent directory [5, 181] to ensure that the log file is present on disk
even after a crash. However, ZooKeeper does not fsync the parent direc-
tory, and so it is possible for the log file to go missing after a crash. On
a single node, if the log file is lost, it does not lead to user-visible global
data loss as the majority still has the log file. Similar to the unavailabil-
ity case, a global data loss can happen if the same reordering happens on
a majority of nodes even if the data exists on one other node where this
reordering did not happen.
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Thus, we observe that in any RSM system, it is required that a par-
ticular APM relaxation is applied on at least a majority of nodes for a
vulnerability to be exposed globally. Also, it is unnecessary to apply an
APM relaxation on all possible majority choices; for example, in a system
with five nodes, applying a relaxation on three, four, or five nodes (all
of which represent a majority) will expose the same vulnerability. This
knowledge is not system-specific but rather protocol-specific.
System-independent. LogCabin is a system similar to ZooKeeper that
provides a configuration store on top of the consensus module but uses
the Raft protocol to implement an RSM. When applying a particular APM
relaxation, LogCabin can lose data. For this data loss vulnerability to be
exposed, the relaxation has to be applied on at least a majority of the
nodes. This observation is not specific to a particular system; rather, it
holds true across ZooKeeper and LogCabin because both systems are
RSM protocol implementations.

Using our observation, we derive the following rule that helps Pace
eliminate a range of states: For any RSM system with N replicas, check only
states that would result when a particular APM relaxation is applied on an exact
majority (where exactly bn/2c+ 1 servers are chosen from n) of the nodes. Note
that there are

(
n

bn/2c+1
)

ways of choosing the exact majority.
We note that the pruning rule does not guarantee finding all vulner-

abilities. It works because it makes an important assumption: the base
consensus protocol is implemented correctly. Pace is not intended to catch
bugs in consensus protocol implementations.

We now make a further observation about RSM protocols that can fur-
ther reduce the state space. Consider the data loss vulnerability shown
in Figure 5.5(b). Surprisingly, sometimes a global data loss may not be
exposed even when the reordering happens on a majority. To see why
consider that the current leader (L) and the first follower (P) lose the log
file as the creat operation is not persisted before the crash. In this case,
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the majority has lost the file. On recovery, the possibility of global data
loss depends on who is elected as the leader the next time. Specifically, the
data will be lost, if either L or P is elected as the new leader. On the other
hand, if the second follower Q is elected as the leader, then the data will
not be lost. In effect, the data will be lost if a node that lost its local data
becomes the leader the next time, irrespective of the presence of the same
data on other nodes.

In Raft, on detecting an inconsistency, the followers are forced to du-
plicate the leader’s log (i.e., the log entries flow only outward from the
leader) [175]. This enforcement is required to satisfy safety properties
of Raft. While ZooKeeper’s atomic broadcast (ZAB) does not explicitly
specify if the log entries only flow outward from the leader, our experi-
ments show that this is the case. Previous work also supports our obser-
vation [175].

This brings a question that counters our observation: Why not apply the
relaxation on any one node and make it the leader during recovery? Consider
the reordering shown in Figure 5.5(b). If this reordering happens on one
node, that node will lose the log; it is not possible for this node to be
elected the leader as other nodes would notice that this node has missing
log entries and not vote for it. If this node is not elected the leader, then
local data loss would not result in global data loss.

In contrast, if the log is lost on two nodes, the two nodes still consti-
tute a majority, and so one of them can become the leader and therefore
override the data on the third node causing a global data loss. However,
it is possible for the third nodeQ, where the data was not lost, to become
the leader and so hide the global data loss.

Given this information, we observe that it is required only to check
states that result from applying a particular APM relaxation on any one
exact majority of the nodes. In a cluster of five nodes, there are

(5
3
)
= 10

ways of choosing an exact majority, and it is enough to check any one
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combination from the ten. To effectively test if a global vulnerability can
be exposed, we strive to enforce the following: when the cluster recovers
from a crashed state, if possible, the leader should be elected from the set of nodes
where the APM relaxation was applied. Sometimes the system may constrain
us from enforcing this; however, if possible, we enforce it automatically
to drive the system into vulnerable situations.

From the two observations, we arrive at two simple, system-independent,
and protocol-aware exploration rules employed by Pace to prune the state
space and effectively search for undesired behaviors:

• R1: For any RSM system withN servers where followers duplicate leader’s
log, generate states that would result if a particular APM relaxation is
applied on any exact majority of the servers.

• R2: For all states generated using R1, if possible, enforce that the leader is
elected from exact majority in which the APM relaxation was applied.

Since we did not see popular practical systems that use RSM approaches
where log entries can flow in both directions like in Viewstamped replica-
tion [140, 171] or where there can be multiple proposers at the same time
like in Paxos, we have not listed the rules for them.

Other Replication Schemes

Pace also handles replicated systems that do not use RSM approaches:
Redis, Kafka, and MongoDB. Applications belonging to this category do
not strictly require a majority for electing a leader and committing trans-
actions. For example, in Redis’ default configuration, the master is fixed
and cannot be automatically re-elected by a majority of slaves if the master
fails. Moreover, it is possible for the master to make progress without the
slaves. Similarly, Kafka maintains a metadata structure called the in-sync
replicas, and any node in this set can become the leader without consent
from the majority.
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Systems belonging to this category typically force slaves to sync data
from the master. Hence, any problem in the master can easily propa-
gate to the slaves. This hints that applying APM relaxations on the mas-
ter is necessary. Next, since our workloads ensure that the data is syn-
chronously replicated to all nodes, it is unacceptable to read stale data
from the slaves once an acknowledgment is received. This hints that ap-
plying APM relaxations on any slave and subsequent reads from the slave
can expose the stale data problem. Since systems of this type can make
progress even if one node is up, we need to apply APM relaxations on all
the nodes to expose cluster unavailability vulnerabilities.

For applications of this type, Pace uses a combination of the following
rules to explore the state space:

• R3: Generate states that result when a particular relaxation is applied on
the master.

• R4: Generate states that result when a particular relaxation is applied on
any one slave.

• R5: Generate states that result when a particular relaxation is applied on
all nodes at the same time.

In Redis, we use R3 and R4 but not R5: we use R3 to impose APM
relaxations only on the master because the cluster can become unavailable
for writes if only the master fails; we use R4 as reads can go to slaves.
Similarly, in Kafka, we useR3 andR5 and not R4: we do not useR4 because
all reads and writes go only through the leader; we use R5 to test states
where the entire cluster can become unavailable because the cluster will
be usable even if one node functions. MongoDB can be configured in
many ways. We configure it much like an RSM system where it requires
a majority for leader election and writes; hence, we use R1 and R2.
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Examining a new distributed system with Pace requires developers to
only understand whether the system implements a replicated state ma-
chine or not and how the master election works. Once this is known, Pace
can be easily configured with the appropriate set of pruning rules. We
believe that Pace can be readily helpful to developers given that they al-
ready know their system’s protocols. We reiterate that the pruning rules
do not guarantee finding all vulnerabilities; rather, they provide a set of
guidelines to quickly search for problems. In the worst case, if no prop-
erties are known about a protocol, Pace can work in brute-force mode to
find vulnerabilities.

Effectiveness of Pruning

To demonstrate the effectiveness of our pruning rules, we explored crash
states of Redis and LogCabin with Pace and the brute-force approach. In
Redis, for a simple workload on a three node cluster, brute-force needs to
check 11,351 states, whereas Pace only needs to check 1009 states. While
exploring 11× fewer states, Pace found the same three vulnerabilities as
the brute-force approach. In LogCabin, Pace discovers two vulnerabili-
ties, checking 27,713 states in eight hours; the brute-force approach did
not find any new vulnerabilities after running for over a week and explor-
ing nearly 900,000 states. The reduction would be more pronounced as
the number of nodes in a system increases.

5.2.4 Limitations and Caveats

We first note that Pace is not intended to catch bugs in distributed con-
sensus protocols. Specifically, it does not exercise reordering of network
messages to explore corner cases in consensus protocols; as we explain
later in the related work chapter, distributed model checkers attack this
problem. Pace’s intention is to examine the interaction of global crash re-



139

System Tested Version
Redis v3.0.4

ZooKeeper v3.4.8
LogCabin v1.0.0

etcd v2.3.0
RethinkDB v2.2.5
MongoDB v3.0.11

iNexus v0.13
Kafka v0.9.0

Table 5.1: System Versions. The table shows the versions of the systems that
we tested with Pace.

covery protocols and the nuances in local storage protocols (introduced
by each replica’s local file system), in the presence of correlated crashes.

Second, Pace is not complete – it can miss vulnerabilities. Specifically,
Pace exercises only one and the same reordering at a time across the set of
nodes. For instance, consider two reorderings ri and rj. It is possible that
no vulnerability is seen if ri or rj is applied individually on two nodes.
But when ri is applied on one node and rj on the other, then it may lead
to a vulnerability. Pace would miss such vulnerabilities. Note that if ri
and rj can both individually cause a vulnerability, then Pace would catch
both of them individually. This is a limitation in implementation and not
a fundamental one. There is no similar limitation with partially persist-
ing operations (i.e., Pace can partially persist different operations across
nodes).

5.3 Vulnerabilities Study

We studied eight widely used distributed systems spanning different do-
mains including database caches (Redis), configuration stores (ZooKeeper,
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LogCabin, etcd), real-time databases (RethinkDB), document stores (Mon-
goDB), key-value stores (iNexus), and message queues (Kafka). We tested
MongoDB with two storage engines: WiredTiger [164] (MongoDB-WT)
and RocksDB [199] (MongoDB-R). Table 5.1 shows the versions of the sys-
tems tested. Pace found 26 unique vulnerabilities across the eight systems.

We first describe the workloads and checkers we used to detect vul-
nerabilities (§5.3.1). We then present a few example protocols and vulner-
abilities to give an intuition of our methodology and the types of vulner-
abilities discovered (§5.3.3). We then answer three important questions:
Are there common patterns in file-system requirements (§5.3.4)? What
are the consequences of the vulnerabilities discovered by Pace (§5.3.5)?
How many vulnerabilities are exposed on real file systems (§5.3.6)? We
finally describe our experience with reporting the vulnerabilities to ap-
plication developers (§5.3.7).

5.3.1 Workloads and Checkers

Most systems have configuration options that change user-level guaran-
tees. We configured each system to provide the highest level of safety
guarantees possible. When guarantees provided are unclear, our check-
ers check for typical user expectations; for example, data acknowledged
as committed should not be lost in any case, or the cluster should be avail-
able after recovering from crashes. Even though some applications do not
explicitly guarantee such properties, we believe it is reasonable to test for
such common expectations.

To test a system, we first construct a workload. Our workloads are not
specifically crafted to expose vulnerabilities, but rather are very natural
and simple. Our workloads insert new data or update existing data and
record the acknowledgment from the cluster. They are usually about 30-
40 LOC.

To check each crash state, we implement a checker. The checker is con-
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System Configuration Workload Checker

Redis
appendfsync=always,

min-slaves-to-write=2
and wait

update existing

old and new
data (master
and slave),
check-aof,

check-dump

ZooKeeper Default update existing old and new
data

LogCabin Default update existing old and new
data

etcd Default update existing old and new
data

RethinkDB durability=hard,
writeack=majority

update existing,
insert new

old and new
data

MongoDB W=3, journal=true update existing old and new
data

iNexus Default update existing,
insert new

old and new
data

Kafka
flush.interval.msgs=1,
min in-sync replicas=3,

DirtyElection=False

create topic,
insert message

topic and
message

Table 5.2: Configurations, Workloads, and Checkers. The table shows the
configuration, workloads and checkers for each system. We configured all sys-
tems with three nodes. The configuration settings ensure data is synchronously
replicated and flushed to disk.

ceptually simple; it starts the cluster with the crash state produced by Pace
and checks for correctness by reading the data updated by the workload.
If the data is lost, corrupted, or not retrievable, the checker flags the crash
state incorrect. Further, our checkers invoke recovery tools mentioned in
applications’ documentation if an undesired output is observed. If the
problem is fixed after invoking the recovery tool, then it is not reported
as a vulnerability. Our checkers are about 100 LOC. Table 5.2 shows the
configurations (that achieve the strongest safety guarantees), workloads,
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## Workload ##
# Start cluster
# Insert new data
zk =
client(hosts=server_ips)
zk.set("/mykey",
"newvalue")
pace.acknowledged = True
# Stop cluster

## Checker ##
# Start cluster
# Check for data
retry_policy = retry(max_tries = r, delay = d,
backoff = b)
zk = client(hosts=server_ips, retry_policy)
ret, stat = zk.get("/mykey")
if request succeeded:
..if pace.acknowledged and ret == None:
....return ’data loss new commit’
..if pace.acknowledged and ret != ’newvalue’:
....return ’corrupt’
..if not pace.acknowledged and ret == None:
....return ’data loss old commit’
else:
..return ’unavailable’
return ’correct’
# Stop cluster

Listing 5.1: Workload and Checker. Simplified workload and checker for
ZooKeeper.

and checkers for all systems. Listing 5.1 shows the simplified pseudocode
of the workload and the checker for ZooKeeper.

5.3.2 Vulnerability Accounting

A system has a crash vulnerability if a crash exposes a user-level guaran-
tee violation. Counting such vulnerable places in the code is simple for
single-machine applications. In a distributed system, multiple copies of



143

fdatasync(wal)

    Not vulnerable
Not reached

   Vulnerable

creat(wal.tmp)
append(wal.tmp)

fdatasync(wal.tmp)
rename(wal.tmp, wal)

append(wal)
append(wal)

fdatasync(wal)
append(wal)

fdatasync(wal)
append(wal)

fdatasync(wal)
append(wal)

fdatasync(wal)
append(wal)

Safe file flush
Directory ops
Other ordering

               Atomicity

(b) etcd

   Legend

 9
  8

  7
  6

   5
   4

  3
  2

   1
  0

 
 14

  1
3 

12
 11

 10
 

0   1   2  3   4   5  6  7   8  9  10 11 12  

fdatasync(log)  19
 18

 17
 16

 15
 

0   1   2  3   4   5  6  7   8  9  10 11 12  13 14 15 16 17 18 19202122 2324 

(a) ZooKeeper

 9
  8

  7
  6

   5
   4

  3
  2

   1
  0

 
trunc(log)

append(log)

append(ae.tmp)
fsync(ae.tmp)
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write(log)

write(log)
write(log)

rename(ce.tmp, ce)

creat(ce.tmp)

append(log)
append(log)

fdatasync(log)

creat(ae.tmp)

(a) ZooKeeper

 14
 13

 12
 11

 10
 

 2
42

32
22

1 2
0 

Figure 5.6: Protocols and Vulnerabilities: ZooKeeper and etcd. (a)
and (b) show protocols and vulnerabilities in ZooKeeper and etcd, respectively.
States that are not vulnerable, that were not reached in the execution, and that
are vulnerable are shown by white, grey, and black boxes, respectively. The anno-
tations show how a particular state becomes vulnerable. In Zookeeper, box (24,
24) is vulnerable because both nodes crash after the final fdatasync but before the
log creation is persisted. Atomicity vulnerabilities are shown with brackets en-
closing the operations that need to be persisted atomically. The arrows show the
ordering dependencies in the application protocol; if not satisfied, vulnerabilities
are observed. Dotted, dashed, and solid arrows represent safe file flush, directory
operation, and other ordering dependencies, respectively.
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recv(ack)
send(client, ack)
creat(rep.tmp)

append(rep.tmp)
fsync(rep.tmp)

rename(rep.tmp, rep)

append(aof)
fdatasync(aof)

send(data)
        

creat(tmp)
append(tmp)

fsync(tmp)
rename(tmp, tmp-bg)
rename(tmp-bg, aof)

fdatasync(aof)
recv(data)

            append(aof)
 fdatasync(aof)

send(ack)

(a)(i)Redis master

mkdir(t)
creat(t/log)

append(t/log)
fsync(t/log)
send(msg)

(a)(ii)Redis slave

(b)(i)Kafka leader (b)(ii)Kafka follower

     recv(msg)
append(t/log)

fsync(t/log)
send(ack)

creat(rep.tmp)
append(rep.tmp)

fsync(rep.tmp)
rename(rep.tmp, rep)

mkdir(t)
creat(t/log)

recv(ack)
send(client, ack)

       

Figure 5.7: Example Protocols and Vulnerabilities: Redis and Kafka.
(a) and (b) show protocols and vulnerabilities in Redis and Kafka, respectively.
Refer Figure 5.6 for legend.

the same code execute and so Pace needs to be careful in how it counts
unique vulnerabilities.

We count only unique combinations of states that expose a vulnera-
bility. Consider a sequence S1 that creates (C), appends (A), and renames
(R) a file. Assume that a node will not start if it crashes after C, but before
R. Assume there are three nodes in an RSM system and two crash after C,
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but before R. In this case, the cluster can become unusable in four ways
(C-C, CA-CA, C-CA, CA-C). We count all such instances as one vulnerabil-
ity. If the third node crashes within this sequence, it will also be mapped
onto the same vulnerability. If there is another different sequence S2 that
causes problems, a vulnerability could be exposed in many different ways
as one node can crash within S1 and another within S2. We associate all
such combinations to two unique vulnerabilities, attributing to the atom-
icity of S1 and S2.

Pace also associates each vulnerability with the application source code
line using the stack trace information obtained during tracing. When
many vulnerabilities map to the same source line, Pace considers that a
single vulnerability. When we are unable to find the exact source lines
for two different vulnerabilities, we count them as one. We note that our
way of counting vulnerabilities results in a conservative estimate.

5.3.3 Example Protocols and Vulnerabilities

Figure 5.6 shows the protocols and vulnerabilities in ZooKeeper and etcd.
Figure 5.7 shows the same for Redis and Kafka. RSM systems where vul-
nerabilities are exposed when APM relaxations are applied on a major-
ity of nodes are represented using a grid. Figure 5.6(a) and 5.6(b) show
the combinations of persistent states across two nodes in a three node
ZooKeeper and etcd cluster, respectively. Operations that change persis-
tent state are shown on the left (for one node) and the top (for the other
node). A box (i,j) corresponds to a crash point where the first node crashes
at operation i and the second at j. At each such crash point, Pace reorders
other operations, or partially persists operations or both. A grey box de-
notes that the distributed execution did not reach that combination of
states. A white box means that after applying all APM relaxations, Pace
was unable to find a vulnerability. A black box denotes that when a spe-
cific relaxation (shown on the left) is applied, a vulnerability is exposed.
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As shown in Figure 5.6(a), to maintain proposal information, ZooKeeper
appends epoch numbers to temporary files and renames them. If the re-
names are not atomic or reordered after a later write, the cluster becomes
unavailable. If a log file creation and a subsequent append of header
metadata are not atomically persisted, then the nodes fail to start. Simi-
larly, the immediate truncate after log creation has to be atomically per-
sisted for correct startup. Writes and appends during transactions, if re-
ordered, can also cause node startup failures. ZooKeeper can lose data as
it does not fsync the parent directory when a log is created.

Figure 5.6(b) shows the protocol and vulnerabilities in etcd. etcd cre-
ates a temporary write-ahead log (WAL), appends some metadata, and
renames it to create the final WAL. The WAL is appended, flushed, and
then the client is acknowledged. We find that an etcd cluster becomes
unavailable if crashes occur when the WAL is appended; the nodes fail
to start if the appends to the WAL are reordered or not persisted atom-
ically. Also, if the rename of the WAL is reordered, a global data loss is
observed.

Non-RSM systems where vulnerabilities are exposed even when re-
laxations are applied on a single machine are shown using trace pairs. As
shown in Figure 5.7(a), Redis uses an append-only file to store user data.
The master appends to the file and sends the update to slaves. Slaves,
on startup, rewrite and rename the append-only file. When the master
sends new data, the slaves append it to their append-only file and sync it.
After the slaves respond, the client is acknowledged. Data loss windows
are seen if the rename of the append-only file is not atomic or reordered
after the final fdatasync. When the append is not atomic on the master, a
user-visible silent corruption is observed. Moreover, the corrupted data
is propagated from the master to the slaves, overriding their correct data.
The same append (which maps to the same source line) on the slave re-
sults in a window of silent corruption. The window closes eventually
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since the slaves sync the data from the master on startup.
Figure 5.7(b) shows the update protocol of Kafka. Kafka creates a log

file in the topic directory to store messages. When a message is added, the
leader appends the message and flushes the log. It then contacts the fol-
lowers which perform the same operation and respond. After acknowl-
edging the client, the replication offset (that tracks which messages are
replicated to other brokers) is appended to a temporary file, flushed, and
renamed to the replication-offset-checkpoint file. The log can be lost after
a crash because its parent directory is not flushed after the log creation. If
the log is lost on the master, then the data is globally lost since the master
instructs the slaves also to drop the messages in the log. Similarly, Kafka
can lose a message topic altogether since the parent directory of the topic
directory is not explicitly flushed.

We observe that some systems (e.g., Redis, Kafka) do not effectively
use redundancy as a source of recovery. For instance, in these systems, a
local problem (such as a local corruption or data loss) which results due
to a relaxation on a single node, can easily become a global vulnerability
such as a user-visible silent corruption or data loss. In such situations,
these systems miss opportunities to use other intact replicas to recover
from the local problem. Moreover, such local problems are propagated
to other intact replicas, overriding their correct data.

5.3.4 Patterns in File-system Requirements

Table 5.3 shows file-system requirements across systems. We group the
results into three patterns:
Inter-Syscall Atomicity. ZooKeeper and LogCabin require inter system
call atomicity (multiple system calls need to be atomically persisted). In
both these systems, when a new log file is initialized, the creat and the
initial append of the log header need to be atomically persisted. If the
log initialization is partially persisted, the cluster becomes unavailable.
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Redis 1 1 1 3
ZooKeeper 1 1 1 1 1 1 6
LogCabin 1 1 2
etcd 1 1 1 3
RethinkDB
MongoDB-WT 1 1
MongoDB-R 1 1 1 1 1 5
iNexus 1 1 1 3
Kafka 1 2 3
Total 2 4 1 6 4 5 4 26

Table 5.3: Vulnerabilities: File-System Requirements. The table shows
the unique vulnerabilities categorized by file-system requirements.

Vulnerabilities due to inter system call atomicity requirements can occur
on all file systems irrespective of how they persist operations.
Atomicity within System calls. We find that seven systems require sys-
tem calls to be atomically persisted. Eleven unique vulnerabilities are
observed when system calls are not persisted atomically. Six out of the
eleven vulnerabilities are dependent on atomic replace by rename (desti-
nation link already exists), one on atomic create by rename (destination
link does not exist), and four on atomic truncates or appends. Four sys-
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ZooKeeper 1 4 1 6
LogCabin 1 1 1 2
etcd 1 1 2 3
RethinkDB
MongoDB-WT 1 1
MongoDB-R 3 3 5
iNexus 1 1 2 3
Kafka 3 3
Total 1 2 9 12 3 1 2 1 26

Table 5.4: Vulnerabilities: Consequences. The table shows the unique
vulnerabilities categorized by user-visible consequences.

tems require appends or truncates to be atomic. Redis, ZooKeeper, and
etcd can handle appended portions filled with zeros but not garbage.
Ordering between System calls. Six systems expect system calls to be
persisted in order. Kafka and ZooKeeper suffer from data loss since they
expect the safe file flush property from the file system. To persist a file’s
directory entry, the parent directory has to be explicitly flushed to avoid
such vulnerabilities. We found that reordering directory operations can
cause vulnerabilities. We found that five systems depend on ordered re-
names: Redis exhibits a data loss window, etcd permanently loses data,
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ZooKeeper, MongoDB-R, and iNexus fail to start. Four systems require
other operations (appends and writes) to be ordered for correct behavior.

5.3.5 Vulnerability Consequences

Table 5.4 shows the vulnerability consequences. We find that all vulnera-
bilities have severe consequences like silent corruption, data loss, or clus-
ter unavailability. Redis silently returns and propagates corrupted data
from the master to slaves even if slaves have correct older version of data.
Redis also has a silent corruption window when reads are performed on
slaves. While only one system silently corrupts and propagates corrupted
data, six out of eight systems are affected by permanent data loss. De-
pending on the crash state, previously committed data can be lost when
new data is inserted, or the newly inserted data can be lost after acknowl-
edgment. Redis exhibits a data loss window that is exposed when reads
are performed on the slaves. As slaves continuously sync data from the
master, the window eventually closes.

Cluster unavailability occurs when nodes fail to start due to corrupted
application data or metadata. ZooKeeper and etcd fail to start if CRC
checksums mismatch in user data. MongoDB-WT fails to start if the tur-
tle file is missing and MongoDB-R fails to start if the sstable file is missing
or there is a mismatch in the current and manifest files. LogCabin and
iNexus skip log entries when checksums do not match but fail to start if
metadata is corrupted. LogCabin fails to start when an unexpected seg-
ment metadata version is found. Similarly, ZooKeeper fails to start on
unexpected epoch values. While some of these scenarios can be fixed by
expert application users, the process is intricate and error prone.

We note that the vulnerabilities are specific to our simple workloads
and all vulnerabilities reported by Pace have harmful consequences. More
complex workloads and checkers that assert more subtle invariants are
bound to find more vulnerabilities.
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ext2 ext3-w ext3-o ext4-o ext3-j btrfs
Redis 3 1 1
ZooKeeper 6 3 1 1 1 3
LogCabin 2 1 1 1 1 1
etcd 3 2
MongoDB-WT 1
MongoDB-R 5 2 2 2 3
iNexus 2 1 1 2
Kafka 3
Total 26 9 5 5 2 10

Table 5.5: Vulnerabilities on Real File Systems. The table shows the num-
ber of vulnerabilities on commonly used file systems.

5.3.6 Impact on Real File Systems

We configured Pace with APMs of real file systems. Table 5.5 shows the
vulnerabilities on each file system. We observe that many vulnerabili-
ties can occur on all examined file systems. Only two vulnerabilities are
observed in ext3-j (data-journaling) as all operations are persisted in or-
der. All vulnerabilities that occur on our default APM are also exposed
on ext2. Systems are vulnerable even on Linux’s default file system (ext4
ordered mode). Many of the vulnerabilities are exposed on btrfs as it re-
orders directory operations. In summary, the vulnerabilities are exposed
on many current file systems on which distributed storage systems run
today.

5.3.7 Confirmation of Problems Found

We reported 18 of the discovered vulnerabilities to application develop-
ers. We confirmed that the reported issues cause serious problems (such
as data loss and unavailability) to users of the system. Seven out of the
18 reported issues were assigned to developers and fixed [82–84, 143, 200,
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201]. Another five issues have been acknowledged or assigned to devel-
opers. Out of this five, two in Kafka were already known [121]. Other
issues are still open and under consideration. We found that distributed
storage system developers, in general, are responsive to such bug reports
for two reasons. First, we believe developers consider crashes very im-
portant in distributed systems compared to single-machine applications.
Second, the discovered vulnerabilities due to crashes affect their users di-
rectly (for example, data loss and cluster unavailability).

We found that users and random-crash testing have also occasionally
encountered the same vulnerabilities that were systematically discovered
by Pace. However, Pace diagnoses the underlying root cause and provides
information of the problematic source code line, easing the process of
fixing these vulnerabilities.

5.3.8 Discussion

We now list a few high-level lessons that we learned through our study
of vulnerabilities.

First, we find that redundancy by replication is not the panacea for
constructing reliable storage systems. A common expectation in distributed
systems is that if a node loses its data (for example, due to file-system
crash behaviors as in our study), then the node can be fixed using the re-
dundant copies of data on the other nodes. However, we find that the op-
posite was true in many systems: the problematic node spreads its copy
to the other nodes, causing spread of corruption or data loss. For exam-
ple, Redis and Kafka can propagate corrupted data and data loss to slaves,
respectively. We believe replication protocols and local storage protocols
should be designed in tandem to avoid such undesired behaviors.

Second, system designers need to be careful about two problems when
embracing layered software. First, the reliability of the entire system de-
pends on individual components. MongoDB’s reliability varies depend-
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ing on the storage engine (WiredTiger or RocksDB). Second, separate well-
tested components when integrated can bring unexpected problems. In
the version of MongoDB we tested, we found that correct options are not
passed from upper layers to RocksDB, resulting in a data loss. Similarly,
iNexus uses a modified version of LevelDB which does not flush writes to
disk when transactions commit. Applications need to clearly understand
the guarantees provided by components when using them.

Third, we find that a few systems are overly cautious in how they up-
date file-system state. LogCabin flushes files and directories after every
operation. Though this avoids many reordering vulnerabilities, it does
not fix atomicity vulnerabilities. Issuing fsync at various places does not
completely avoid reliability problems. Also, the implication of too much
caution is clear: low performance. While this approach is reasonable for
configuration stores, key-value stores need a better way to achieve the
same effect without compromising performance.

Next, we note that sometimes the programming environment may
constrain applications from doing the right thing, leading to vulnerabil-
ities. For example, consider the safe file flush and directory-operation
reordering vulnerabilities in ZooKeeper and Kafka. These vulnerabilities
arise because these systems are written in Java in which fsync cannot be
readily issued on directories.

Finally, all modern distributed storage system run on top of a variety
of file systems that provide different crash guarantees. We advocate that
distributed storage systems should understand and document on which
file systems their protocols work correctly to help practitioners make con-
scious deployment decisions.
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5.4 Solving the Problems found by PACE

In this section, we discuss how the problems found by Pace can be solved.
We believe there are two different approaches to solve these problems.
First, the unintuitive crash states can be avoided locally on each node;
this solution can be realized by running on file systems that provide clear
guarantees on crashes or by fixing the update protocol of the application
(e.g., by issuing fsync calls at appropriate places). This approach may re-
duce common-case performance. Second, applications can continue run-
ning atop file systems that may produce unintuitive states, and rely upon
recovery from redundant copies to fix local problems when they arise. We
believe this approach is suitable when applications cannot control what
file systems they will be run on.

5.4.1 Local Hardening

We consider the 26 unique vulnerabilities found by Pace and analyze how
each of them can be solved using a local approach. First, seven vulner-
abilities occur due to non-atomic renames and thus possess a practical
concern only when the applications are run on file systems that do not
provide such guarantees (e.g., ext2). However, given that most modern
file systems such as ext3, ext4, and btrfs ensure rename atomicity, we be-
lieve these vulnerabilities do not need any fix.

Next, 13 vulnerabilities in our study are caused by reordering. These
reordering vulnerabilities can be fixed by carefully issuing fsync at cor-
rect places in the local update protocol of the systems; however, such fixes
can impact the common-case performance. Another option would be to
run atop file systems that aim to improve crash consistency by provid-
ing ordered updates. Following our work on finding crash vulnerabil-
ities in distributed systems, researchers have designed new file systems
such as CCFS that provide ordered updates with high performance [180].
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Some of these vulnerabilities will thus be masked without forgoing too
much performance if distributed systems run CCFS at each of the replicas.
However, some reordering vulnerabilities may not be fixed upon CCFS
and fsync calls may still be required if applications want durability. Thus,
fixing such durability vulnerabilities will inherently impact performance.

Of the remaining six vulnerabilities, two are caused by inter-syscall
atomicity, i.e., the system expects two systems calls to be atomically per-
sisted. These vulnerabilities can be exposed on all current file systems and
CCFS cannot help mask these problems. While a transactional interface
that allows multiple system calls to be atomically persisted can help, such
an interface is far from reality in current commodity file systems. How-
ever, we found that both of these vulnerabilities can be handled gracefully
by fixing the application recovery code. Specifically, when the node re-
covers, the recovery code should expect that the state may contain the
first operation but not the second. This was a fairly straightforward fix
and has been implemented in LogCabin [143].

The remaining four vulnerabilities are caused by multi-block appends
or truncates that the applications expect to be atomic. These vulnerabil-
ities can be exposed on all current file systems and CCFS cannot mask
them. In three instances of these vulnerabilities, the application already
uses checksums to detect the non-atomic append. However, upon a de-
tection, they take an undesirable step such as crashing the node, leading
to unavailability. Such instances can be better handled by truncating the
corrupted portions and continuing. In the remaining one instance, the
system does not use checksums to detect the problem and further propa-
gates the corrupted data to other nodes. To fix this, the system must use
checksums first and then take the same steps described above.
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5.4.2 Handling Using Distributed Redundancy

In this second option, systems do not rely heavily upon on the correctness
of the local file system. Instead, they use the inherent redundancy to fix
local problems that arise when crashes occur. We believe this solution
is suitable in scenarios where the application does not have control on
which file systems it will run on. We believe these scenarios are important
to address because developers of distributed systems systems do not (and
cannot) control how practitioners deploy these systems in the real world.
Further, while developers may be confident that their system may work
on many existing file systems, they cannot be sure about guarantees that
may be broken in future file systems.

In the above scenarios, the local file system may be weak and so may
not provide some common guarantees (e.g., safe file flush, without which
an explicit fsync on the directory is required to persist file creations and
deletions). Upon such file systems, a node may lose its data locally on a
crash. For example, in our study, we found a Kafka node can lose its data
locally if the file system does not provide the safe file flush guarantee.
However, Kafka (similar to other many other systems in our study) does
not fix this local data loss using the redundant copies; on the contrary, it
propagates this local data loss to the followers by allowing the node that
lost its data to become the leader. An ideal fix for this problem would be to
preclude such a node from becoming the leader and so when it becomes
a follower, the node can fix its data from the leader’s copy.

5.5 Summary and Conclusions

In this chapter, we discussed how crash behaviors of local file systems
influence the correctness of distributed update protocols. We presented
Pace, a tool that can effectively search for correlated crash vulnerabilities
by pruning the search space. We studied eight popular distributed stor-
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age systems using Pace and exposed many serious vulnerabilities, many
of which have been acknowledged and fixed by developers. Source code
of Pace, workloads, checkers, and details of the discovered vulnerabilities
are publicly available [6].
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6
Related Work

In this chapter, we discuss how prior systems and research efforts relate
to various aspects of the work presented in this dissertation. First, we
discuss prior studies that show the prevalence of storage faults; we also
discuss various past efforts to understand how different systems and lay-
ers (such as the local file system) react to storage faults (§6.1). Then, we
describe other approaches used in distributed systems to handle storage
faults (§6.2). Next, we discuss how the techniques used in Saucr are differ-
ent from other related approaches (§6.3). We then discuss how research
and practical efforts have attempted to test the reliability of distributed
systems by building a variety of tools (§6.4); we show our work on Pace
has some similar flavor to this body of work, but at the same time dif-
fers from past tools in important ways. Finally, we describe attempts to
find crash vulnerabilities in single-machine applications (§6.5); we dis-
cuss how these tools cannot find the vulnerabilities that we find with Pace.

6.1 Studies on Storage Faults

6.1.1 Prevalence of Storage Faults

Our analysis of how RSM-based systems react to storage faults draws
inspiration from many past fault-injection studies. Several studies have
shown the prevalence of storage faults in hard disk drives [206] and SSDs [101,
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154, 168, 207]. Further, studies have shown that cheap and near-line stor-
age devices are more likely to be affected by storage faults [31, 32]. Given
that many distributed deployments tend to use cheap storage hardware [70,
94], analyzing the effects of storage faults is important. These prior stud-
ies motivated us to analyze how RSM systems behave in the presence of
storage faults.

6.1.2 File-system Behaviors to Storage Faults

Closely related to our work is the work on IRON file systems [103, 186].
In this work, the authors analyze how local file systems (such as ext3 and
IBM JFS) react to partial storage faults. Our work is different from this
effort: while their analysis concentrates on file systems, we look at a layer
above such local file systems. From their study, the authors find that lo-
cal file systems do not handle storage faults correctly in many scenarios
and that they use illogically inconsistent policies to detect and recover
from storage faults. These findings indicate that applications running
atop local file systems are ultimately responsible for maintaining end-to-
end data integrity. Similar results have been established by other related
studies on how file systems react to storage faults [33, 242].

6.1.3 Application Behaviors to Storage Faults

Another body of work has studied how applications that run atop file
systems react to storage faults. For instance, Subramanian et al. study
how open-source DBMS systems react to storage corruptions [213]. Their
study reveals that systems such as MySql are not robust to storage faults:
the system may crash, lose data, or even return incorrect results. Our
analysis of how RSM systems react to such faults is related but differ-
ent: the authors in that work study a single-machine application, whereas
we focus on distributed systems. The fundamental difference is that in
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a single-machine setting, the application rarely has ways to recover from
the fault; in contrast, in a distributed setting, data is inherently replicated,
offering a way to recover from storage faults. Zhang et al., study the ef-
fects of storage corruptions on cloud-based synchronization services; the
authors find that data can be lost even when there are copies spread across
many user devices and the cloud service [240]. Our results are similar to
these findings but in a much more critical class of systems.

6.1.4 Distributed-system Reactions to Storage Faults

More recently, in our own work (that is not a part of this dissertation), we
have studied how popular distributed storage systems behave in the pres-
ence of storage faults [91, 92]. In this work, we discovered fundamental
reasons why distributed systems are not resilient to storage faults. At a
high level, similar to our analysis in §3.1, the prior work also found that
distributed systems do not effectively use redundancy to recover from
storage faults. However, the study did not uncover any safety or avail-
ability violations reported in §3.1; this is because the fault model in our
previous study considers injecting only storage faults (precisely, a single
storage fault on a single node at a time). In contrast, our fault model in
Par considers crashes and network failures in addition to storage faults,
exposing previously unknown safety and availability violations in RSM
systems. To the best of our knowledge, the analysis presented in this the-
sis is the first to expose these violations.

6.2 Approaches to Handling Storage Faults

Our design of Ctrl in Chapter 3 builds upon several past efforts on tolerat-
ing storage faults such as data corruption and latent sector errors. Among
these efforts, we note that there are two classes of approaches. In the first,
the local storage layer (either the storage hardware itself or some layer
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above it, such as the local file system) is made more reliable by using er-
ror correction and internal-redundancy techniques. In the second, the
problems are handled at the distributed layer. We next discuss each of
these approaches in turn.

6.2.1 More Reliable Local Storage

Many prior efforts have tried to improve the reliability of the local stor-
age stacks, hardening them against storage faults. A few systems have
explored techniques at the hardware level, for example, by employing
different kinds of error detection and correction schemes [45, 141, 243].

Another body of work argues that the limited trust must be placed
on the hardware in handling storage faults and makes the case that soft-
ware should handle such problems. This body of work mainly focuses
on developing techniques to improve the resiliency of local file systems.
Early work on IRON file systems [186] shows how techniques such as re-
dundancy, parity, etc., can be built into the local file system to tolerate
partial storage faults without affecting performance. Researchers have
applied similar ideas to other file systems such as Sun ZFS [241]. Other
efforts have tried to improve the reliability of file systems to storage faults
using isolation and recovery techniques [146, 217], or N-versioning tech-
niques [34].

6.2.2 Handling at the Distributed Layer

In contrast to previous approaches that intend to contain storage faults
completely in the storage layer, another body of work proposes to han-
dle these problems at the distributed layer. This way of thinking about
handling storage faults in distributed systems was initiated by early work
on the Google File System [70, 94], which proposed to use inexpensive
disks and to handle faults using redundancy at the distributed software
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level. This approach, in addition to complying with the end-to-end prin-
ciples [203], also frees the storage devices from offering stringent error
detection and correction properties [42, 219]. This body of research to
tolerate disk errors at the distributed level closely matches our views in
our work on protocol-aware recovery presented in Chapter 3. However,
our work is the first to devise recovery mechanisms for RSM systems.

More recently, the DIRECT system (that follows our work on Par) re-
covers from bit-level errors in distributed systems such as HDFS [220].
In this paper, the authors propose extending flash lifetime by allowing
devices to expose higher bit error rates. Atop such unreliable devices,
DIRECT uses the redundancy in distributed systems to recover from bit
corruption errors. In doing so, DIRECT extends the lifetime of flash de-
vices by utilizing these devices even after they begin exposing bit errors.
Similar approaches that harden distributed file systems such as HDFS to
storage faults have also been proposed in the past [223, 232]. This body of
work has similar goals to our work on Par. While these ideas improve the
reliability of distributed file systems, our work focuses on a more funda-
mental component, RSM systems, whose reliability is crucial to the cor-
rect functioning of many data-center systems (including distributed file
systems).

Targeted Approaches in RSM Systems

While the above approaches intend to handle storage faults in distributed
systems in general, a few previous efforts have described (however, only
very briefly) how data corruption can be handled in RSM systems. Prior
research describes two such ways [40, 50]: MarkNonVoting and Reconfig-
ure. However, as we showed in Section §3.1, these approaches suffer from
unavailability. Ctrl provides better availability than these solutions. Fur-
thermore, the MarkNonVoting approach [50] can violate safety because
important metainfo such as promises can be lost on a storage fault [231].
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Ctrl avoids such safety violations by storing two copies of metainfo on
each node.

Generic Approaches in RSM Systems

Many generic approaches to handling practical faults in RSM systems
other than crashes have been proposed. PASC [65] hardens systems to
tolerate corruptions by maintaining two copies of the entire state on each
node and assumes that both the copies will not be faulty at the same time.
This approach does not work well for storage faults; having two copies
of on-disk state incurs 2× space overhead. Furthermore, in most cases,
PASC crashes the node on a fault; such local strategies, as we showed in
Section §3.1, can cause unavailability. XFT [142] is designed to tolerate
non-crash faults. However, it can tolerate only a total of b(N− 1)/2c crash
and non-crash faults. Similarly, UpRight [59] has an upper bound on the
total faults to remain safe and available.

Ctrl differs from the generic approaches through its special focus on
storage faults. This focus brings two main advantages. First, Ctrl at-
tributes faults at a fine granularity: while the generic approaches con-
sider a node as faulty if any of its data is corrupted, Ctrl considers faults
at the granularity of individual data items. Second, because of such fine-
granular fault treatment, Ctrl can be available as long as a majority of
nodes are up and at least one non-faulty copy of a data item exists even
though portions of data on all nodes could be corrupted. Ctrl cannot
tolerate arbitrary non-crash faults [128] (e.g., memory errors). However,
Ctrl can augment the generic approaches: for example, a system can be
hardened against memory faults using PASC while making it robust to
storage faults using Ctrl.
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6.3 SAUCR Techniques

We now discuss how prior systems and research efforts relate to various
aspects of our work on situation-aware updates and crash recovery.

6.3.1 Failure Detection and Reaction

The durability and availability properties of Saucr are dependent upon
how fast it can detect failures as they are happening. A large body of work
exists showing how to build fast and practical failure detectors [136–138].
Saucr’s failure detection is also fast (as shown by our experiments) and is
practical (it only uses heartbeats, a common mechanism readily available
in many systems).

Previous failure detectors also strive to be reliable by avoiding false
positives: cases where the detector may inform that a node has failed
when, in reality, the node might be merely operating slowly. As we showed
in our experiments, with reasonable heartbeat intervals, Saucr’s false pos-
itive rate is low. However, we note that Saucr does not strictly require low
false positive rates. In case the detector incorrectly predicts that a slow
node has crashed, it has no effects on Saucr’s correctness. Specifically, the
system may switch to slow mode, or the follower may flush its data to its
disk; these reactions may only reduce performance momentarily, but do
not affect correctness guarantees in any way.

Further, Saucr differs from prior work on building failure detectors.
While these detectors focus only on quickly detecting failures, Saucr also
takes corrective steps (such as flushing data buffers to disk or switching
to slow mode) in addition to performing timely failure detection. For-
tunately, flushing dirty data in the background to the disk reduces the
amount of data that needs to be written upon detection, reducing reac-
tion time.
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6.3.2 Situation-Aware Updates

The general idea of dynamically transitioning between different modes is
common in real-time systems [43]. Similarly, the idea of fault-detection-
triggered mode changes has been used in cyber-physical distributed sys-
tems [53]. However, we do not know of any previous work that dynami-
cally adapts a distributed update protocol to the current situation.

Many practical systems statically define whether updates will be flushed
to disk or not [21, 60, 76, 197]. This is a one-time configuration that needs
to be set before starting the system; if one needs to change this setting,
a restart of the entire system may be required. A few systems, such as
MongoDB, provide options to specify the durability of a particular re-
quest [165]. For example, in MongoDB, the durability of a particular write
request can be configured with different properties using the writeConcern
and journal parameters. However, such dynamicity of whether the re-
quest will be persisted or buffered is purely client-driven: the storage sys-
tem does not automatically make any such decisions, depending on the
current situation of the system.

6.3.3 Situation-Aware Recovery

Saucr’s recovery is similar to recovery approaches proposed by prior sys-
tems. First, RAMCloud’s recovery [176, 216] has a similar flavor to Saucr.
However, the masters in RAMCloud always construct their data from
remote backups. In contrast, Saucr performs mode-specific recovery: a
Saucr node may recover its data either from its local disk or from the re-
mote replicas depending upon the mode in which it operated before it
crashed.

Saucr’s recovery is also similar to the recovery of viewstamped repli-
cation [140]. However, Saucr’s recovery differs from that of viewstamped
replication in two ways. First, in viewstamped replication, a recovering
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node waits for a majority responses before it moves to the recovered state,
while in Saucr, a recovering node has to wait only for a bare minority re-
sponses. Second, and more importantly, in viewstamped replication, a
responding node can readily be in the recovered state only if it has not
yet crashed. In contrast, in Saucr, a node can readily be in the recovered
state in two ways: either it could have operated in fast mode and not failed
yet, or it might have operated in slow mode previously or flushed to disk.
These differences improve Saucr’s availability. Saucr’s recovery is also
similar to how Ctrl recovers corrupted data from redundant copies [10].

6.3.4 Performance Optimizations in RSM systems

A prior body of work has optimized majority-based RSM systems by ex-
ploiting network properties [184]. This approach notes that if the network
provides ordering guarantees, then the explicit ordering produced by the
leader is extraneous and can be removed from the protocol. Thus, in the
common case, the clients would send their requests to all the replicas di-
rectly, and the network would deliver (with high probability) these re-
quest in the same order across replicas. Such an optimization reduces
the time to commit a request from two round trips to one round trip.
If reordering arises, then the system rolls back to an older state. Simi-
lar approaches have tried to enforce such ordering primitives in the net-
work [139]. Other optimizations to improve the performance on replica-
tion protocols that exploit commutativity [166] and parallelism [123] have
also been proposed.

However, to the best of our knowledge, these systems are only memory-
durable: they do not write any data to disk (sometimes not even in the
background). Saucr can augment such systems; specifically, Saucr’s fast
mode can preserve the common-case performance properties of these sys-
tems and when failures arise, by switching to slow mode or flushing to
disk can provide stronger guarantees.
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A few systems [40, 59, 174] realize that synchronous disk writes are
a major bottleneck in realizing highly performant RSM systems. These
systems have proposed techniques (e.g., batching) that make disk I/O
efficient. Saucr’s implementation includes such optimizations in its slow
mode.

6.4 Testing Distributed Systems

Our work on testing the effects of file-system crash behaviors in distributed
systems under correlated crashes is related to several prior tools that aim
to discover bugs in distributed systems. However, Pace is different from
all previous tools through its focus on the interaction between the dis-
tributed system and the local file system.
Distributed Model Checkers. Researchers and practitioners alike have
designed a variety of distributed model checkers [73, 102, 104, 135, 147,
237, 238] to find vulnerabilities in distributed systems. The main target of
these model checkers is to test the various possible interleavings of events
(such as messages between nodes). In this regard, the bugs found by these
tools are similar to concurrency bugs, but in a distributed setting. Given
that testing all possible reorderings is expensive, prior work on model
checking has proposed ways to tackle the state-space explosion problem
such as dynamic partial order reduction [237].

One deficiency in most model checkers is that they do not introduce
node crashes and reboots as events that can occur during an execution;
they only reorder messages. SAMC [135], in addition to reordering mes-
sages, also introduces node crashes and reboots as events that need to be
permuted in a distributed execution. This further aggravates the state-
space explosion problem. SAMC uses semantic information to prune the
state space. In SAMC, such semantic information requires testers to write
protocol-specific rules for a target system and then be given as input to
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the model checker.
Testing Network Partitions. More recently, a set of new tools to test the
effect of network partitions in distributed systems have gained attention.
The most notable one among these tools is Jepsen [129]. Jepsen runs a
workload on a target system (such as ZooKeeper) and then randomly in-
jects network partitions. The framework then checks if guarantees (such
as no loss of acknowledged data) are violated in the presence of partitions.
More recent frameworks such as NEAT also inject network partition more
systematically and can inject many different realistic ways in which net-
work partitions manifest in real deployments [8].

Pace is complementary to existing tools: bugs that arise due to file-
system crash behaviors discovered by Pace cannot be discovered by exist-
ing model checkers or partition-injection frameworks; similarly, bugs that
arise due to network message re-orderings or partitions cannot be discov-
ered by Pace. Previous tools focus solely on permuting different events in
a distributed execution (such as network messages, node crashes, etc.)
and thus cannot understand the interaction of distributed update and re-
covery protocols and local-storage protocols. To our knowledge, our work
on Pace is the first to consider file-system behaviors in the context of dis-
tributed systems.

Similar to most prior tools, Pace uses semantic information about the
distributed protocols to reduce the state-space explosion problem. How-
ever, in contrast to tools such as SAMC, that require testers to code the
semantic information, Pace uses only high-level protocol-awareness and
does not require such semantic information to be coded.
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6.5 Crash Vulnerabilities in Single-node
Applications

Our focus on file-system crash behaviors in Chapter 5 was motivated by
recent research that demonstrated that file-system crash behaviors are
largely undocumented and that they affect application correctness [9, 41,
181–183, 224]. The abstract-persistence-model (APM) specifications that
we used in Pace were derived from our previous work [181].

Our work on finding crash vulnerabilities in distributed systems is
related to previous efforts in discovering crash vulnerabilities in single-
node settings. In our previous work (that is not a part of this disserta-
tion), we developed Alice, a tool that can uncover crash vulnerabilities
in single-machine applications. Using the tool, we identified that many
single-machine applications, such as LevelDB, SQLite, BerkeleyDB, etc.,
are vulnerable to system crashes. Tools like Alice cannot be directly ap-
plied to distributed systems as they do not track cross node dependencies.
If applied, such tools may report spurious vulnerabilities. Although such
tools can be applied in stand-alone mode like in ZooKeeper [250], many
code paths would not be exercised and thus miss critical vulnerabilities.

Similar to our analysis using Pace, Zheng et al. [244] find crash vul-
nerabilities in databases. However, unlike our work, Zheng et al. focus
only on single-machine applications. Further, the methodology used in
that work does not systematically explore all states that can occur in an
execution because they do not model file-system behavior. Instead, their
framework works atop already-implemented storage stacks and so finds
vulnerabilities that can commonly occur. It is difficult for such tools to
reproduce the vulnerabilities found by Pace. In contrast, Pace models the
file system using an APM and thus can check how a distributed storage
system will work on any current or future file system.
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7
Conclusions and Future Work

In this chapter, we first summarize each part of this dissertation (§7.1).
Then, we discuss the various lessons we learned through the course of
this dissertation work (§7.2), present possible future work (§7.3), and fi-
nally conclude ( §7.4).

7.1 Summary

This dissertation is comprised of three parts. In the first part, we showed
how current approaches to handle storage fault do not work correctly, mo-
tivating the need for a new solution. We developed Par, a new, principled
approach for distributed storage systems to recover from storage faults.
In the second part, we studied the reliability and performance charac-
teristics of existing replication approaches and showed that current ap-
proaches present unsavory tradeoffs. We developed Saucr, a new repli-
cation scheme that offers both strong reliability and high performance. Fi-
nally, we studied the effects of file-system crash behaviors in distributed
systems and showed that many systems are vulnerable. We pointed to
some possible ways to fix these problems. We now summarize each of
these parts.
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7.1.1 Storage Faults - Analysis and Solution

We first analyzed how distributed systems behave in the presence of stor-
age faults, i.e., cases where portions of data persisted on the storage de-
vices of the nodes could be inaccessible or corrupted on later accesses.
We focused on RSM systems, an important class of distributed systems.
Through fault-injection and qualitative analyses of practical systems and
prior approaches, we developed the RSM recovery taxonomy. Our analy-
ses revealed that none of the existing approaches are adequate to handle
storage faults: they either lead to safety violations or unavailability. We
found that the reason that currently employed approaches fall short is
that they do not use any protocol-level knowledge to perform recovery.

To address this problem, we presented protocol-aware recovery (Par),
a new approach to handling storage faults in distributed systems. Par ex-
ploits protocol-specific knowledge of the underlying distributed system
to recover from storage faults correctly. We designed corruption-tolerant
replication (Ctrl), a protocol-aware recovery approach for RSM systems.
We implemented Ctrl in two systems (LogCabin and ZooKeeper) that
are based on two different consensus protocols. Through rigorous exper-
iments, we showed that Ctrl correctly recovers from a range of storage
faults, preserving safety and offering high availability. We also demon-
strated that the reliability improvements of Ctrl come with little to no
performance overheads in the common case (up to 10% on HDDs and 4%
on SSDs).

7.1.2 Crash Resiliency and Performance - Analysis and
Solution

In the second part of this thesis, we analyzed the resiliency and perfor-
mance characteristics of existing approaches to replication. We found that
a dichotomy exists with respect to how and where current approaches
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store system state. Disk-durable protocols replicate state to persistent
storage on many nodes, while memory-durable approaches replicate data
only to volatile memory. We found that this choice of where to commit
data in a replicated system has significant implications for crash-resiliency
and performance. Through measurements and analysis, we found that
current approaches either provide strong crash resiliency or high per-
formance, but not both. Specifically, disk-durable methods offer strong
reliability but impose high overheads; in contrast, memory-durable ap-
proaches deliver high performance but suffer from data loss or unavail-
ability in the presence of failures.

We presented situation-aware updates and crash recovery (Saucr), a
new solution to solve the unsavory tradeoff between crash resiliency and
performance in replication protocols. Unlike existing replication approaches,
Saucr adapts the update protocol to the current situation: with many
nodes up, Saucr operates in a fast mode, buffering updates in memory;
when failures arise, Saucr switches to a slow mode, flushing updates to
disk. Such reactiveness and situation-awareness enable Saucr to achieve
high performance similar to a memory-durable protocol while provid-
ing strong durability and availability guarantees similar to a disk-durable
protocol. We implemented a prototype of Saucr in ZooKeeper. Through
rigorous testing, we demonstrated that Saucr significantly improves dura-
bility and availability compared to memory-durable ZooKeeper. We also
showed that Saucr’s reliability improvements come at little or no cost:
Saucr’s overheads are within 0%-9% of memory-durable ZooKeeper. Com-
pared to disk-durable ZooKeeper, we showed that, with a slight reduction
in availability in rare cases, Saucr improves performance by 25× to 100×
on HDDs and 2.5× on SSDs.
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7.1.3 File-system Crash Behaviors in Distributed
Systems

In the final part of this thesis, we explored the effects of file-system crash
behaviors in distributed systems. We examined these effects under a re-
stricted correlated failure scenario where all replicas of a system crash
together and recover later. To reason about the persistent states that can
arise on the nodes during such a failure, we developed Pace.

Pace produces all possible correlated crash states that can occur in a
distributed execution. It then introduces file-system crash behaviors us-
ing an abstract persistence model (APM). The relaxations from an APM
can be applied in numerous ways on the nodes, and so one needs to test a
vast state space. To address this problem, we develop a set of generic rules
based upon how distributed update protocols work; with these rules, Pace
reduces checking time from days to hours in some cases. We applied Pace
to eight widely used systems and discovered 26 serious vulnerabilities
such as data loss and unavailability in many of these systems. Many of
these vulnerabilities have been acknowledged and fixed by developers.
We identified the file-system properties that modern distributed storage
system expect from the file system for their local update and recovery
protocols to work correctly. Finally, we pointed to some ways in which
these vulnerabilities can be fixed.

7.2 Lessons Learned

We now present a list of general lessons we learned while working on this
dissertation.
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7.2.1 The Importance of Measuring and then Building

In all three parts of this dissertation, we first analyzed the reliability and
performance characteristics of real systems. Then, using the lessons learned
through our study, we improved the resiliency of the studied systems in
a principled way. In hindsight, we believe this two-step “measure, then
build” process to conducting research was immensely useful.

We believe there are three major advantages to the two-step approach.
First, it forced us to think about how to construct tools that can help us
do the measurements and analysis. Generalizing the tools to make them
work across many different systems leads to a new general methodology,
which we believe is a useful research output. For example, the Pace tool
we described in Chapter 5 was the result of our attempts to automate rea-
soning about correlated crashes. Similarly, our efforts to make Pace work
well in practice across many systems led to the general idea of exploiting
protocol knowledge for efficient exploration.

Second, the problems that we find across many systems by applying
the tools, even without the solutions, can be interesting and useful to the
community. For example, in our work on analyzing file-system crash be-
haviors, although we did not devise solutions to solve the problems we
found, the vulnerabilities themselves led to many discussions and a few
patches [82–84, 143, 200, 201]. Similarly, the safety violations that we dis-
covered in Chapter 3 pointed to serious problems in well-tested systems.

Finally, the same measurement framework that we build to conduct
our studies can help evaluate the efficacy of our solutions. For example,
in our work on building Par, we used the same fault-injection framework
that we used to study existing systems to evaluate the correctness of Ctrl.

Overall, we believe that first analyzing existing systems to understand
the current state of affairs is key to find real, important problems to work
on. Then, as the second step, insights from the study can guide how new
solutions can be devised to solve the problem at hand.



175

7.2.2 Perspectives on Working on Widely Used Systems

We believe performing measurement- or study-driven work in real, widely
used systems can be useful. In the first half of Chapters 3 and 4, and in
Chapter 5, we studied widely used systems (such as ZooKeeper, Redis,
MongoDB, etc.) In the second half of these chapters, we improved the
resiliency of these systems through new ideas. Instead of implement-
ing these solutions in a system built from scratch, we consciously opted
to modify the real systems (in which we found the problems in the first
place).

We believe there are many advantages to studying and modifying ex-
isting, widely used systems. The first and main advantage is that per-
forming measurements on widely used systems (e.g., ZooKeeper) can
give assurance that the problem at hand is important to solve. Given that
these systems are widely used, even finding a handful of problems, and
fixing them has the potential to improve reliability for many deployments.

Second, when implementing new solutions, one can get enough con-
fidence that the idea is viable and can be implemented in a real system; it
also confirms that the assumptions made during design are reasonable.

Next, we felt that developers of most systems that we examined were
quite responsive to bug reports and discussions. We believe this is due to
the large user base that is already active on discussion and bug-reporting
forums. For example, developers of various systems were interested in
knowing more about the vulnerabilities discovered by Pace and our storage-
fault-injection framework [245–249].

Finally, in an existing, well-maintained system, basic infrastructure
pieces (e.g., RPC mechanisms) are already implemented and heavily tested,
helping us avoid spending too much time on developing infrastructure
code. For instance, when implementing Ctrl in LogCabin and ZooKeeper,
we reused the existing RPC infrastructure to piggyback information about
storage faults.
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There are two minor drawbacks to working on an already existing sys-
tem. First, one needs to understand a lot of code before making changes
to the system; however, given the benefits, we believe this is a reasonable
price to pay. Second, the solutions that we implement may carry the in-
herent problems in the current implementation of the system. For exam-
ple, when we implemented Saucr in ZooKeeper, the software overheads
of existing code were too high when running on fast storage devices; this
resulted as less-pronounced benefits of Saucr atop SSDs. However, we be-
lieve that this is a small problem compared to the benefits; on the positive
side, such problems point to opportunities for new optimizations.

7.2.3 The Importance of Paying Careful Attention to
Failures

Traditionally, in distributed systems, two failure models at the two op-
posite ends of the spectrum have gained attention: fail-stop failures and
Byzantine failures. While the fail-stop failure model is simple to under-
stand and reason about, real-world systems seldom fail in such simplis-
tic ways. At the other end of the spectrum, Byzantine failures include
extreme failures such as adversarial behavior and security attacks. How-
ever, there exists many complex and realistic failure scenario that are preva-
lent in today’s large-scale deployments; however, such failures are often
overlooked: distributed systems are rarely tested against these failures.
In this dissertation, we analyzed how systems react to realistic and often
ignored failures such as storage faults and file-system crash behaviors.

We believe it is important to consider and pay careful attention to how
failures arise in real deployments. We realized two benefits in this disser-
tation by doing so. First, by subjecting systems to realistic failures (such
as storage faults), we discovered that even well-tested, widely used sys-
tems provide only a false sense of reliability. We believe the reason for this
outcome is that the failures that we consider in this dissertation are sel-
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dom tested by developers and practitioners. Second, by exploiting how
failures actually arise, we designed new solutions. For example, Saucr ex-
ploits the non-simultaneity of correlated failures to transition between its
fast and slow modes, obtaining both high performance and strong guar-
antees.

Overall, we believe that realistic failure scenarios do not get the atten-
tion they deserve, and we believe this dissertation takes a first step to-
wards addressing this problem. We believe that considering new failures
models related to storage in distributed systems was largely possible be-
cause of our prior experience with problems that arise in the storage stack
(for example, file-system crash behaviors and storage faults).

7.3 Future Work

In this section, we discuss directions in which work done in this disserta-
tion can be extended.

7.3.1 Applying PAR to Other Systems

In Chapter 3, we applied the protocol-aware recovery approach to RSM
systems. While this is an improvement in RSM systems to handle storage
faults, we believe this is only a first step: other classes of distributed stor-
age systems such as primary-backup (e.g., Redis), Dynamo-style-quorum
systems (e.g., Cassandra), etc., are still vulnerable to storage faults.

In a recent work, Ganesan et al., analyze how many distributed stor-
age systems react to storage faults [91, 92]. The study concludes that many
systems do no effectively utilize the inherent redundancy in distributed
systems to recover from storage faults. We believe the Par approach can be
applied to these systems to improve their improve their reliability. How-
ever, applying Par to new classes of systems requires more work. For
example, implementations of primary-backup protocols have subtle dif-
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ferences across different systems, which makes it challenging to distin-
guish protocol-level attributes from system-specific details. In contrast,
properties of RSM protocols have been well documented, making imple-
mentations mostly uniform; thus, identifying protocol attributes that the
recovery approach must exploit was not a daunting challenge. However,
despite these challenges, we believe it might be worthwhile to implement
Par and examine how the reliability of these systems can be improved.

7.3.2 Minimizing Software Overheads on Fast Storage

In Chapter 4, we designed and implemented Saucr in ZooKeeper. Our
experiments showed that Saucr provides significant performance advan-
tages compared to disk-durable ZooKeeper. On hard-disk drives, for a
write-heavy workload, Saucr was about 100× faster than disk-durable
ZooKeeper. In contrast, the improvements were not so pronounced when
running on fast flash-based SSDs: Saucr was only about 2× faster. As we
discussed, this problem is not specific to Saucr’s implementation; when
running atop SSDs, even memory-durable ZooKeeper (which is less reli-
able than Saucr) is only 2× faster than disk-durable ZooKeeper.

The reason for this is that the software overheads in ZooKeeper’s cur-
rent implementation become dominant atop fast storage devices. We be-
lieve the underlying cause for this effect is that ZooKeeper was designed
in the era of hard disks, and thus the software inefficiencies were minus-
cule compared to the storage latency. However, with faster storage de-
vices, software overheads contribute to much of the latency. We believe
this trend is highly likely to continue given the advent of even faster de-
vices such as Intel Optane SSDs and NVM devices. Thus, we believe these
software overheads in RSM implementations must be reconsidered in the
era of faster storage devices similar to how researchers have revisited the
performance of LSM trees on SSDs [133].

Overall, we believe there is an opportunity for systems researchers to
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realize a new RSM implementation that is performant atop faster storage
technologies. We believe efficient concurrency control (e.g., fine-grained
locks instead of coarse-grained locks), minimal dependency between request-
processing stages, and few serialization points (for example, to establish
the request ordering) are key to such an efficient implementation.

7.3.3 Reasoning about Partial Failures

In Chapter 5, we analyzed how file-system crash behaviors affect dis-
tributed systems under correlated crash scenarios where all replicas crash
and recover together. While this is an important failure scenario to study,
we believe it might be interesting to explore how the persistent states on
one node affect the entire system when that machine fails while the rest
of the system continues to operate.

However, examining this failure scenario using a tool such as Pace (in
its current form) is challenging. In Pace, we run a workload once and
record the traces at the replicas. Then, we find the correlated crash states
that could occur in this execution by calculating the valid cross product of
the possible crash states at the individual replicas. However, in the new
failure model, a part of the system would run while another part crashes;
with this, the one-time record-and-replay methodology would not work.
Specifically, when a node crashes at some point, the other nodes might
react in a certain way (possibly sending new messages, and writing new
data to their disks) and when the node crashes at a different point, then
the other nodes might react in a different way. Thus, an active way of
injecting crashes must be adopted. Another challenge is deciding when
exactly to crash a node; one obvious choice is when the node’s persis-
tent state changes due to a file-system operation such as a write; in addi-
tion, the tool could crash the node at random points, helping one to find
timing-related bugs in addition to bugs related to persistent state.
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7.3.4 Crash Consistency in Distributed Transactions

In Chapter 5, we studied the crash consistency of many practical dis-
tributed systems. However, we focused only on problems within a sin-
gle shard of data. We believe studying crash consistency across many
shards can be valuable. Specifically, we believe it might be worthwhile to
study if distributed transactions, which must update data on many shards
correctly to successfully commit transactions, work correctly in the pres-
ence of crashes. Distributed transactions form the core of many critical
services in the cloud and thus testing their reliability can reveal many
problems that have eluded the attention of practitioners. While transac-
tions and crash recovery have been well studied in the database commu-
nity [149, 157, 158], we believe testing modern systems that depend upon
local file systems to commit transactions across shards is a valuable exer-
cise.

7.3.5 Studying Interdependency Faults

Complex distributed systems are not always built from scratch; instead,
developers prefer to utilize pre-existing building blocks and layer them to
build the target system. Such an approach facilitates developer velocity
and helps avoid reimplementation of same functionality [109].

The Frangipani distributed file system [225], built atop the Petal dis-
tributed virtual disks [134], is a great example of such a composite sys-
tem. In our work in this dissertation, we noted that several modern dis-
tributed systems are also built this way: by combining two or more build-
ing blocks. For example, Kafka depends upon ZooKeeper for storing its
metadata such as broker information, client sessions, etc., and delegates
problems such as leader election to ZooKeeper [23]. Similarly, BigTable
depends on GFS for storage, the HBase data store is layered atop HDFS,
and HDFS depends on ZooKeeper for automatic failover of its namen-
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ode [22]. Sometimes, as high as few tens of independent services are com-
posed together to provide a single high-level service (e.g., microservices
at Netflix [152]).

Although such layered architectures ease the construction of complex
systems, they come at a cost: a complex interaction between the build-
ing blocks. We believe an emerging class of faults that we call interservice
dependency faults must be studied to understand how such composition
works in the presence of failures. These faults arise at the interaction
points of building blocks that constitute a composite distributed system.
For example, it might be worthwhile to explore cases where ZooKeeper
does not behave in a certain way (e.g., because of failures) that Kafka ex-
pects it to. A few pieces of anecdotal evidence already exist where in-
terservice dependency faults have caused catastrophic outcomes in dis-
tributed systems. For example, at Google, an update to one Service, say
A (unrelated to another service B) started creating more socket connec-
tions to service A, which exhausted the file descriptors in jobs of service
A [151]. Similar cases have been documented in other systems too [2–
4]. Given this, we believe it is imperative to study this important class of
failures in distributed systems.

7.4 Closing Words

Many applications and users are entrusting distributed storage systems
with their critical data. Despite the importance of these systems, only
scant attention has been paid to problems that arise at their storage inter-
face. This dissertation takes a step towards understanding and address-
ing the reliability and performance challenges at the interaction points
between distributed systems and the storage stack.

Through our studies, we showed that even widely used systems pro-
vide only a false sense of reliability; in the presence of realistic failures,
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these systems can lose or corrupt data, or become unavailable. Most of
the problems we find suggest that even the obvious expectations one has
about distributed systems, such as redundancy improves reliability, are
surprisingly hard to realize correctly in practice. We believe validating
such commonly held assumptions through careful measurements and
analysis of existing systems is a crucial first step before building new solu-
tions. Using the insights from our studies, and by paying careful attention
to how failures arise in deployments, we showed how new solutions can
be applied to distributed systems to improve their resiliency to problems
at the storage interface without impacting performance.

Although our dissertation takes an important step towards understand-
ing the interaction of distributed systems and the storage layer, it is only a
first step. The storage landscape is changing at a tremendous pace, with
many new storage technologies such as the 3D XPoint memory [1, 87, 105]
and QLC NAND flash [155] becoming available commercially. These new
technologies will inevitably find their way into data centers, presenting a
new set of challenges for distributed storage systems. We believe the ideas
presented in this thesis can help solve some of these future challenges.
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A
Proof of Impossibility of Last-Entry

Disentanglement

In any log-based storage system, if the last entry in the log is corrupted,
it is impossible to determine whether the corruption was due to a crash
or a disk corruption (as we discussed in §3.2.4). We now present a proof
of this claim; we first define the various elements necessary for the proof
and then present the proof.

Log. We model the log L as two disjoint lists, one list Le that stores en-
tries and one list Lid that stores identifiers.

Identifiers. The identifier of a log entry contains vital information about
that entry; this information helps Ctrl’s distributed protocol to recover
corrupted entries from copies on other nodes.

Operations. Two kinds of operations update the log:

– write(v), which updates Le or Lid (depending on if v is an entry or
identifier).

– fsync() flushes all previous writes to disk.
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Sequences. A disentangled sequence of transactions σ = t1, . . . , tn, where
n > 1 is one where each ti is a subsequence of three operations: a1

i ,a2
i ,a3

i ,
where:

– a1
i is of the form write(ei).

– a2
i is of the form write(idi).

– a3
i is of the form fsync().

where ei is the entry to be written and idi is its respective identifier. For
simplicity, we assume a single log.

Log appends. Suppose we are given a disentangled sequenceσ = t1, . . . , tn.
We use LI to denote the initial state of the log. We use σLI to denote the
state of the log after executing the sequence σ beginning from state LI.

Corruption and Crash. We distinguish two bad events: corruptions co
and crashes cr.

– A corruption coi changes element ei in Le to some new e ′i where
e ′i 6= ei.

– We assume identifiers (idi) cannot be affected by a corruption.

– We assume the identifiers can be atomically written to the disk be-
cause an identifier is much smaller than a single sector (i.e., write(idi)
is atomic).

– We assume a crash cri can only happen between a2
i and a3

i , i.e., right
before the fsync, for a sequence t1, . . . , tn, as defined above.

Given sequence σ, we use σcri to denote σ with a crash in ti. If the
system crashes during ti, then no entries tj would appear in the log for
any j > i. Given σ, we use σcoi to denote σ with a corruption event coi
appended at the end.
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Theorem A.1 (Disentanglement). Suppose we are given the disentangled se-
quence σ and log L.

• Case 1: Let L1 = σcrnL
I, and let L2 = σconL

I. Suppose we are provided
LI, σ, and one of the logs L1 and L2. We cannot detect whether σcrn or
σcon is the one that executed resulting in L1 or L2.

• Case 2: Let Lcoi = σcoiL
I, where i ∈ [1,n). Provided LI,σ, and Lcoi , we

can conclude that σcrj did not execute, where j ∈ [1,n].

Proof. First, we note that by being able to detect whether a crash or corrup-
tion happened, we mean that there exists a deterministic algorithm that
will return whether a crash or corruption happened.

Case 1: We prove the first case with a simple construction. Let σ = t1,
where

t1 = write(e1), write(id1), fsync()

Let LI be the empty log. Let L1 = σcr1L
I and L2 = σco1L

I.
Assume that when the crash cr1 happened, only a strict subset of e1

was written in addition to id1. Let the strict subset of e1 that was writ-
ten be e ′1. The above condition can arise because write(e1) need not be
atomic and writes can be reordered by the underlying file system on a
crash. Now, assume that the corruption co1 turns e1 to e ′1.

We can now prove the first case by contradiction: Suppose there is
an algorithm M that can take (i) the initial state of the log, (ii) the cur-
rent state of the log, and (iii) the sequence of transactions σ that lead to
the current state (minus co and cr events), and deterministically returns
whether a crash or corruption happened. In the above example, L1 = L2

by construction. So, M(LI,L1,σ) = M(LI,L2,σ). Therefore, no such M
exists.
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Case 2: Fix i, j as in theorem statement. Let Lcrj = σcrjL
I. Assume Lcrj =

Lcoi . If j 6= i, then entry ei cannot be affected by the crash, and therefore
the Lcrj 6= Lcoi If j = i, since i < n, then ei is fixed by recovery. Therefore,
Lcrj 6= Lcoi .


