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MulOple	owners	

Online	Service	Delivery	is	Evolving	

Owned	by	a	single	enOty	

Tradi*onal	infrastructure	 Integrated	infrastructure	
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Operated	by	different	ISPs	
Operated	by	content	providers	



WAN	

Integrated	Infrastructure	Enables	Joint	Control	
of	All	Decisions	

	
1.  User	–	Proxy	mapping	

2.  Proxy	–	DC	mapping	

3.  Paths	in	the	wide	area	
network	
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WAN	

DC-1	

DC-2	

Proxy-2	 Proxy-1	

•  Increase	efficiency:	total	traffic	without	congesOon		
•  Improve	performance:	aggregate	end-to-end	latency	

Proxy-3	
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Advantages	of	Joint	Control	



Footprint:	Jointly	Controls	the	Integrated	Infrastructure	

Controller	

UG	–	proxy	
latency	

System		
capacity	 User	workload	

P2	
P1	

DC1	

DC2	 P3	

Control	decisions	for	a	user	group:		
•  UG—proxy	mapping	
•  proxy—DC	mapping	
•  network	paths	

Goals:	
•  Maximize	congesOon	free	traffic	
•  Minimize	end-to-end	latency	
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Topology	

UG1	

Users	grouped	by	locaOon,	service	provider	



Outline	

•  Challenges	in	compuOng	forwarding	configuraOon	

•  Other	challenges	in	realizing	Footprint	
•  EvaluaOon	
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CompuOng	ConfiguraOon:	Basic	Approach	
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Does	such	a	simple	model	suffice	?	
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No	

Because	of	the	nature	of	traffic	from	different	
online	applicaOons	



User	Traffic	Arrives	over	Sessions	

•  MulOple	requests	and	responses	over	a	single	session	

	

	
•  Sessions	are	long-lived	and	arrive	all	through	the	duraOon	of	

an	epoch	
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Session	SOckiness	
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Sessions	s*ck	to	proxy	and	DC	
•  Long	lived	TCP	sessions	
•  No	fresh	DNS	query	in	the	middle	of	a	session	
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Challenge:	Temporal	VariaOon	of	Load	
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1.  Non-zero	session	lifeOme	
2.  Session	sOckiness	

Gradually	varying	load	from	a	
user	group	to	a	resource		

•  Resource	capacity	constraints	should	be	saOsfied	during	enOre	epoch		
	 	 	 	 																				

	

	
	
•  ComputaOonally	infeasible		if								 				does	not	have	a	closed	form	

-  ApplicaOons	have	arbitrary	session	life	distribuOons	
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How	to	guarantee	congesOon	free	delivery	for	
traffic	on	sessions?		
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High	Fidelity	Modeling	of	Load	
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DiscreOzing	the	Temporal	Model	
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Approximate												by	a	Oght	piecewise	

linear	upper	bound,		
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n
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r (t)•  														has	maximum	at	one	of	the	corners	

•  Capacity	constraints	have	to	be	checked	only	at	fixed	set	of	points	

•  Op*mal						‘s	obtained	by	solving	a	linear	program	
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Footprint:	System	ImplementaOon	
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Gathering	Inputs	

CompuOng	OpOmal	Forwarding	

ImplemenOng	Computed	ConfiguraOon	



Footprint:	Inputs	to	the	controller	

•  Input	data	collected	every	5	minutes	

•  Inputs:	

–  User	group	–	proxy	latency	measurements	

•  Piggy-back	on	end-host	applicaOons	

•  Instrumented	JavaScript	on	bing.com	webpage	[Calder	et	al.,	IMC	2015]	

–  User	workload	
•  EsOmated	using	observed	workload	in	prior	epochs	

–  System	health	status	

•  From	Microsoo	internal	system	monitoring	pipelines	

•  Deployed	in	producOon	
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ImplemenOng	Computed	ConfiguraOon	

•  UG—proxy	mapping:	DNS	(BIND)	

•  Proxy—DC	mapping:	Custom	sooware	to	change	configuraOon	

•  WAN	path	selecOon:	OpenFlow	

•  Prototyped	on	a	modest-sized	testbed	
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EvaluaOon	
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1. Joint	Decisions	

2. Temporal	Modeling	



EvaluaOon	Setup	
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•  Trace	driven	simulaOons	

•  Data	
-  Taken	from	producOon	deployment	of	Footprint	
-  One	week	worth	of	data	
-  MulOple	topologies	(North	America,	Europe)	

•  Scale	
-  O(10k)	user	groups	
-  O(100)	routers	and	links	
-  O(100)	proxies	
-  O(10)	data	centers	

•  Metric	
-  Efficiency:	Maximum	traffic	with	no	congesOon	
-  Performance:	Aggregated	end-to-end	latency	



EvaluaOon:	Efficiency	of	Joint	Control	

•  Footprint	can	carry	2x	more	load	because	user	traffic	is	
diverted	to	resources	with	unused	capacity	
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FastRoute	[Flavel	et	al.,	NSDI	2015]	
•  UG—proxy:	Closest	proxy	decided	by	Anycast	rouOng	
•  Proxy—DC:	Closest	proxy	based	on	acOve	measurements	
•  WAN	path	selecOon:	Independent	traffic	engineering	module	



EvaluaOon:	Latency	Improvement	
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Footprint	decreases	overall	latency	by	~60%	

Compare	end-to-end	latency	at	70%	capacity	of	FastRoute	



EvaluaOon:	Efficiency	of	Temporal	Modeling	

More	than	50%	gains	with	respect	to	non-temporal	models.	

•  Compare	with	non-temporal	models	
–  JointAverage:	
	
–  JointWorst:	
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Related	Work	
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•  To	coordinate	or	not	to	coordinate?	[Narayana	et.	al,	SIGMETRICS	2012]	

•  CooperaOve	world	vs	Single	enOty	world	

•  Show	importance	of	temporal	load	modeling	



Summary	

•  Joint	decision	for	proxy,	DC	and	WAN	path	
selecOon		
•  100%	increase	in	supported	users,	and,	
•  60%	reducOon	in	end-to-end	latency	

	

	
•  High	fidelity	temporal	models	50%	efficient	than	non-

temporal	models	
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