Fast Control Plane Analysis
Using an Abstract Representation

Aaron Gember-Jacobson, Raajay Viswanathan,
Aditya Akella, Ratul Mahajan

Microsoft:

WISCONSIN Research

Configuration errors are common

route-map tag-filter deny 10 . .
match tag 777 Multiple routing protocols

|

router ospf 10 * Routing process priorities
network 1.1.1.1 0.0.0.255 area 0

distribute list route-map tag-filter in @ Route exchange
redistribute rip 10

! e Traffic Selectivity

router bgp 100

no synchronization — Route Filters
bgp router-id 2.2.2.2
distance 190 3.3.3.3 0.0.0.0 — ACLs

Human errors are unavoidable

Errors lead to policy violations

Policy Violation

Network verification is important

DatacenterDynamics

. . The Business of Data Centers.
Some violations orret e

misconfigured
network device led
to Azure outage

30 July 2012 | By Yevgeniy Sverdlik

“The service interruption was triggered by
a misconfigured network device that
disrupted traffic to one cluster in our West

Europe sub-region,” Mike Neil, general

manager for Windows Azure, wrote in a

Network verification under arbitrary failures

Is required

further complicated network management

and recovery.”

State-of-the-art verification with failures

* Analyze current data plane [HSA NSDI’13, VeriFlow NSDI’13]

— Cannot verify policies across failures

* Simulate low level protocol messages [Batfish NSDI’15]

* Generate data planes for each failure case
— Time consuming

Forwarding A Forwarding
Table’”’ W Table”™
A _Forwarding A

Table’”’

How do we speedup network verification

under failures ?

Network
verification zmm) Graph
under Analysis

failures

Network verification under failures using
graph algorithms

?

Network configurations Collection of weighted digraphs

* Graphs encode the network’s forwarding behavior under all
possible failure scenarios

* Verification reduces to checking simple graph-level properties
- polynomial time

* Collection of digraphs > ARC: Abstract Representation for
Control planes 7

Outline

Requirements & Challenges for ARC creation
Our approach for constructing ARCs
Network verification using ARCs

Evaluation

Requirement: Encoding forwarding
behaviors under all failures

* Graph contains all possible paths in the actual
network

e Actual path under particular failure scenario is
obtainable through graph traversal

ARC construction: First steps

Shortest path

A OSPF = BGP D

N

SRC

Opportunities Challenges
 Network topology is * Route redistribution
essentially a graph Routing cost varies / protocol

Need sophisticated approaches to determine

graph structure and edge weights
— BGP: Min AS hops °

10

ARC Construction: Graph Structure

Inter-device: advertisements
0:-©O @
- (2
i
U
BGP, "'! 1

Intra: within device forwarding

Intra: Route
redistribution

* One directed graph per Src-Dst subnet pair
* Vertices: hosts, routing processes

* Edges: flow of data enabled by exchange of routing
information

ARC construction: Edge weights

lllllllllllllllll
.........
** L

* For single routing instance,

use: 3
04 0.6
 OSFP link weights : :
e BGP hop counts ;
04 0.6

 Multiple processes: AD?@
Redistribution?

* Normalize weights across
instances

* Novel algorithm for scaling Shortest path in ARC
weights P

== actual path

Policy verification using ARCs

Does the graph
. satisfy some
Is a policy property ?
violated in
the network? What graph

algorithms to use ?

13

Verify always blocked policy

Does there exist

:;’ iommusrwéccahog OST . a path from SRC
ctween an oo to DST in the
not allowed under any di
failure scenario? corresponding
' ARC?

Connected components

WHOST o 1 C D OO
=0 e .

D /;

SO
SRC i
-

Verify ‘k-"reachability policy

Are there 'k’ edge-disjoint

ls DST always .o paths from SRC to DST ?
reachable from SRC .

with ‘< k’ failures ?
Max-flow algorithm on ARC

3 edge-disjoint paths

Max-flow = 3 .

Verify path equivalency

Is a traffic class forwarded

in the same manner, before .
and after a configuration
change?

Are ARCs the same ?

e Re-scaling algorithms can result in different weights
* Reduce weights to canonical form and compare

16

Additional properties we can verify

* Always |solated Traffic of dlfferent tenants

* Always traverse waypoints: Traffic between
hosts always traverse waypoints

Evaluation

RC construction performance
RC verification performance

RC fidelity

Network configurations

* Configurations from 314 data
center networks operated by a
large online service provider

i’

[[[[
10 10> 10* 10°
of Traffic Classes

[
10°

19

Time to build ARCs (seconds)

Time to generate ARC

B Parse configurations
Build ARC from scratch

Networks (sorted by size)

Fast (<10 seconds) even for large networks

20

0

Time to verify ARC

Time to Verify (ms)
2@

o
37 8 =
)
2 &
& s
g &
E
= .‘ | | — | | I T l | |
0 100 200 300 0 100 200 300 0 100 200 300
Networks Networks Networks
Always blocked Always reachable Equivalent paths
(connected components) with < k failures (convert to canonical
(max flow) weights and compare)
<500 ms <1sec Upto 100 s]

|

* Verification per traffic class is parallelizable

21

Comparison with Batfish

& g +
: 2
= En O Single Lir)k
-q;) - > -~ Up to 3 Links
> & S
e > 5]
() o
£ o
= =
o— ¢ I: O
[I [[| [[| |
0 100 200 300 0 25 50 75 100
Networks Networks
Always blocked Always blocked
using ARC using Batfish
<500 ms Up to 694 days!

3 - 5 orders of magnitude speedup

22

ARC fidelity

* For any given failure scenario, is ARC shortest
path == actual network path?

* Formally prove ARC fidelity for networks with:
— Routing protocols : OSPF, RIP, BGP
— Route redistribution is acyclic
— Route selection preference follow a global order

96% of networks satisfy these properties

23

ARC fidelity

* For remaining networks
— We can still generate the graph structure
— Cannot generate edge weights
— Verify “always blocked”, “k-reachability”

All properties can be verified

96%

_'_I

Cannot verify path equivalence

24

Summary

* Network verification under
failures can be formulated as
graph analysis

* Presented an abstract
representation, ARC

e Can construct high fidelity ARCs
for 96% of networks

* 0(103)-0(10°) speedupin

verification

26

