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Configuration errors are common
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Human errors are unavoidable




Errors lead to policy violations

Policy Violation

Network verification is important
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misconfigured
network device led
to Azure outage

30 July 2012 | By Yevgeniy Sverdlik

“The service interruption was triggered by
a misconfigured network device that
disrupted traffic to one cluster in our West

Europe sub-region,” Mike Neil, general

manager for Windows Azure, wrote in a

Network verification under arbitrary failures

Is required

further complicated network management

and recovery.”



State-of-the-art verification with failures

* Analyze current data plane [HSA NSDI’13, VeriFlow NSDI’13]

— Cannot verify policies across failures

* Simulate low level protocol messages [Batfish NSDI’15]

* Generate data planes for each failure case
— Time consuming
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How do we speedup network verification

under failures ?

Network
verification  zmm) Graph
under Analysis

failures



Network verification under failures using
graph algorithms

?

Network configurations Collection of weighted digraphs

* Graphs encode the network’s forwarding behavior under all
possible failure scenarios

* Verification reduces to checking simple graph-level properties
- polynomial time

* Collection of digraphs > ARC: Abstract Representation for
Control planes 7



Outline

Requirements & Challenges for ARC creation
Our approach for constructing ARCs
Network verification using ARCs

Evaluation



Requirement: Encoding forwarding
behaviors under all failures

* Graph contains all possible paths in the actual
network

e Actual path under particular failure scenario is
obtainable through graph traversal



ARC construction: First steps

Shortest path

A OSPF = BGP D

N

SRC

Opportunities Challenges
 Network topology is * Route redistribution
essentially a graph  Routing cost varies / protocol

Need sophisticated approaches to determine

graph structure and edge weights
— BGP: Min AS hops °

10



ARC Construction: Graph Structure

Inter-device: advertisements
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Intra: within device forwarding

Intra: Route
redistribution

* One directed graph per Src-Dst subnet pair
* Vertices: hosts, routing processes

* Edges: flow of data enabled by exchange of routing
information



ARC construction: Edge weights
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* For single routing instance,

use: 3
04 0.6
 OSFP link weights : :
e BGP hop counts ;
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 Multiple processes: AD?@
Redistribution?

* Normalize weights across
instances

* Novel algorithm for scaling Shortest path in ARC
weights P

== actual path




Policy verification using ARCs

Does the graph
. satisfy some
Is a policy property ?
violated in
the network? What graph

algorithms to use ?
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Verify always blocked policy

Does there exist
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Verify ‘k-"reachability policy

Are there 'k’ edge-disjoint

ls DST always .o paths from SRC to DST ?
reachable from SRC .

with ‘< k’ failures ?
Max-flow algorithm on ARC

3 edge-disjoint paths

Max-flow = 3 .



Verify path equivalency

Is a traffic class forwarded

in the same manner, before .
and after a configuration
change?

Are ARCs the same ?

e Re-scaling algorithms can result in different weights
* Reduce weights to canonical form and compare
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Additional properties we can verify

* Always |solated Traffic of dlfferent tenants

* Always traverse waypoints: Traffic between
hosts always traverse waypoints




Evaluation

RC construction performance
RC verification performance

RC fidelity



Network configurations

* Configurations from 314 data
center networks operated by a
large online service provider
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Time to build ARCs (seconds)

Time to generate ARC

B Parse configurations
Build ARC from scratch

Networks (sorted by size)

Fast (<10 seconds) even for large networks
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Time to verify ARC
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* Verification per traffic class is parallelizable
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Comparison with Batfish
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3 - 5 orders of magnitude speedup
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ARC fidelity

* For any given failure scenario, is ARC shortest
path == actual network path?

* Formally prove ARC fidelity for networks with:
— Routing protocols : OSPF, RIP, BGP
— Route redistribution is acyclic
— Route selection preference follow a global order

96% of networks satisfy these properties
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ARC fidelity

* For remaining networks
— We can still generate the graph structure
— Cannot generate edge weights
— Verify “always blocked”, “k-reachability”

All properties can be verified

96%

\_'_I

Cannot verify path equivalence
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Summary

* Network verification under
failures can be formulated as
graph analysis

* Presented an abstract
representation, ARC

e Can construct high fidelity ARCs
for 96% of networks

* 0(103)-0(10°) speedupin

verification
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