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ABSTRACT

We consider the complexity of join problems, focusing on
equijoins, spatial-overlap joins, and set-containment joins.
We use a graph pebbling model to characterize these joins
combinatorially, by the length of their optimal pebbling
strategies and computationally, by the complexity of dis-
covering these strategies. Our results show that equijoins
are the easiest of all joins, with optimal pebbling strategies
that meet the lower bound over all join problems and that
can be found in linear time. By contrast, spatial-overlap
and set-containment joins are the hardest joins, with in-
stances where optimal pebbling strategies reach the upper
bound over all join problems and with the problem of discov-
ering optimal pebbling strategies being NP-complete. For
set-containment joins, we show that discovering the optimal
pebbling is also MAX-SNP-Complete. As a consequence,
we show that unless NP = P, there is a constant ε0, such
that this problem cannot be approximated within a factor
of 1 + ε0 in polynomial time. Our results shed some light
on the difficulty the applied community has had in finding
“good” algorithms for spatial-overlap and set-containment
joins.

1. INTRODUCTION

The “join” operation has received a great deal of attention
both from database researchers and from database system
implementers. Recall that in relational algebra, the join
operation can be expressed as a join selection predicate on
the cross product of two relations. The most studied and
common join is the equijoin, in which the join predicate is
equality. However, more recently, with the advent of DBMSs
with extensible type systems, research has turned to joins
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with other classes of join predicates, including spatial over-
lap joins and set containment joins. In this paper, we ask
if there is anything intrinsically harder about joins with dif-
ferent classes of join predicates.

Our motivation for this work comes from a growing intu-
ition that spatial overlap and set containment joins really
are harder than equijoins. For equijoins, there are a num-
ber of recognized good algorithms, including index nested
loops, sort-merge join, and hash-join; since these algorithms
were first proposed, subsequent research has focussed on
optimizations of these algorithms rather than on new al-
gorithms. However, when we turn to spatial overlap joins
and set containment joins, the situation is different. While
there are a number of algorithms for these joins, at some
level, they are not as satisfying as the equijoin algorithms,
requiring either replication of data or repeated processing
of data. Spatial join and set-containment joins cannot be
considered to be solved problems.

Of course, from a superficial perspective, these joins are
clearly harder — they are more complicated. Our goal here
is to make this statement precise in a formally provable way.
It turns out that the simple problem of joins with different
classes of join predicates has a surprisingly rich structure.
While our goal is not to devise new algorithms for these
problems, our results do shed some light on the problems
the community has had in devising good algorithms for spa-
tial overlap and set-containment joins.

To compare the difficulty of different join predicates, we
model the fundamental operations in a join computation
as a pebbling game, and analyze this pebbling game. Our
results show that equijoins are the easiest of all joins both
combinatorially and computationally, with optimal pebbling
strategies that meet the lower bound over all join problems
and that can be found in linear time. By contrast, we show
that spatial-overlap and set-containment joins are the hard-
est joins, with instances where optimal pebbling strategies
reach the upper bound over all join problems, and with
the problem of discovering optimal pebbling strategies being
NP-complete. For set-containment joins, we show that dis-
covering the optimal pebbling is also MAX-SNP-Complete.
As a consequence, we show that unless NP = P, there is a
constant ε0, such that this problem cannot be approximated
within a factor of 1 + ε0 in polynomial time.



2. THE PEBBLE GAME MODEL

In this paper, for simplicity, we assume that all relations
have a single column, and that all joins are on that column.
The relations are allowed to be multi-sets. We consider join
problems defined as follows: Given two relations R(A) and
S(B) and a join predicate ./, generate pairs of tuples (r, s),
r ∈ R and s ∈ S, such that r ./ s holds. Perhaps the
simplest join is the equijoin, in which r ./ s if r.A = s.B.
Equijoins in relational systems are an extremely well-studied
problem; see [2] for a good overview.

For equijoins, A and B can be over any domain that sup-
ports equality. In traditional relational systems, these do-
mains are either character strings or are some flavor of nu-
meric type. Recently, with the advent of object-relational
DBMS [15], researchers have begun considering (and devel-
opers have begun implementing!) domains of other types.
These new types include spatial types, in which the elements
of the domain are typically polygons over some coordinate
system; and set-valued types, in which the elements of the
domain are sets.

Over these new domains, researchers have begun investigat-
ing algorithms to support new join predicates. In spatial do-
mains, the most common join considered has been polygon
overlap [3, 8, 13] (here, r.A ./ s.B if the polygon in r.A over-
laps the polygon in s.B.) In set-valued domains, the most
common predicate considered has been set-containment [5,
14], in which r.A ./ s.B if r.A ⊆ s.B.

Since our goal is to study the join problems themselves, and
not specific algorithms for their evaluation, we need an ab-
stract model for join computation that is independent of
any algorithm. In our work we model an instance of the
join problem as a bipartite graph G = (R, S, E), where R
has one vertex for every tuple in R and S has one vertex for
every tuple in S. Vertices u ∈ R and v ∈ S are connected
by an edge in E if the corresponding tuples join under the
join predicate. We call this the join graph of this instance.

For every pair of tuples (r, s) that joins, any join algorithm
has to consider this pair of tuples at some point of time in
its execution and produce a result tuple. We model this by
stating that the join algorithm places one pebble on each
vertex that corresponds to r and s in the join graph and
removes the edge between them. Performing a join can then
be modeled as a sequence of moves of pebbles in the join
graph, the purpose of which is to delete all edges.

Clearly, this simple abstract model does not model all of the
costs in a join algorithm (although the “merge” phase of a
sort-merge join does in some sense resemble this pebbling
game). This is intentional; recall that our goal is to explore
differences in the intrinsic difficulty of join problems rather
than to explore the performance of specific algorithms.

The pebbling game can be described as follows. We are
given a bipartite graph1 G = (R, S, E), where R and S are
the two partitions and E ⊆ R × S. We are also given two
pebbles, which can be placed on nodes in the graph. We

1This definition applies for general graphs as well.

start with no pebbles on the graph. When the two pebbles
are on the incident vertices of an edge, the edge is deleted.
In a single move, one of the two pebbles can be moved to
another node. A pebbling scheme is a sequence of moves
that deletes all edges. We denote a pebbling scheme by a
sequence of pebbling configurations P = p1, p2, . . . pk, where
each pi is a pair of nodes (u, v).

Our pebbling game deals with only the edge set of G, hence
we will remove a priori all isolated vertices, and assume
henceforth that all G in this paper have no singletons. The
input size for our problem is m, the number of edges in
G. This is also the number of tuples produced by the join.
Thus, our results are expressed in terms of the output size.

In related work, a similar pebbling game was considered
in [6]. There, the nodes of the graph were disk pages of
tuples, and the pebbling cost was used to capture the I/O
cost of scheduling page fetches for this specific layout of disk
pages. The main result of that paper was that the problem
of finding the optimal pebbling scheme is NP-Complete. It
was shown in [7] that finding the optimal pebbling scheme
for spatial joins is NP-Complete. This was also in the con-
text of scheduling page-fetches for a specific layout of disk
pages. These results imply Theorem 4.2. However, their
work differs from ours in that, in their approach there was
no notion of the inherent complexity of a join predicate.
Rather, the focus was on the problem of scheduling page-
fetches. In particular, they did not consider upper and lower
bounds on the length of optimal pebbling sequences, nor did
they use their model to investigate the complexity of differ-
ent classes of join predicates.

2.1 Cost Models
In this section, we describe our cost model and some of its
useful properties.

Definition 2.1.: Let G be a bipartite graph and P =
p1, p2, . . . pk be a pebbling scheme for G. The cost of P is
π̂(P ) = k + 1, the number of pebble moves (1 is added to
account for the initial placement of a pebble). The optimal
pebbling cost for G is denoted by π̂(G).

In this formulation of the problem by a pebbling game, the
essential input to the problem is the edge set of the graph,
while the vertex set is secondary, and isolated vertices are
removed. If G is disconnected, then any pebbling scheme has
to pay a cost of one for placing a pebble in a new component,
which more or less represents a start up cost. To reflect more
intrinsically the cost of a good pebbling scheme, we define

Definition 2.2.: The effective cost of a pebbling scheme
P , π(P ), is π(P ) = π̂(P )−β0(G), and π(G) = π̂(G)−β0(G),
where β0(G) is the number of connected components in G,
a.k.a. the 0th Betti number.

In every move, at most one edge can be deleted, and in an
optimal scheme, at most two moves are required to delete a
given edge. Hence,

Lemma 2.1.: If G is a graph with m edges, then m+1 ≤
π̂(G) ≤ 2m



Corollary 2.1.: For a connected graph G with m edges,
m ≤ π(G) ≤ 2m − 1.

A disconnected graph with several connected components
represents essentially separate join problems. The following
additivity lemma states that there is nothing to be gained in
our model by lumping these problems together.

Lemma 2.2.: The disjoint union G ∪ H of two bipartite
graphs G and H satisfies:

π̂(G ∪ H) = π̂(G) + π̂(H)

π(G ∪ H) = π(G) + π(H)

PROOF: First of all, it is easy to see that π̂(G∪H) ≤ π̂(G)+
π̂(H). We now have to show that π̂(G∪H) ≥ π̂(G)+ π̂(H).
Let P be an optimal pebbling scheme for G ∪ H. Without
loss of generality, let us assume that the first edge deleted by
P is an edge in G. We claim that there is a pebbling scheme
P ′ for G∪H which deletes all edges of G before deleting any
edge of H, and π̂(P ′) ≤ π̂(P ). The key observation is that
for any pair of pebbling configurations p1 = (x1, y1) and
p2 = (x2, y2), where x1, y1, x2, y2 are all distinct, it takes
at least two moves to change the configuration from p1 to
p2. Let e1 be the first H-edge deleted in P . If there are
G-edges deleted in P after e1, let the first such be e2. Let e3

be the last G-edge deleted after e2 before any more H-edges
are deleted. The run of edges between e2 and e3 are all G-
edges. Now modify P so that this run e2 . . . e3 is placed just
before e1. Since G and H are disconnected, moving from an
edge in one component to another takes at least two moves,
so the costs associated to e1 and e2 in P (i.e. the cost of
changing the pebbling configuration to ei from the previous
configuration) were at least 2. Hence the new scheme has
cost no more than P , yet has more G-edges removed before
any H-edge is removed. Proceeding thus, we can see that
there is an optimal pebbling scheme P ′ which deletes all
G-edges before moving on to H-edges. 2

Given the additivity lemma (Lemma 2.2), in the rest of the
paper, we focus on connected graphs.

From the additivity lemma and Corollary 2.1 it follows that

Lemma 2.3.: For a graph G with m edges, m ≤ π(G) ≤
2m − 1

Definition 2.3.: We say that G has a perfect pebbling
scheme, if π(G) = m, where m is the number of edges in G.

Lemma 2.4. : If G is a matching with m edges, then
π̂(G) = 2m and π(G) = m.

2.2 Relationship of Pebble Game to TSP
A pebbling scheme “moves” from one edge to the next. If
we view the edges as “abstract” nodes, it is in some sense a
traveling salesman path. To capture this intuition, we use
the notion of line graphs [4]. The line graph L(G) of a graph
G is a graph in which each edge in G is represented by a
node. Two nodes in L(G) are adjacent iff the corresponding
edges in G share an end point.

Proposition 2.1. Let G be a connected (bipartite) graph
with m edges. Then π(G) = m iff L(G) has a Hamiltonian
path.

PROOF: Recall that G has a perfect pebbling scheme if
π(G) = m. Let P be a perfect pebbling scheme for G.
Then every move deletes an edge. This sequence of edges
constitutes a Hamiltonian path in L(G). Conversely, let
L(G) have a Hamiltonian path. View the sequence of edges
in the path as a sequence of pebbling configurations. We get
a perfect pebbling scheme for G. 2

In order to generalize the above proposition for imperfect
pebbling schemes, we view L(G) as a weighted complete
graph. The weight between two nodes is set to one if there
is an edge between them and two, otherwise. In this “com-
pleted” L(G), any traveling salesman tour never needs to
visit a node more than once. Thus, in the rest of the paper,
we use the term TSP tour to mean a sequence of visits to
every node exactly once.

Proposition 2.2. The optimal TSP tour in L(G) has
cost exactly π(G) − 12.

We omit the proof here.

In L(G), let us call the edges of weight one good and edges of
weight two bad. If a TSP tour moves along a bad edge, it is
said to jump. The cost of any TSP tour is m− 1 +J , where
m is the number of nodes in L(G) and J is the number of
jumps. J is said to be the extra cost of the tour.

3. COMBINATORIAL BOUNDS ON THE
PEBBLING COST

We examine the structure of the join graphs of the following
predicates: 1) equijoins, 2) spatial overlap joins, and 3) set
containment joins and establish combinatorial bounds on
the optimal pebbling cost.

Before moving on to the details of the join graphs for the
different predicates, let us observe the following result for an
arbitrary bipartite graph (in fact, the following proof is valid
for a general connected graph that need not be bipartite).

Theorem 3.1. : Let G be a connected bipartite graph.
Then π(G) ≤ d1.25me − 1, where m is the number of edges
in G.

PROOF: We show that L(G) has a TSP tour of cost at most
d1.25me − 2. We give a partition E = E1 ∪ . . . ∪ Ek, where
each Ei has a Hamiltonian path and at most one |Ei| < 4
(E is the set of nodes in L(G)). Without loss of generality,
|E| ≥ 4 since all connected graphs of order at most 3 have
a Hamiltonian path. It is known that L(G) is connected
given G is connected, and K1,3 is not an induced subgraph
of L(G) [4].

2The difference by 1 is merely due to the way the length of
a TSP tour is typically measured, namely the first vertex of
the tour counts 0.



Hence, in any (rooted) Depth First Search (DFS) tree T of
L(G), any node has at most two children. We call a pair
of nodes twins if they are both leaves and share the same
parent. If l1, l2 are twins, let p be their parent and g be the
grandparent. By being K1,3-free and since |E| ≥ 4, g exists,
and either l1 or l2 is adjacent to g. Without loss of generality
it is l1. Remove the edge (g, p) and add (g, l1) in the DFS
tree T . Note that, by repeating this procedure we obtain a
tree T ′ which has no twins and where every node has at most
two children. Consider all the nodes that have at least four
descendants (including itself). Among all such nodes pick
one at the lowest level and call it r. It can be verified that
the subtree rooted at r is a path and hence is Hamiltonian.
Remove the nodes in this subtree from L(G). The resulting
graph is still connected. By repeating this procedure, we
can obtain the desired partitioning of the nodes in L(G).2.

While the above construction yields an algorithm that is
linear in the size of the line graph, an alternative proof of
the above theorem provides us with a linear time algorithm
to achieve this bound.

Lemma 3.1.: Given a connected bipartite graph G with
m edges, finding a pebbling scheme with cost ≤ d1.25me can
be done in linear time.

3.1 Equijoins
Let us first consider equijoins. Every connected component
in the join graph for equijoins is a complete bipartite graph.

Lemma 3.2.: If G is a complete bipartite graph with m
edges, then π(G) = m.

PROOF: Let G be a k × l complete bipartite graph. Let
the vertices on one side be u1, . . . , uk and on the other side
be v1, . . . , vl. Then the sequence of pebbling configurations:
(u1, v1),(u1, v2),. . . ,(u1, vl),(u2, vl),(u2, vl−1), . . . ,(u2, v1),
(u3, v1),. . . pebbles G with cost m, where m is the number
of edges in G. 2

Now, let us examine the optimal pebbling cost of the join
graph for an equijoin.

Theorem 3.2. : Let G be the join graph of an equijoin,
with m edges. Then, π(G) = m. That is, the join graph for
equijoins can be pebbled perfectly.

PROOF: No pebble moves are needed for isolated nodes. By
Lemma 3.2 every connected component in the join graph can
be pebbled perfectly. The theorem follows from Lemma 2.2
2

3.2 Set Containment Joins
Next, we turn to set containment joins. These joins are
universal in the following sense.

Lemma 3.3.: Given any bipartite graph G = (R, S, E),
there is an instance of the set containment join problem such
that G is its join graph.

PROOF: Let R = {r1, r2, . . . , rk} and S = {s1, s2, . . . , sl}.
Consider the instance of set containment joins where ri de-
notes the tuple {i}, and sj denotes the tuple

{i : (ri, sj) ∈ E}

We can see that the join graph for this instance of set con-
tainment joins is G. 2

Thus, the lower and upper bounds on the pebbling cost of
set containment joins is the same as the bounds for general
bipartite graphs. As shown in Theorem 3.1, any connected
bipartite graph can be pebbled in 1.25 times the number of
edges.

On the other hand, there are bipartite graphs that require
the above bound as we now show.

Theorem 3.3.: There is a family of bipartite graphs F,
such that for any graph G ∈ F,

π(G) = d1.25me − 1

PROOF: Consider the family of bipartite graphs F={G3, G4,
G5, . . . }, where G3, G4, G5 are shown in Fig 1(a), and Gn

for a general n is built similarly. Let G be any graph in this
family.

By Theorem 3.1, we know that π(G) ≤ d1.25me − 1, where
for Gn, m = 2n. We now show that π(G) ≥ d1.25me − 1.
We do this by proving that in the line graph of G, L(G),
viewed as a complete weighted graph as described above,
any TSP tour must cost at least d1.25me − 2.

The line graph for G5 is shown in Figure 1(b). In general,
L(Gn) is Kn with n extra nodes of degree 1, each connected
to the n nodes of Kn in a 1-1 fashion. Consider a TSP tour
of L(Gn). Let B+ = {nodes entered via a bad edge}, and
B− = {nodes left via a bad edge}. The TSP tour of L(Gn)
has cost m − 1 + J , where J = |B+| as well as J = |B−|.
Hence, 2J = |B+| + |B−| ≥ |B+ ∪ B−|. Now L(G) has
n = m/2 vertices of degree one. Any TSP tour should either
enter or exit each of these leaves by a bad edge, except for
the very first and last node of the tour. It follows that
|B+∪B−| ≥ m/2−2. Thus, 2J ≥ m/2−2 ⇒ J ≥ dm/4e−1.
So the total cost of the tour should be at least m− 1 + J ≥
d1.25me − 2. 2

We already noted that this worst case bipartite graph can
be realized as a set containment join. Note that the above
graph cannot be the join graph for an equijoin since it is not
a complete bipartite graph. Thus, unlike equijoins where
there is always a perfect pebbling scheme, there are instances
of set-containment joins where any optimal algorithm to pro-
duce a pebbling scheme, irrespective of its computational
complexity, yields a pebbling cost of 1.25 times the number
of edges.

3.3 Spatial Overlap Joins
Next we turn to spatial overlap joins. By the above upper
bound result on general join graphs, we know that any spa-
tial join graph can be pebbled in 1.25 times the number of
edges. It turns out that there is an instance of the spatial
join whose join graph has worst case behavior. Hence, even
spatial overlap joins are also inherently more difficult than
equijoins by a purely combinatorial metric.

Lemma 3.4.: There is a family of instances of the spatial
overlap join problem whose join graphs are the ones shown
in Fig 1(a).
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Line Graph for G5

Figure 1: Example for Lower Bound

4. FINDING THE OPTIMAL PEBBLING
SCHEME

We now proceed to classify the join predicates under con-
sideration by the computational complexity of finding the
optimal pebbling scheme.

Definition 4.1. : PEBBLE is the following problem:
Given a bipartite graph G, find the optimal pebbling scheme.
For a given ε > 0, the ε-approximation problem is to find
an approximation to π(G) within a factor 1 + ε. The deci-
sion version PEBBLE(D) is: Given G and integer K, decide
whether π(G) ≤ K.

Theorem 4.1. : PEBBLE can be solved in linear time
for equijoin graphs.

We observe that the construction given in Theorem 3.2 is
similar to the merge phase of sort-merge join. For a general
join graph, PEBBLE turns out to be hard. It does not
become easier even if the input graph is known to be the
join graph of spatial overlap join. This follows from [6] and
[7].

Theorem 4.2.: PEBBLE(D) is NP-Complete [6]. PEB-
BLE(D) remains NP-Complete even if the input graph is
known to be a spatial overlap join graph [7].

The first part of Theorem 4.2 follows directly from [6], al-
though their motivation was different from ours, in that they
were investigating the scheduling of page reads during joins
rather than considering computing joins over individual tu-
ples with different classes of join predicates. In [7], the au-
thors considered scheduling page reads, but in their case
they assumed that the pages were rectangles partitioning a
coordinate system. As this is a special case of the spatial
overlap join we consider, their result implies the second part
of preceding theorem.

The question now arises whether we can find approximation
algorithms for PEBBLE within any constant factor 1 + ε
in polynomial time. By Lemma 3.1, we have a linear time

approximation algorithm that finds a pebbling scheme that
is within a factor of 1.25 from the optimal. With more work,
one can approximate better. In particular, we note that an
algorithm by Papadimitriou and Yannakakis can be used to
approximate PEBBLE within a factor of 7/6 [12].

An approximation problem is said to have a Polynomial
Time Approximation Scheme (PTAS) if there is a polyno-
mial time algorithm such that for every constant ε > 0, there
is a polynomial pε, such that for any problem instance x, it
finds an approximate solution to the problem within 1 + ε
(for minimization problems) of the optimal solution, in time
pε(|x|). Note that NP-hardness does not imply either the
existence or the non-existence of PTAS, even assuming NP
6= P.

The complexity class MAX-SNP was defined by Papadim-
itriou and Yannakakis [11] and is somewhat technically in-
volved (see [9]). A problem in MAX-SNP is MAX-SNP-
Complete, if every problem in MAX-SNP is reducible to it
by a certain L-reduction. If a problem A is L-reducible to
a problem B, then any PTAS for B gives a PTAS for A. In
particular, if one knows that A does not possess a PTAS,
then neither does B. The PCP theory [1] proves that no
MAX-SNP-Complete problem has a PTAS, assuming NP 6=
P. We show that PEBBLE is MAX-SNP-Complete.

Membership in MAX-SNP for PEBBLE can be shown di-
rectly, or by noticing that PEBBLE already has a constant
factor approximation algorithm, which, for problems in NP,
is known to imply membership in MAX-SNP [9].

We next define L-reduction, which is basically a reduction
that preserves approximability.

Definition 4.2.: ([9]) Let A and B be two optimization
problems. An L-reduction from A to B is a pair of functions
f and g, both computable in polynomial time, such that there
exist constants α, β > 0,

1. If x is an instance of problem A, then f(x) is an in-
stance of B, such that

OPT (f(x)) ≤ αOPT (x),

where OPT denotes the optimal cost;



2. If s is any feasible solution of f(x), then g(s) is a
feasible solution of x such that

|OPT (x) − Cost(g(s))| ≤ β|OPT (f(x)) − Cost(s)|.

Our proof of MAX-SNP-Completeness for PEBBLE is an L-
reduction from a known MAX-SNP-Complete problem. Let
TSP-(1,2) be the problem of finding the optimal traveling
salesman tour in a complete graph, where the edge weights
are either 1 or 2. Let TSP-k(1,2) be the same problem,
where each node in the graph has at most k incident edges
of weight 1. Let HAM-PATH-k be the Hamiltonian path
problem on graphs with bounded degree of k. It is known
that TSP-4(1,2) is MAX-SNP-Complete [12]. We first give
an L-reduction from TSP-4(1,2) to TSP-3(1,2). Then we
give an L-reduction from TSP-3(1,2) to PEBBLE via line
graphs.

Theorem 4.3.: TSP-3(1,2) is MAX-SNP-Complete.

PROOF: TSP-4(1,2) was shown to be MAX-SNP- Complete
in [12]. We L-reduce this problem to TSP-3(1,2). HAM-
PATH-3 is shown to be NP-Complete by giving a reduction
from HAM-PATH-4 in [10] using the gadget shown in Fig 2.
We use this gadget in our L-reduction. We call this gadget
a diamond. We call the nodes a,b,c and d corner nodes and
the others, central nodes. Notice that in the diamond, a
Hamiltonian path exists between any two corner nodes and
any Hamiltonian path in the diamond should start and end
in corner nodes.

a

b

c

d

Figure 2: Gadget used to show TSP-3(1,2) is MAX-
SNP-Complete

Given an input graph G, degree bounded by four, we obtain
a graph f(G) = H, by replacing every node u of degree
four by a diamond and connecting each of the four edges to
exactly one corner. We call this diamond du.

We first show that OPT (H) ≤ 11OPT (G). Let T be the
optimal TSP tour in G. We prove the above bound by ex-
hibiting a tour T ′ of H within the above bound. We replace
each node u of degree 4 in T with a suitable Hamiltonian
path from corner c1 to corner c2 of the diamond correspond-
ing to u. The two (distinct) corners c1 and c2 are chosen
as follows. In T , let the node before u be x and the one
after it be y. If (x, u) is a good edge let c1 be the corner

corresponding to x. Otherwise choose c1 to be any of the
corners. c2 is chosen similarly.

It is easy to see that the extra cost (number of jumps) of T ′

is at most that of T . Since the number of nodes in H is at
most 11n, where n is the number of nodes in G, OPT (H) ≤
11OPT (G).

We next exhibit the reduction g, which given a TSP tour T of
H, produces a TSP tour T ′ of G, preserving approximability.
We call T nice with respect to a node u of G, if the tour
visits all the nodes of du (the diamond corresponding to u)
consecutively. The tour is called nice if it is nice with respect
to every node of G. We show that T can be converted into
a nice tour without increasing its cost.

Let u be an arbitrary node of degree 4 in G. We convert T
into a tour Tu that is nice with respect to u by the following
procedure. Denote the segment of T between two nodes p
and q, by p− q segment. A du-segment of T is one where all
the nodes are from du. A segment s of T is called perfect if
it every edge in s is good and s is entered and left through
good edges.

The procedure considers all the du-segments in T and chooses
a segment s as follows. If a perfect du-segment is available,
it is chosen as s (if more than one is available any one is cho-
sen). Otherwise, s is chosen arbitrarily. Let the entry and
exit points for s be a and b. Let the node appearing before
a in T be p and the one appearing after b be q. Two distinct
corner points c1 and c2 are chosen and s is replaced by the
Hamiltonian path from c1 and c2. The procedure sets c1 = a
if a is a corner point and c2 = b if b is a corner point. ci are
chosen arbitrarily otherwise. All the other du-segments in
T are removed. This modified tour Tu is certainly nice with
respect to u.

The chosen segment s may or may not be perfect. In ei-
ther case, the extra cost in the p − q segment of Tu is no
more than its extra cost in T . Now let us consider the extra
cost incurred by bypassing deleted du-segments. If s is not
perfect, then all the other du-segments are also not perfect.
Bypassing these does not increase the extra cost in Tu. Con-
sider the case where s is perfect. Then there can be at most
one other perfect du-segment s′. Assume such an s′ exists.
Bypassing this may add an additional jump in Tu. But, by
examining the gadget, we find that no two perfect segments
can cover all the nodes in the gadget. Thus, there has to be
at least one du-segment s′′ that is not perfect. Being per-
fect, s and s′ use all the four corner points and hence, s′′ has
to be entered and exited via jumps. Bypassing s′′ saves one
of these jumps and that compensates for the (potentially)
additional jump incurred in bypassing s′. If there are any
other du-segments (other than s, s′ and s′′), they are all
imperfect and removing them does not add any additional
jump in Tu.. The only case left to be considered is when s is
perfect and there is no other perfect du-segment. Bypassing
the imperfect segments does not add any extra jumps.

We have a nice tour with respect to one node u. By repeat-
ing this process for all nodes we get a nice tour T ′′ of H.
Now we obtain a tour T ′ = g(T ) of G by visiting the nodes
in the same order in which the diamonds appear in T ′′. It is



easy to see that the extra cost of T ′ is no more than that of
T ′′. Hence we have an L-reduction with α = 11 and β = 1.
2

This result has independent interest in Theory. It is known
that HAM-PATH-3 is NP-Complete. This theorem shows
that the corresponding TSP version of the problem is MAX-
SNP-Complete, improving the result that TSP-4(1,2) is MAX-
SNP-Complete.

Theorem 4.4.: PEBBLE is MAX-SNP-Complete.

PROOF: A problem in NP is in MAX-SNP iff it has some
constant factor approximation algorithm [9]. By Theorem 3.1
we have an approximation algorithm that does this. We now
L-reduce TSP-3(1,2) to PEBBLE.

This reduction uses concepts from [6]. Given a TSP-3(1,2)
graph G = (V, E), f(G) outputs the incidence graph of G,
namely, the bipartite graph B = (X, Y, E′), where X = V
and Y = E. A node e in Y is joined with a node x in X, if
the edge e in G has x as one of its end points.

We claim that f satisfies the first property of L-reductions.
Let the line graph of B be L(B). Observe that it can be
obtained directly from G, by replacing every vertex of degree
i ∈ {1, 2, 3} by a clique of i vertices, where each of the i
edges is connected to exactly one of the i vertices of the
clique. First note that, if the optimal tour in G is of length
c, then we can obtain a tour of length at most 3c in L(B).
This tour of L(B) can be translated into a equally good
pebbling strategy for B via Proposition 2.2. Therefore, f
satisfies property 1 in Def 4.2 with α = 3.

Now, given a pebbling strategy for B, it can be first trans-
lated into an equally good TSP tour T for L(B). This tour
can be converted into a tour T ′ of G, with β = 1, by a
process similar to the one in Theorem 4.3. 2

Corollary 4.1.: TSP-3(1,2) for line graphs is MAX-
SNP Complete.

The consequence of MAX-SNP-Completeness for PEBBLE,
following PCP theory, is that assuming NP 6= P, there is
some absolute constant ε0 > 0, such that there is no poly-
nomial time approximation algorithm for PEBBLE within
1 + ε0. This is a stronger statement than the non-existence
of a PTAS.

5. CONCLUSION

While the development of join algorithms is perhaps one of
the best studied problems in database systems research, to
date there has been very little published about the intrin-
sic difficulty of join problems. This may be because joins
are too “easy.” Any join can be computed in polynomial
time — just compute the cross product and iterate through
the result applying the join predicate to each tuple in the
cross product. While this is true, this coarse-grained analy-
sis belies the experience of researchers who have tried to find
truly “good” algorithms for these join problems. As we have

shown in this paper, if one “digs down” into the combinato-
rial complexity of these joins and the resulting optimization
problems, one finds a surprisingly rich structure. This struc-
ture confirms the experience of our community in developing
and implementing join algorithms, that is, that equijoins are
“easier” than spatial overlap joins or set-containment joins.

A number of interesting problems remain. One of the most
intriguing is the following: many join algorithms in prac-
tice work by first mapping the input relations R and S
into R1 . . . Rm and S1 . . . Sn, and doing the join by inves-
tigating a subset of the joins Ri ./ Sj , where 1 ≤ i ≤ m
and 1 ≤ j ≤ n. This is done either to explore parallelism
or to make better use of main memory (although with to-
day’s memory sizes the second reason is becoming less im-
portant.) Here it is natural to ask how hard it is to find the
optimal mapping of the tuples of R and S to the Ri and
Sj . For the three classes of joins we consider in this paper
(equijoins, spatial overlap, set containment), this problem is
NP-complete. However, we conjecture that the problem for
equijoins has good approximation algorithms.
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