
Semantics-Based Reverse Engineering of Object-Oriented
Data Models

G. Ramalingam
grama@us.ibm.com

Raghavan Komondoor
rkomondo@in.ibm.com

John Field
jfield@us.ibm.com

Saurabh Sinha
saurabhsinha@in.ibm.com

IBM Research

ABSTRACT
We present an algorithm for reverse engineering object-oriented
(OO) data models from programs written in weakly-typed
languages like Cobol. These models, similar to UML class
diagrams, can facilitate a variety of program maintenance
and migration activities. Our algorithm is based on a se-
mantic analysis of the program’s code, and we provide a
bisimulation-based formalization of what it means for an
OO data model to be correct for a program.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, maintenance,
and enhancement—restructuring, reverse engineering, and

reengineering ; F.3.2 [Logics and Meanings of programs]:
Semantics of programming languages—program analysis

General Terms: Algorithms, Languages

Keywords: type inference, program understanding

1. INTRODUCTION
Despite myriad advances in programming languages since

business computing became widespread in the 1950s, legacy
applications written in weakly-typed languages like Cobol
still constitute the computing backbone of many businesses.
Such applications are notoriously difficult and time-consuming
to update in response to changing business requirements.
This difficulty very often stems from the fact that the logical
structure of these applications and the data they manipu-
late is not apparent from the program text. Two sources for
this phenomenon are the lack of modern abstraction mech-
anisms in legacy languages, and the gradual deterioration
of the structure of code and data due to repeated ad-hoc
maintenance activities.

In this paper, we focus on the problem of recovering object-
oriented data models from legacy programs, which can fa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

cilitate a variety of program maintenance activities by pro-
viding a better understanding of logical data relationships.
Our recovered models, similar to UML class diagrams, in-
corporate classes, which contain data fields, and inheritance
relationships between classes. A key aspect of our approach
to constructing a data model is that it is based on an anal-
ysis of the code that manipulates the data, rather than an
analysis of the declaration of the variables that store the
data.

A second contribution of this paper is a (bisimulation-
based) formal characterization of what it means for an object-
oriented model to be a correct data model for a program.
Our inference algorithm either produces correct models ac-
cording to our characterization, or fails to produce any model
(this happens in certain unusual situations, as described in
Section 2).

We illustrate our techniques using Cobol, but we believe
our approach is applicable to other weakly-typed languages
(e.g., PL/I, 4GLs, and assembly languages) also.

1.1 A motivating example
Consider the example program in Figure 1. We will use

this as a running example to illustrate the key deficiencies
of Cobol1 that hinder program understanding, as well as the
working of our inference algorithm.

What do the declarations say? The initial part of the pro-
gram contains variable declarations. Variables are prefixed
by level numbers, e.g., 01 or 05, which serve to indicate
nesting, akin to record-field relationships, among variables.
Thus, account-rec is a structured variable (record) con-
sisting of “fields” ar-acc-num, ar-user-name, and ar-data.
Other variables in the example prefixed by level 01 are sim-
ilarly structured variables. Clauses of the form PIC X(n)
declare the corresponding variable to be of size n, meaning
that it stores byte sequences of length n. The redefines

clause used in the declaration of variable ir-acc-num indi-
cates that it is an overlay of variable ir-user-name, i.e. that
the two variables occupy the same memory locations.

What does the program do? The executable statements fol-
low the data declarations. The program first reads a transac-
tion record into input-record (in statement /1/). Next, the

1We actually use a variant of Cobol that incorporates a few
deviations from the standard syntax for the purpose of clar-
ity.

01 input-record.
05 ir-trans-code pic x(1).

05 ir-user-name pic x(8).
05 ir-acc-num redefines ir-user-name.

05 ir-data pic x(12).
01 account-rec.

05 ar-acc-num pic x(8).

05 ar-user-name pic x(8).
05 ar-data pic x(5).

01 withdrawal-info.
05 wi-amount pic x(6).
05 wi-date pic x(6).

01 date-range.
05 dr-from pic x(6).

05 dr-to pic x(6).
01 log-record.

05 lr-header pic x(9).
05 lr-filler pic x(12).

/1/ READ input-record FROM transact-file.
/2/ READ account-rec FROM account-file

WHERE ar-user-name = ir-user-name.
/3/ MOVE ar-acc-num TO ir-acc-num.
/4/ IF ir-trans-code = ’w’ THEN

/5/ MOVE ir-data TO withdrawal-info
/6/ WRITE ir-acc-num, wi-amount, wi-date TO withdr-file

ELSE
/7/ MOVE ir-data TO date-range

/8/ WRITE ir-acc-num, dr-from, dr-to TO inquiry-file
ENDIF

/9/ MOVE input-record TO log-record.

/10/ WRITE lr-header TO log-file.

Figure 1: Running example

program uses the user name in input-record.ir-user-name

to look up the corresponding account number (in state-
ment /2/). (The READ. . .WHERE statement retrieves a record
account-rec whose ar-user-name field equals ir-user-name
from an indexed file.) Then, this account number is copied
to ir-acc-num (we use field names without qualification
when there is no ambiguity); note that ir-acc-num and
ir-user-name are overlays, so the user name gets overwrit-
ten. Next the transaction record’s ir-trans-code field is
checked; depending on whether the code indicates a “with-
draw” or an “inquiry” transaction, the transaction data
in ir-data is copied to the appropriate top-level variable
(withdrawal-info or date-range), and then appended to
a file (withdr-file or inquiry-file) for further process-
ing. Finally, in statements /9/ and /10/, the first two
fields in the transaction record are extracted (by copying the
record to the top-level variable log-record, then appended
to log-file.

What’s missing? An examination of the program logic re-
veals the following facts:

• the variable ir-data is not a scalar variable, but a
structured variable.

• ir-data is in fact a polymorphic variable – it stores
values of different types.

• ir-data stores values of the same type as date-range
or values of the same type as withdrawal-info.

• ir-user-name and ir-acc-num constitute a logically

disjoint union – i.e., they are not used to refer to the
same data even though they occupy the same mem-
ory locations; we will later present an example with a
contrasting use of redefined variables.

• variables ir-acc-num and ar-acc-num have the same
type – i.e., they are used to store values from the same
logical domain.

• variables wi-amount and wi-date do not have the same
type.

However, there is nothing in the variable declarations (ex-
cept the variable names themselves, which can be an unre-
liable source of information) to give the user any hint about
these facts.

The key deficiency in Cobol that leads to these problems
is that it has no type declaration mechanism. Naturally,
there is no means to declare subtyping either.

We will now show that an object-oriented data model can
be used to compactly convey all of the abovementioned facts,
as well as other useful information. Furthermore, the infer-
ence algorithm we present in this paper can automatically
create this model by analyzing the program’s logic.

1.2 Linked object-oriented models
Figure 2 contains the output of our inference algorithm for

the example in Figure 1. Figure 2(a) contains the object-
oriented model (OOM), drawn as a UML class diagram. An
OOM consists of a set of class definitions as usual: each class
inherits from zero or more classes (its base classes), and has
zero or more fields, while each field has a type which is a
class. In Figure 2(a) each box is a class, with its name at
the top, and list of fields below; inheritance relationships are
shown as arrows from the subclass to the base class. Classes
such as Amount, WithdrDate, which have no explicit fields,
are called atomic classes; they represent scalar values, and
actually have one “implicit” field of type String not shown
here. Note that our inference algorithm does not automat-
ically generate meaningful names for classes and fields (the
names in Figure 2 were supplied manually for expository
purposes); however, heuristics can be used to suggest names
automatically based on the variable names in the program.

The object-oriented model is only one component of our
inference algorithm’s output. The second component is what
we call a link component. The link component is intended to
connect the declared variables in the program to elements
of the inferred model, to illustrate, among other things, the
type of a declared variable. However, in general, a variable
may be used with different types in different parts of the
program, and our inference algorithm is capable of capturing
such information. So, the link component actually connects
variable occurrences in the program with elements of the in-
ferred model. The object-oriented model together with the
links constitute a linked object-oriented model (LOOM).

We will now explain what information the link compo-
nent captures for every variable occurrence. We first note
that our use of the term “variable” is somewhat misleading.
A symbol such as ir-trans-code in our running example
plays a role somewhat different from conventional program
variables. It identifies a part of a structured datum. One
could say that it plays the role of a field (in a class/record
definition) as well.

Hence, the links capture, in addition to the type of a vari-
able occurrence, a qualified access path (which we define be-
low) that identifies the part of a structured datum that the
variable occurrence denotes.

We now formally define the link component. A quali-
fied field name is an ordered pair (C,f), which we will also
denote C.f, consisting of a class C, and a field f in class
C. If no confusion is likely, we will omit the class name
C when referring to a qualified field. A qualified access
path ap is a sequence of one or more qualified field names

Variable reference v
(Var. name:line #) Access path L(v) Type of v
input-record:1 Root.inpRec InputRecord
account-rec:2 Root.accRec AccountRec

ir-user-name:2 Root.inpRec → InputRecord.header → Input-
Header.accId

UserName

ar-acc-num:3 Root.accRec → AccountRec.aNum AccountNum

ir-acc-num:3 Root.inpRec → InputRecord.header → Input-
Header.accId

AccountNum

ir-trans-code:4 Root.inpRec → InputRecord.header → Input-
Header.code

TransactCode

ir-data:5 Root.inpRec → IRWithdraw.info WithdrawalInfo

wi-amount:6 WithdrawRoot.info → Withdrawal-
Info.amount

Amount

ir-data:7 Root.inpRec → IRInquiry.dtRange DateRange
log-record:9 Root.logRec InputRecord

lr-header:10 Root.logRec → InputRecord.header InputHeader

(a) (b)

Figure 2: (a) Object-oriented model, and (b) links from source code (not all links shown), produced by
inference algorithm for the example in Figure 1

(C1.f1) → (C2.f2) · · · → (Ck.fk) such that for each 1 ≤ i < k:
Ci+1 is equal to or is a derived class of the type of Ci.fi.

The links in a LOOM take the form of a function L that
maps each variable occurrence v in the program to an or-
dered pair ((C1.f1) → (C2.f2) · · · → (Ck.fk), Ck+1) consisting
of a qualified access path and a type Ck+1, where Ck+1 is equal
to or is a derived class of the type of Ck.fk. Such a link
may be seen as making the following assertions about the
program state when the statement containing the variable
occurrence v executes, expressed, however, using the vocab-
ulary of the object-oriented model:

• the program’s full memory is of type C1; let us refer to
this as object O1

• for each 1 ≤ i < k the value stored in the Ci.fi field of
object Oi (referred to as object Oi+1) is of type Ci+1

• variable occurrence v refers to object Ok+1, which is
of type Ck+1

(Our formalization of the LOOM semantics, in Section 3,
will clarify how to interpret the above assertions about the
program’s state expressed in terms of the model’s vocabu-
lary.)

Figure 2(b) illustrates the links inferred by our algorithm
for the running example. Each row in the table contains a
variable reference v (the left column), v ’s access path (the
middle column), and the type of v (right column).

1.3 Usefulness of LOOMs
LOOMs recovered by our algorithm make explicit the data

abstractions that programmers use implicitly when writing
programs in weakly-typed languages. As a result LOOMs
enhance program understanding, facilitate certain program
transformations, and can serve as a basis for porting such
programs into newer object-oriented languages that allow
the abstractions to be made explicit. We now illustrate these
advantages using our running example.

OOM by itself is valuable. We first note that just the object-
oriented model (e.g., in Figure 2(a)) gives a valuable overall
summary of the logical data domains manipulated by the
program, and the relationships (nesting as well as inher-
itance) between them. This summary enhances program
understanding.

Subtyping. The occurrence of input-record in statement /1/
has type InputRecord. InputRecord has two subtypes, IR-

Withdraw and IRInquiry. This means that values belonging
to two logical domains – withdraw transactions and inquiry
transactions – reside in input-record at statement /1/.

Base class factoring. Though the data stored in input-record

belongs to one of two logical domains, some of this data is
common to both logical domains. This common data has
been lifted to the base class InputRecord (as field header),
while the data that are unique to the two logical domains
are modeled as fields of the corresponding derived classes.

Record structure of a declared scalar. ir-data is declared
as if it were a scalar variable 12 bytes long. However, the
LOOM shows that its type in statement /5/ is Withdrawal-

Info, which is a class with fields. This means ir-data ac-
tually stores a value that is logically record-structured, in
spite of the declaration to the contrary.

Impact analysis. Consider the following two toy programs
that use the same variables r and s:

Variables Program 1 Program 2

01 r. 01 s. READ r. READ r.

05 r1 pic x. 05 s1 pic x. MOVE r TO s. MOVE r1 TO s1.
05 r2 pic x. 05 s2 pic x. WRITE s1. MOVE r2 TO s2.

WRITE s1.

Observe that it is possible to reorder the fields of record
s or add fields to s in program 2, without affecting the pro-
gram’s behavior. The same is, however, not true for program
1. This is clearly very useful information from a program
maintenance perspective. The models we infer for these pro-
grams capture this information. For Program 1 our algo-
rithm gives the same type (a class C) to all occurrences of
r and s. On the other hand, for Program 2, our algorithm
gives the occurrence of r a type C1 and the occurrence of s
a different type C2; C1 and C2 both have two fields, and the
corresponding fields in the two classes have the same type.
The fact that r and s are given the same type in Program 1
means that they are tightly coupled with respect to their
internal representations. Thus, the inferred model can as-
sist in impact analysis: i.e., understanding the impact of a
proposed change in the program.

Redefinitions. ir-user-name and ir-acc-num are overlays.
They are disjointly used, in the sense that both variables are
never used to access the same runtime value. The LOOM

makes this explicit by giving the occurrences of these two
variables (in statements /2/ and /3/) different types (UserName

and AccountNum, respectively). Had they been used non-
disjointly (e.g., by writing a value into ir-user-name and
then reading the same value via ir-acc-num) they would
have been assigned the same type.

Improved Program Analysis Apart from its use for program
understanding, a LOOM can also be used as the basis for
more precise static program analysis. E.g., many analyses
tend to lose precision in the presence of redefinitions since
they do not distinguish between the different variables oc-
cupying the same memory location (for the sake of conser-
vativeness). The LOOM can indicate when it is safe to treat
such variables separately.

1.4 Correctness of LOOMs
How can we formalize the notion of a LOOM, which cap-

tures certain semantic aspects of a program, as being correct
for that program? Consider the following example:

Variables Program 1 Program 2

01 r1 pic x(10). READ r1. READ r1.
01 r2 redefines r1 pic x(10). WRITE r1. WRITE r2.

READ r2.

WRITE r2.

In the above example r1 and r2 occupy the same memory
locations, due to the redefinition clause in the declaration
of r2. Note that the redefinition is not essential to program
1: if we changed the declaration so that the two variables
occupy disjoint memory locations, program 1’s execution be-
havior will not be affected. In contrast, if we omit the redef-
inition, program 2’s behavior will be affected. Specifically,
the WRITE statement will now write out the initial value of
r2 as opposed to the value read in the first statement.

This idea serves as the basis for our approach to defining
a notion of correctness of LOOMs. A LOOM for a program
may be seen as describing an alternative way to represent
data during the program’s execution. Hence, a LOOM can
be defined to be correct for a program if the program’s “ob-
served execution behavior” does not change if the alterna-
tive data representation determined by the LOOM is used
during program execution.

The rest of the paper is structured as follows: We describe
our algorithm in Section 2. Section 3 specifies the alternate
execution semantics based on the LOOM, as well as the
correctness characterization for LOOMs. Finally, we discuss
related work in Section 4.

2. LOGICAL MODEL INFERENCE ALGO-
RITHM

We present an outline of our algorithm and use our run-
ning example to informally illustrate the main aspects of our
algorithm in Section 2.1. We then present a complete and
formal description of the algorithm in Sections 2.2 through 2.4.

2.1 Overview and illustration of algorithm
Here is an outline of the steps in the algorithm. In Step 1

we compute, using a bidirectional dataflow analysis, a set of
cuts; each cut identifies a certain range (interval) of mem-
ory locations at a certain program point that, at certain
times during execution, stores values all of which must be
represented by a single class in the data model. The class
corresponding to any cut c will contain fields that in turn
correspond to the smaller cuts nested immediately inside

Figure 3: Illustration of cut inference. Cuts marked
with “!” are seed cuts.

the cut c. Thus, the cuts are the bits and pieces from which
we will construct an OOM. Next, in Step 2, we identify field

equivalence and class equivalence relationships that must ex-
ist between the fields and between the classes, respectively,
that we created in Step 1. Specifically, a field equivalence
between a field f1 of class C1 and a field f2 of a class C2

indicates that the two fields must be lifted into a common
base class of C1 and C2, while a class equivalence between
two classes indicates that they must be unified in to a single
class (thus, class equivalence is a full equivalence while field
equivalence is a partial equivalence). In Step 3, we convert
the set of classes and fields determined above (which we call
“candidate” classes and fields) into a class hierarchy (the
OOM) by factoring equivalent fields into appropriate base
classes (after creating the necessary base classes). In Step 4
we create the links, by identifying for every variable occur-
rence its type as well as its access path in the OOM. Finally,
in Step 5, we apply a set of (optional) rules to simplify the
OOM.

In the rest of Section 2.1 we will use our running example
to informally illustrate Steps 1 through 4 of the algorithm
(Step 5, which is simple, is described in Section 2.4).

2.1.1 Step 1: Inferring cuts
Note that every variable corresponds to a range of mem-

ory locations: e.g., in our running example, ir-user-name
corresponds to the range [2,9], while input-record itself
corresponds to the range [1,21].
Introduction of graphical notation to illustrate cut inference.

Consider Figure 3, which focuses on statements /5/ and /6/.
The “boxes” labeled B5,w and B6,w are associated with the
program points before statement /5/ and statement /6/,
respectively. (A program point is the point between two
statements.) Each box at a program point represents the
contents of the program’s entire range of memory locations

at that point.
For purposes of illustration in the figure we show only a

portion of the two boxes, the portion corresponding to top-
level variables input-record and withdrawal-info. Cuts
are shown in Figure 3 using pairs of dashed vertical lines,
with both lines having the same label. We will soon show
how these cuts are inferred. The thin arrow on the left, with
the MOVE statement as its label, between the boxes is what
we call a transition edge. It indicates that the program state
represented by box B5,w transitions to a program state rep-
resented by the box B6,w by executing the MOVE statement.
The bold arrow is a value-flow edge. Value-flow edges exist
between boxes that precede and succeed a MOVE statement;
a value-flow edge has a source interval in the preceding box
(corresponding to the source variable of the MOVE), and a

target interval in the succeeding box (corresponding to the
target variable of the MOVE).
First in cut inference – inferring “seed” cuts. For each vari-
able used in a statement a seed cut is created for the range
corresponding to this variable at the program point preced-
ing the statement; for each variable defined in a statement,
a seed cut is similarly created at the program points be-
fore and after the statement. This ensures, as we will see
later, that the inferred model contains a field and class to
which these variable occurrences can be linked. Consider
statement /5/: We infer a cut corresponding to the range of
ir-data at the program point before statement /5/ and a
cut corresponding to the range of withdrawal-info at the
program points before and after statement /5/. These are
shown as cuts labeled 3! and 7! in Figure 3 (we use “!”s to
denote seed cuts).
Second step in cut inference – propagating cuts. Next, we
infer more cuts by “propagating” already inferred cuts. The
propagation rules are based on the intuition that each cut
represents an object at run time.

Some of these rules are based on value flow ; the intu-
ition here is that the “structure” of a structured value (i.e.,
the set of classes and fields used to model the value) is not
changed by a statement that preserves this value, and we
use cuts to represent the structure of values. Thus, in the
example in Figure 3, cut 4 is propagated from B6,w to B5,w

and cut 3 from B5,w to B6,w , because the memory area con-
taining these cuts is not written to by the MOVE statement
that intervenes between these two program points; addition-
ally, cuts 1 and 2 in B6,w are propagated (backward, via the
value-flow edge) to box B5,w, because they are inside the
value that is copied by the MOVE statement.

Other propagation rules are based on the notion of super-

cut flow. If a statement assigns a new value to a range then
any cut in the box that precedes (succeeds) this statement
that completely contains the overwritten range is propa-
gated to the box that succeeds (precedes) this statement.
This rule can be understood by viewing the assignment
statement as updating a (possibly transitive) field of the
object represented by the containing “super cut”, while pre-
serving the object itself. In contrast, any cut that is com-
pletely contained within overwritten range before the state-
ment will not be propagated. (As we will explain later, if a
cut partially overlaps the overwritten range, our algorithm
will halt.)

Besides boxes for program points, our approach also intro-
duces a box for each data-source statement; these are state-
ments that create new values in a program (e.g., READ state-
ments, assignments of constants or arithmetic expressions to
variables), as opposed to MOVE statements that simply copy
existing values. The data-source box is an interval whose
size is the same as that of the variable being defined, and
has a value-flow edge flowing out of it to the interval corre-
sponding to the variable being defined in the program-point
box that follows the data-source statement. Cut propaga-
tion along these value-flow edges happens just as described
above.

2.1.2 Value partitions and exploded CFGs
We have so far seen simple cuts: those that correspond

to a range at a program point. In general, however, we
will get an unsatisfactory model if we treat all data that
resides in a certain range (of memory locations) at a cer-

tain program point uniformly (i.e., if we use a single class
to describe all this data). Consider our running example.
It follows from our description of the program’s logic that
the variables input-record and ir-data actually store dif-
ferent “types” of data for a “withdraw transaction” and an
“inquiry transaction”. A better model is obtained by cre-
ating separate classes to describe the data corresponding to
these two cases.

We achieve this by generalizing the concept of a cut so
that it can describe the data stored in a certain range of
memory locations at a certain program point under certain

conditions, as follows.
A value partition of a program is a mapping of each pro-

gram point u and each data-source statement u to a finite
set of predicates µ(u) (known as the value partition at u);
for a program point its predicates refer to variables in the
program, while for a data-source statement its predicates
refer to the variable defined at that statement; further, for
any program state that can arise at a program point u, µ(u)
must contain at least one predicate that the program state
satisfies; similarly, for any value generated by a data-source
u, µ(u) must contain at least one predicate that the value
satisfies. (Strictly speaking, we require the set of predicates
in µ(u) to only cover the state spaces arising at u, not par-
tition them; still, partitions would often make sense in prac-
tice, and hence we continue to call µ(u) a “value partition”.)

Consider the running example in Figure 1. Here is a can-
didate value partition for this example, using the shorthand
notation w for the predicate ir-trans-code = ’w’, and the
notation i for the negation of this predicate:

{w, i} for all program points that are after state-
ment /1/ and outside the “if” statement, as
well as for the data-source statement /1/ .

{true} for the program point before statement /1/ as
well as for the data-source statement /2/.

{w} for the program points inside the “then”
branch of the “if” statement.

{i} for the program points inside the “else”
branch.

At a high-level, our approach is to (1) compute a suit-
able value partition for the given program, (2) construct an
exploded graph using the value partition (as described be-
low), wherein each program point u and each data-source
u is represented by several boxes, one for each predicate in
µ(u), and (3) apply all five steps of the inference algorithm
(as outlined in the beginning of Section 2.1) to this exploded
graph. By having multiple boxes at a single program point
or single data-source for inferring cuts pertaining to distinct
logical domains, we produce better models. We will later
describe how a suitable value partition can be computed for
a program. The primary focus of this paper is, however,
item (3) mentioned above.

Figure 4 shows the exploded graph for the running ex-
ample derived from the value partition given above. Boxes
Bw and Bi (at the top of the figure) are for the data-source
statement /1/, and correspond to predicates w and i, respec-
tively, while box Ba is for the data-source statement /2/.
Each program-point box is labeled Bn,x, where n in the
number of the statement that follows the program point to
which the box pertains, and x ∈ {w, i, true} is the predi-
cate to which the box corresponds in the value partition at
that program point. As in Figure 3, we only show certain
interesting portions of the boxes, not the entire boxes.

Figure 4: Exploded graph of example in Figure 1,
with cuts produced by inference algorithm

The two types of edges in the exploded graph are added
as explained in Section 2.1.1, but under additional con-
straints: (a) an edge (transition or value-flow) is created
from a program-point box Bj to a program-point box Bk

only if there exists a program state that satisfies Bj ’s pred-
icate that is transformed by the statement intervening be-
tween these two boxes into a state that satisfies Bk’s predi-
cate, (b) a value-flow edge is created from a data-source box
Bj to a program-point box Bk only if the conjunction of the
predicates of the two boxes is not false.

As a consequence of rule (a) above, edges between program-
point boxes in Figure 4 flow from “w” boxes to “w” boxes,
and from “i” boxes to “i” boxes, but not across these cate-
gories. As a consequence of rule (b) the value-flow edge out
of data-source box Bw goes to B2,w , while the value-flow
edge out of Bi goes to B2,i.

The initial cut creation works on the exploded graph as
described in Section 2.1.1, with the extension that a variable
reference causes cuts to be created in all boxes in the pro-
gram point preceding/succeeding (as appropriate) the state-
ment that contains the reference. Cut propagation works as
described in Section 2.1.1; in particular, we propagate cuts
from one box to another only if there is an edge between
them. This means, e.g., that no cuts are propagated from
“w” boxes to “i” boxes, or vice versa, in the example in
Figure 4, resulting in a better model.

Figure 4 contains all the cuts for the running example
after cut propagation is over (some of those cuts have been
labeled for illustrative purposes).

2.1.3 Step 2: inferring class and field equivalences
As mentioned earlier, each cut c in each box is a candi-

date class C for the OO model. Each smaller cut d nested
immediately inside c (i.e., d is a “child” of c) corresponds to
a field of class C, and the type of that field is the candidate
class corresponding to d. However, we cannot simply create
these classes and fields, e.g. for cuts in two different boxes,
independently of each other. In this step we identify the
constraints between these classes and fields that a correct
model must satisfy.

Class equivalences. Here, we identify certain corresponding

cuts in adjacent boxes connected by edges in the exploded
graph, and add a class equivalence constraint between the
corresponding cuts, which indicates that the corresponding
cuts should be modeled by the same class in the model. Con-
sider the two program points and boxes in Figure 3. Firstly,
all cuts that are obtained by propagation from the same
cut correspond. That is, the three cuts (in the two boxes)
labeled 1 correspond, the two cuts labeled 3 correspond,
etc. The intuition is the same as for the cut propagation.
Similarly, a class equivalence constraint is added between
entire boxes related by a transition edge (a program-point
box can be thought of as an outermost-level cut), unless the
intervening statement overwrites the entire memory. The
reasoning for this is similar to that for the “supercut flow”
rule explained in Section 2.1.1.

Field equivalences. Consider the reference to ir-trans-code

in the conditional test labeled /4/ in our running exam-
ple. The value partition at the program point before this
predicate consists of two elements, as represented by the
two boxes B4,w and B4,i. We explained earlier that the
basic idea is to create distinct classes, say C1 and C2, to de-
scribe the data represented by these boxes. Note, however,
that the program makes a reference to ir-trans-code, af-
ter this program point, regardless of which box the program
state corresponds to. We treat this as an indication that
ir-trans-code is common to both classes C1 and C2 – i.e.,
that it really is part of a common base class of these two
classes. We generate a field equivalence constraint between
the cut corresponding to ir-trans-code in B4,w and B4,i

to capture this requirement.
It turns out that class-equivalence between two candidate

classes means the same as field-equivalences between all cor-
responding pairs of fields in the two classes; therefore, in our
algorithm we employ only field equivalences.

2.1.4 Step 3: generating the object-oriented model
As mentioned in the beginning of Section 2.1, this step

takes the candidate classes, the candidate fields, and the
equivalence relation on the candidate fields; it unifies each
equivalence class of candidate fields, and pulls up this unified
field to an appropriate (perhaps newly created) base class of
all the leaf classes from which the fields were pulled. We de-
fer the details of how this is done (using concept analysis) to
Section 2.4. For an illustration, consider the cuts labeled 3
in boxes B5,w and B6,w. The candidate classes correspond-
ing to each of these two cuts has two fields, corresponding
to cuts 1 and 2. However, as explained in Section 2.1.3, the
two “1” fields in these two classes are field equivalent, as are
the two “2” fields. Therefore, both fields are pulled up to a
base class, WithdrawalInfo (see Figure 2(a))), which means
the two (leaf) candidate classes disappear entirely.

2.1.5 Step 4: Link generation
We discuss link generation in detail in Section 2.4, but

provide an example here. Consider the reference to vari-
able ir-data in statement /5/ in Figure 1. Let ap be the
qualified access path of this reference (we wish to generate
ap). This reference corresponds to the cut labeled 3 in box
B5,w in Figure 4. (If there had been multiple boxes at the
point preceding statement /5/ we could have used any one of
them, and due to the field-equivalence constraints generated
in Step 2, we would have generated the same access path.)
We now visit the cuts it is nested in, from outside to inside,
and concatenate their representative fields to create ap: the
outermost cut that contains cut 3 is numbered 8, and corre-
sponds to a field (the first field) of the candidate class that
corresponds to box B5,w . The representative of this field in
the model, namely Root.inpRec in Figure 2(a), becomes the
first field in ap. Next, cut 3 corresponds to a field of the
candidate class corresponding to cut 8; the representative
of this field in the model is IRWithdraw.info. Therefore, ap

= Root.inpRec → IRWithdraw.info (this is exactly what is
shown in the row beginning with ir-data:5 in Figure 2(b).

2.2 Terminology and Notation
We introduce here the formal notation and terminology

that we use in the rest of Section 2. We assume that the
program is represented by a control-flow graph whose ver-
tices denote program points and edges are labeled with state-
ments. Any conditional test P is represented by a state-
ment “Assume P” labeling the true branch and a statement
“Assume !P” labeling the false branch. We will use the no-

tation u
S
→cv to denote an edge from u to v labeled with

the statement S. We address a subset of Cobol, which
we call MiniCobol. MiniCobol incorporates the abovemen-
tioned Assume statement, READ statements, MOVE statements,
and WRITE statements (as these statements suffice to illus-
trate all aspects of our algorithm). We use the term variable

occurrence to denote an occurrence of a variable in the pro-
gram.

We will refer to READ statements as well as assignment
statements that assign a constant value to a variable as a
data-source statement. We refer to any use of a variable
in a statement other than a MOVE statement as a data-sink.
Note that during program execution, values are generated by
data-sources, and then copied around by MOVE statements,
and eventually used at data-sinks. (Thus, our algorithm can
be easily extended to handle Cobol’s computational state-
ments such as COMPUTE X = Y+Z by treating the Y and Z as
data-sinks, and the statement itself as a data-source.)

Every variable in our language occupies a consecutive set
of byte-sized memory locations [i, j], which we refer to as
the range corresponding to the variable. Given a statement
S, let refs(S) denote the set of ranges corresponding to vari-
ables referred to in that statement, and let defs(S) denote
the set of ranges corresponding to variables that are assigned
a value in statement S. For MiniCobol, defs(S) will contain
at most one element. We also define lval(S) to be unique ele-
ment of defs(S) if defs(S) is non-empty, and the empty range
φ otherwise. We say that [i1, j1] ⊂ [i2, j2] if range [i1, j1] is
properly contained within range [i2, j2]: i.e., if i2 ≤ i1 and
j1 ≤ j2 and [i1, j1] 6= [i2, j2]. Similarly, we use r1 ∩ r2 = φ
to indicate that the ranges r1 and r2 are disjoint.

The size |R| of a variable R is the sum of the size of all of
its fields (excluding the fields that have redefines clauses).
Let M denote the size of the total memory used by the
given program, which is the sum of the sizes of its 01-level

variables. The range [1, M] represents the total memory
used by the program. Let µ denote a value partition for the
program (see Section 2.1.2). We use the term box to denote
an ordered pair (u, P) where u is a program point or data-
source statement and P ∈ µ(u), and use the symbols Bi to
refer to boxes. The length of a box B = (u, P), denoted |B|,
is defined to be M if u is a program point and |R| if u is a
data-source statement that assigns to variable R. We define
range[B] to be [1, |B|].

We define a relation
S
→, representing the transition edges

between boxes described in Sections 2.1.1 and 2.1.2, as fol-

lows: let B1 = (u, P1) and B2 = (v, P2); we say B1
S
→ B2

iff u
S
→cv and there exists a program state satisfying P1 that

the execution of S transforms into a state satisfying P2.
We will use the notation 〈B, r〉 to identify an ordered pair

consisting of a box B and a range r. We define a relation ⇒
on such pairs, a formal representation of the value-flow edges
between boxes (see Sections 2.1.1 and 2.1.2), as follows. Let
B1 = (x,P1) and B2 = (v, P2). We say 〈B1, r1〉 ⇒ 〈B2, r2〉

iff: either x is a data-source statement, u
x
→cv, P1 ∧ P2 6=

false, r2 ∈ defs(x) and r1 = [1, |r2|], or x is a program point,

x
S
→ v, S is a MOVE statement, r1 ∈ refs(S), and r2 ∈ defs(S).

2.3 Computing a Value Partition
The constant-valued function µ defined by µ(u) = {true}

for all program points and data-sources u is a trivial value
partition. This leads to an exploded graph with a single box
to be used at all program points and data sources, which
means the model will not use distinct classes (subtypes) to
describe values corresponding to distinct logical domains.

The type inference algorithm described in [3] can be used
to produce a better value partition as follows: This algo-
rithm produces for every program-point u a set of union-free
types Γ(u) that describe the set of all program-states at that
program-point. It also produces, for every data-source state-
ment S, a set of union-free types Γ(S) that describe the set
of all values produced by that data-source statement. Ev-
ery union-free type f has an associated predicate pred(f).
The function µ defined by µ(x) = {pred(f) | f ∈ Γ(x)} is a
suitable value partition.

In the remaining part of this section we will assume that

we are given the set of boxes, as well as the relations
S
→ and

⇒ on the boxes. We note that our inference algorithm is cor-
rect as long as we use any conservative over-approximations
of these relations.

2.4 The Model Inference Algorithm
This section contains a formal presentation of the model-

inference algorithm, an overview of which was provided in
Section 2.1.
Steps 1 & 2: Inferring Cuts and Equivalences. In
this step we infer a set cuts(B) of ranges, for every box
B, as well as field-equivalences between cuts. For every r
in cuts(B), we define parent 〈B, r〉 to be the smallest range
r′ in cuts(B) ∪ {range[B]} such that r′ ⊃ r. (For now,
let us assume that the parent of a range r in cuts(B) is
well-defined. We will later discuss the case when the set
{r′ ∈ cuts(B)∪{range[B]} | r′ ⊃ r} does not have a smallest
range, which we expect to happen only rarely in practice.)

An inferred range r in cuts(B) denotes several things.
First, it identifies that the inferred model should include
a class to represent 〈B, r〉, which we will denote by C〈B, r〉.

B1
S
→ B2, r ∈ refs(S)

r ∈ cuts(B1)
[REF]

B1
S
→ B2, r ∈ defs(S)

r ∈ cuts(B1), r ∈ cuts(B2),
〈B1, r〉 ∼f 〈B2, r〉

[DEF]

B1
S
→ B2, r ∈ cuts(B1), r ∩ lval(S) = φ

r ∈ cuts(B2), 〈B1, r〉 ≈ 〈B2, r〉
[VALUE-FLOW-1]

B1
S
→ B2, r ∈ cuts(B2), r ∩ lval(S) = φ

r ∈ cuts(B1), 〈B1, r〉 ≈ 〈B2, r〉
[VALUE-FLOW-2]

〈B1, r1〉 ⇒ 〈B2, r2〉, r3 ∈ cuts(B1),
r3 ⊂ r1, r4 = r3 + (r2.left − r1.left)

r4 ∈ cuts(B2), 〈B1, r3〉 ≈ 〈B2, r4〉
[VALUE-FLOW-3]

〈B1, r1〉 ⇒ 〈B2, r2〉, r4 ∈ cuts(B2),
r4 ⊂ r2, r3 = r4 + (r1.left − r2.left)

r3 ∈ cuts(B1)〈B1, r3〉 ≈ 〈B2, r4〉
[VALUE-FLOW-4]

〈B1, r1〉 ⇒ 〈B2, r2〉,

〈B1, r1〉 ∼i 〈B2, r2〉
[VALUE-FLOW-5]

B1
S
→ B2, r ∈ cuts(B1), r ⊃ lval(S)

r ∈ cuts(B2), 〈B1, r〉 ≈ 〈B2, r〉,
[SUPERCUT-FLOW-1]

B1
S
→ B2, r ∈ cuts(B2), r ⊃ lval(S)

r ∈ cuts(B1), 〈B1, r〉 ≈ 〈B2, r〉,
[SUPERCUT-FLOW-2]

B1
S
→ B2, [1, M] ⊃ lval(S)

〈B1, [1, M]〉 ∼i 〈B2, [1, M]〉
[SUPERCUT-FLOW-3]

B1
S
→ B2, B3

S
→ B4, r2 ⊇ r1,

r1 ∈ refs(S) ∪ defs(S), r2 ∈ cuts(B1)
B1 = (u, P1), B3 = (u, P2)

r2 ∈ cuts(B3), 〈B1, r2〉 ∼f 〈B3, r2〉
[ACCESS-PATH]

Figure 5: Inference rules for computing cuts(B) as
well as the field equivalence relations.

Second, it also has to be modeled as an explicit field of
C〈B, parent 〈B, r〉〉, which we denote by F〈B, r〉. Finally,
such a cut also identifies an implicit field of class C〈B, r〉,
which we denote by I〈B, r〉, which represents the data in the
range r not accounted for by the explicit fields of C〈B, r〉.

The inference rules in Fig. 5 show how we infer the cuts
(ranges in cuts(B)), as well as two binary relations ∼f and
∼i on the cuts that represent field equivalence. The re-
lation 〈B1, r1〉 ∼f 〈B2, r2〉 represents field equivalence be-
tween the fields F〈B1, r1〉 and F〈B2, r2〉, while the relation
〈B1, r1〉 ∼i 〈B2, r2〉 represents field equivalence between the
fields I〈B1, r1〉 and I〈B2, r2〉. We use the shorthand nota-
tion c1 ≈ c2 to indicate that c1 ∼f c2 and c1 ∼i c2.

At the end of this step, we check to see that for each box
B, and each pair of cuts r1 and r2 in cuts(B), r1 and r2

are either disjoint or one is contained completely within the
other. If this condition does not hold, our model inference
algorithm halts with failure. Informally, this failure situa-
tion indicates that the program contains references to two
overlapping subranges of the same data; we expect this to
happen rarely in practice, and note that modeling it would
require a more complex and less intuitive version of a link
that can associate a variable occurrence to a sequence of
access paths (as opposed to a single access path).
Step 3: Generating the Class Hierarchy. For each
box B and for each range r ∈ cuts(B) the cut 〈B, r〉 defines
a candidate class. We use CCS to denote the set of all
candidate classes. The cuts also help define the set of fields
CF(C〈B, r〉) in candidate class C〈B, r〉, as shown below.

CCS = {C〈B, r〉 | B is a box, r ∈ cuts(B)∨
r = range[B]}

parent 〈B, r〉 = smallest range r′ ∈ (cuts(B)∪
{range[B]}) such that r′ ⊃ r

childcuts(B, r) = {r1 ∈ cuts(B, r) | r = parent 〈B, r1〉}
CF(C〈B, r〉) = {F〈B, r1〉 | r1 ∈ childcuts(B, r)}∪

{I〈B, r〉 | (∃r1 s.t. r1 6= φ ∧ r1 ⊂ r)∧
(∀r2 ∈ childcuts(C, r) : r2 ∩ r1 = φ)}

We utilize the inferred cut equivalence relations ∼f and
∼i to define an equivalence relation ∼ on fields: we say
that F〈B1, r1〉 ∼ F〈B2, r2〉 if 〈B1, r1〉 ∼f 〈B2, r2〉, and we
say that I〈B1, r1〉 ∼ I〈B2, r2〉 if 〈B1, r1〉 ∼i 〈B2, r2〉. As
explained in Section 2.1.3, if we have two candidate classes
C1 and C2, and fields f1 ∈ CF(C1) and f1 ∈ CF(C2), such
that f1 ∼ f2, then we need to create a common base class B
for C1 and C2, and create a single field f in B that represents
both f1 and f2.

We use concept analysis [9] to create a class hierarchy that
respects the above field equivalences. Concept analysis is a
general technique for hierarchically clustering entities that
have shared features. The input to concept analysis is a
triple (O, A, R), where O and A are finite sets of objects and
attributes, respectively, and R is a binary relation between
O and A. We say that object o ∈ O features attribute
a ∈ A if (o, a) ∈ R. A triple (O, A, R) uniquely identifies a
set of concepts, which can be automatically generated using
concept analysis. A concept is a pair (X, Y) such that X
is a set of objects (a subset of O), Y is a set of attributes,
X is exactly the set of all objects that feature all attributes
in Y , and Y is exactly the set of all attributes featured
in all objects in X; X is called the extent of the concept
and Y is called the intent of the concept. Concepts are
partially ordered under an ordering ≤R, defined as follows:
(X0, Y0)≤R(X1, Y1) iff X0 ⊆ X1. In fact, this partial order
induces a complete lattice on the concepts, known as the
concept lattice.

Before proceeding, we introduce some terminology. Let
CFS = {f | f ∈ CF(C) ∧ C ∈ CCS} be the set of all
fields in all candidate classes. The equivalence relation ∼
on the candidate-class fields partitions CFS into a set of
equivalence classes. For each equivalence class ec we de-
fine candTypesOf(ec) = {C〈B, r〉 | F〈B, r〉 ∈ ec}. We
create input for concept analysis as follows: Each candi-
date class C ∈ CCS becomes an object for the concept
analysis. Each equivalence class ec of CFS defines two at-

tributes repOf(ec) and typeOf(ec). Intuitively, repOf(ec) is
the field in the final OO model that represents all candidate-
class fields in ec, and typeOf(ec) is its type. Therefore,
we define the candidate classes (i.e., concept-analysis ob-
jects) in the set {C | C ∈ CCS ∧ ∃f ∈ CF(C) s.t. f ∈ ec}
as featuring repOf(ec), and define the candidate classes in
candTypesOf(ec) as featuring typeOf(ec). At this point
we apply concept analysis. Each resulting concept con1

becomes a class classOf(con1) in the model; for each con-
cept con2 such that con1≤Rcon2 and there exists no con-
cept con3 satisfying con1≤Rcon3≤Rcon2, classOf(con1) is
made a direct subclass of classOf(con2). For each candi-
date class C ∈ CCS its representative [C] in the model is
defined as classOf(con4), where con4 is the concept whose
intent is equal to {repOf(f) | f ∈ CF(C)}. For each equiv-
alence class ec we place the field fec = repOf(ec) in the
class classOf(con5), where con5 is the concept whose ex-

tent is the set {C | C ∈ CCS ∧ f ∈ CF(C) ∧ f ∈ ec};

if candTypesOf(ec) is non-empty then we set the type of
fec to be the “lowest common” base class of the classes
{[C] | C ∈ candTypesOf(ec)}, else we set its type to be
a primitive string (f is an “implicit” field which is not di-
rectly referred to in the program). For all f ∈ ec we let [f]
denote fec.
Step 4: Generating Links. As explained in Section 1.2,
the link component of the LOOM consists of a map from
variable occurrences in the program to qualified access-paths.
Consider any variable occurrence v in S, and r be the range

in memory corresponding to v. Let B1
S
→ B2 be some tran-

sition. If v is the target of a data-source or a MOVE then
it is linked to the qualified access-path corresponding to
F〈B1, r〉, else it is linked to the qualified access-path cor-
responding to F〈B2, r〉. Our class hierarchy construction
guarantees that this access path is independent of transi-

tion B1
S
→ B2 that is chosen.

We now explain how to generate the access path of any
field F〈B, r〉 that corresponds to a variable occurrence v.
Clearly r ∈ cuts(B). Let r′ = parent 〈B, r〉. Let B be the
class in the OOM that contains the field [F〈B, r〉]. We
define the qualified field corresponding to F〈B, r〉 to be
B.[F〈B, r〉]. The qualified access-path to F〈B, r〉 is obtained
(recursively) as follows: if parent 〈B, r〉 = range[B], then the
qualified access-path to F〈B, r〉 consists of just the qual-
ified field corresponding to F〈B, r〉; otherwise, the qual-
ified access-path is obtained by concatenating the access-
path to parent 〈B, r〉 with the qualified field corresponding
to F〈B, r〉.
Step 5: Model Simplification. Finally, we eliminate cer-
tain irrelevant parts of the model by applying the following
three rules repeatedly until no changes occur: (a) Remove a
field from the model if it does not occur in any access path
(in the link component) and does not correspond to any in-
terval in a box that contains live data (we omit the definition
of liveness for conciseness) (b) Remove a class if it does not
occur in any access path and has no derived classes (c) If a
class C has no fields and one derived class D: eliminate C,
replace all occurrences of C in fields and access paths with
D, and make D a subclass of the base classes of C.

This simplification produces models that are more suit-
able for program understanding and maintenance tasks; it
is optional, and is not required for correctness.

3. CORRECTNESS CHARACTERIZATION
FOR LOOMS

MiniCobol is a weakly typed language that uses an un-
typed data representation. All runtime values (the values of
variables as well as the value of the whole program state) are
simply strings. An OOM defines a universe O of strongly
typed values. As we show later, the link component of a
LOOM can be used to execute MiniCobol programs using
this universe of strongly typed values. This execution halts
if the value that arises at any context (during execution) is
not of the type expected in that context. Thus, a LOOM
determines an alternate semantics for a given program.

We say that a LOOM is correct for a program if the pro-
gram’s execution, under the alternate semantics determined
by the LOOM, is “equivalent” to the program’s execution
under the standard semantics. What does it mean for these
two executions to be “equivalent”? First, the program ex-
ecution must follow the same path through the program in

both cases. Second, the value of each data-sink in the cor-

responding execution of a statement in both cases must be
the same.

Given a program P and input I, let trace(P, I) denote
the sequence (S1, m1) · · · (Sk, mk), where Si denotes the i-
th statement executed by P on input I, mi denotes a map
from the data-sinks in statement Si to their values during
the execution of Si, and Sk is the last statement executed,
all under the standard semantics. (Note that the “input” to
a MiniCobol program is the contents of the set of files that
are read by the program.)

Next, we present a similar definition for the alternate se-
mantics by a LOOM. However, the claim we made above
that a LOOM determines an alternate semantics is not com-
pletely accurate. A LOOM does not have all the information
necessary for defining the alternate semantics. The missing
piece is something we call a serialization model, and it tells
us how to convert strings into typed values (at a data-source
statement) and vice versa (at a data sink). We note that
it is straightforward to extend our algorithm to generate a
serialization model as well. Section 3.1 presents a formal
definition of a serialization model (α, γ).

Given a LOOM L for P and a serialization model (α, γ),
we define traceL,(α,γ)(P, I) just as trace(P, I) was defined,
except using the alternate semantics determined by L and
(α, γ).

Definition 1. A LOOM L is said to be correct for a pro-

gram P if there exists a serialization model (α, γ) such that,

for any input I, traceL,(α,γ)(P, I) = trace(P, I).

Theorem 1. For any program P , if our inference algo-

rithm produces a LOOM L, then L is correct for P .

Proof. Omitted due to space constraints.

3.1 Details of alternate execution semantics
An OOM identifies a universe of typed values as follows.

Let String denote the set of all strings, which constitute the
primitive values in the system. For a class C, let fields(C)
denote the set of fields of class C (including its inherited
fields). An object of type C is an ordered pair (C, m), where
m is a map (function) from fields(C) to other objects of the
appropriate type or strings (as per the type of the fields)
or a special value null . Let O denote the set of all typed
objects, including the special value null , and let U denote
the set O∪String. An object o ∈ O is said to be an instance

of class B iff o = (C, m) where C is a derived class of B.
Fig. 6 defines various auxiliary functions used to define

the alternate semantics based on a LOOM. The program
state in the alternate semantics is represented by a single
object σ ∈ O. An access path ap serves to identify a field
of a subobject (of the program state object σ); the func-
tion lookupP (σ, ap) defined in Fig. 6 retrieves the value of
this field. As observed earlier, an access path implicitly in-
corporates downcasts. Hence, the lookup may fail, and, in
this case, the lookup function returns null . The function
updateP (σ, ap, v) updates the value of the field identified by
ap with its new value v. Note that this is a functional up-
date and returns an object σ′ representing the updated state
(object).

We now present the alternate semantics for MiniCobol
statements. Consider a MOVE statement S of the form MOVE

X TO Y. Let XS denote the occurrence of X in statement

/* Field lookup function: lookupF : O × Field → U */
lookupF (null, f) = null
lookupF ((D,m), f) = if (f ∈ fields(D)) then m(f) else null

/* Path lookup function: lookupP : O × AccessPath → U */
lookupP (o, ε) = o
lookupP (o, qf1...qfk) = lookupF (lookupP (o, qf1...qfk-1), qfk)

/* Var occur. lookup: lookupV : O × VarOccurrence → U */
lookupV (o, Xu) = let (α,C) = link(Xu) in

let v = lookupP (o, α) in
if (v instanceof C) then v else null

/* Class extension function: extendC : O × Class → O */
extendC(null, C) = (C, λf.null)
extendC((B,m), C) = if (B derived class of C) then (B, m)

elsif (C derived class of B) then
(C, λf . if f ∈ fields(B) then m(f) else null)

else null
/* Path extension fn: extendP : O × AccessPath → O */
extendP (o, ε) = o
extendP (o, qf1...qfk) =let (C1, f1) = qf1 in

let in1 = lookupF (o, qf1) in
let out1 = extendP (in1, qf2...qfk) in
let (D, m) = extendC(o, C1) in
(D, λg. if g == f1 then out1 else m(g))

/* Field update function: updateF : O × Field × U → O */
updateF (null, f, v) = null
updateF ((D,m), f, v) =if (f 6∈ fields(D)) then null

else (D, λg. if g==f then v else m(f))
/* Path update function: updateP : O × AccessPath → U */
updateP (o, ε, v) = v
updateP (o, qf1...qfk, v) = let in1 = lookupF (o, qf1) in

updateF (o, qf1,updateP (in1, qf2...qfk, v))
/* Var occur. update: updateV : O × VarOccurrence × U → O */
updateV (o, Xu, v) =let (α,C) = link(Xu) in

let o′ = extendP (o, α) in
if (v instanceof C) then updateP (o′, α, v) else null

Figure 6: Definition of semantic functions

S. Executing statement S in a state σ produces the state
updateV (σ, YS, lookupV (σ, XS)). The execution of the pro-
gram halts if any top-level call to lookup or update returns
null . We now consider READ and WRITE statements. A READ

statement reads a string from the input file, while a WRITE

statement must write out a string to the output file, even in
the alternate semantics. This motivates the following def-
inition. Let Stringk denote the set of all strings of length
k. For any data-source (data-sink) x, let |x| denote the
length of the variable defined (used) in x. A serialization

model (α, γ) consists of a pair of functions: a deserialization
function α that associates every data-source x with a func-
tion α(x) : String|x| → O and a serialization function γ that
maps every data-sink r with a function γ(x) : O → String|r|.

Given a serialization model, in addition to the LOOM, it
is straightforward to define the alternate semantics for READ
and WRITE statements. The execution of a READ X statement
S reads a string of the appropriate length from the input file,
deserializes it into an object v, and then produces the state
updateV (σ, XS, v). The execution of a WRITE X statement S

first retrieves the value lookupV (σ, XS), serializes it into a
string, and writes it out.

4. RELATED WORK
While there has been previous work in recovering object-

oriented models [1, 8] and other kinds of type abstractions [4,
2, 5, 3] from weakly-typed programs, these approaches, ex-

cept that of Komondoor et al [3], are not path sensitive.
That is, our approach distinguishes program states satis-
fying different predicates at the same program point, and
uses this mechanism both for more accurate analysis (less
pollution), and for inferring subtyping in a general manner
(previous approaches for inferring OO models [1, 8] are flow-
and path-insensitive, and infer subtyping either heuristically
or in limited situations). Furthermore, while our approach
infers the nesting structure of classes by analyzing the actual

usage of variables in the code, previous approaches either do
not infer nesting structure at all or use the existing declar-

ative structure for doing so. A third contribution of this
paper is a semantic characterization of correct LOOMs and
an accompanying alternate execution semantics for LOOMs.

Our current work is a follow on to that of Komondoor et

al [3], which infers path-sensitive types, but not an OOM.
Our new contributions include the following. Our approach
infers nesting, which is an integral feature of OO models,
while their proposal is a “flat” type system with no nesting.
Both approaches make distinctions based on value partitions
(i.e., can infer multiple types at a single program point), but
ours introduces factoring in the model by bringing in the
notion of equivalent fields (fields that are referred to by a
common variable occurrence), and by unifying and pulling
up such fields to common base classes. Their approach uses a
hard-coded value-partition computation for path sensitivity,
while ours can use any value partition given as a parameter
(including the one computed by their approach).

Our approach to data-model reverse engineering is similar
in certain respects to previous work on algorithms for ana-
lyzing and specializing existing class hierarchies in programs
in OO languages, most notably the work of Tip et al [7] and
Snelting et al [6]. These approaches use type inference to
analyze how the existing classes are actually used in the
original program (like we do). Their approach is flow- and
path-insensitive, but this still yields satisfactory results for
them because they are not generating an OOM from scratch.

5. REFERENCES
[1] G. Canfora, A. Cimitile, and G. A. D. Lucca. Recovering a

conceptual data model from cobol code. In Proc. 8th Intl. Conf.
on Softw. Engg. and Knowledge Engg. (SEKE ’96), pages
277–284. Knowledge Systems Institute, 1996.

[2] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H. Sorensen,
and M. Tofte. Annodomini: from type theory to year 2000
conversion tool. In Proc. Symp. on Principles of Prog. Langs.,
pages 1–14. ACM Press, 1999.

[3] R. Komondoor, G. Ramalingam, S. Chandra, and J. Field.
Dependent types for program understanding. In Proc. Intl.
Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, pages 157–173, 2005.

[4] R. O’Callahan and D. Jackson. Lackwit: a program
understanding tool based on type inference. In Proc. 19th intl.
conf. on Softw. Engg., pages 338–348. ACM Press, 1997.

[5] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In Proc.
Symp. on Principles of Prog. Langs., pages 119–132, 1999.

[6] G. Snelting and F. Tip. Understanding class hierarchies using
concept analysis. ACM Trans. Prog. Lang. Sys., 22(3):540–582,
May 2000.

[7] F. Tip and P. F. Sweeney. Class hierarchy specialization. Acta
Inf., 36(12):927–982, 2000.

[8] A. van Deursen and L. Moonen. Understanding COBOL systems
using inferred types. In Proc. 7th Intl. Workshop on Program
Comprehension, pages 74–81, 1999.

[9] R. Wille. Restructuring lattice theory: an approach based on
hierarchies of concept. In I. Rival, editor, Ordered Sets, pages
445–470. Reidel, Dordecht/Boston, 1982.

