Semantics-Preserving Procedure Extraction *

Raghavan Komondoor and Susan Horwitz
Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {raghavan, horwitz}Qcs.wisc.edu

Abstract

Procedure extraction is an important program trans-
formation that can be used to make programs easier
to understand and maintain, to facilitate code reuse,
and to convert “monolithic” code to modular or object-
oriented code. Procedure extraction involves the follow-
ing steps:

1. The statements to be extracted are identified (by
the programmer or by a programming tool).

2. If the statements are not contiguous, they are moved
together so that they form a sequence that can be
extracted into a procedure, and so that the seman-
tics of the original code is preserved.

3. The statements are extracted into a new proce-
dure, and are replaced with an appropriate call.

This paper addresses step 2: in particular, the condi-
tions under which it is possible to move a set of selected
statements together so that they become “extractable”,
while preserving semantics. Since semantic equivalence
is, in general, undecidable, we identify sufficient condi-
tions based on control and data dependences, and de-
fine an algorithm that moves the selected statements
together when the conditions hold. We also include a
proof that our algorithm is semantics-preserving.

While there has been considerable previous work on
procedure extraction, we believe that this is the first
paper to provide an algorithm for semantics-preserving
procedure extraction given an arbitrary set of selected
statements in an arbitrary control-flow graph.

1 Introduction

Legacy code can often be improved by extracting out
code fragments to form procedures (and replacing the
extracted code with procedure calls). This operation is
useful in several contexts:

e Legacy programs often have monolithic code se-
quences that intersperse the computations of many
different tasks [LS86, RSW96]. Such code be-
comes easier to understand and to maintain if it

*This work was supported in part by the National Science Founda-
tion under grants CCR-~9625656 and CCR-~9970707, by the Microsoft
Corporation, and by IBM.

is replaced by a sequence of calls (one for each
task) [CYT79]. This decomposition may also facili-
tate better code reuse [SJ87, LV97].

e When the same code appears in multiple places,
replacing each copy with a procedure call makes
the code easier to understand and to maintain
(since updates need only be performed on a sin-
gle copy of the code).

e A code fragment can sometimes be recognized as
performing a (conceptual) operation on a (concep-
tual) object. Making that idea explicit by extract-
ing the fragment into a procedure (or method) can
make the code easier to understand, and can be an
important part of the process of converting poorly
designed, “monolithic” code to modular or object-
oriented code [Par72].

For the purposes of this paper, extracting a proce-
dure is defined by the following three steps:

1. The statements to be extracted are identified.

2. If the statements are not contiguous, they are moved
together so that they form a sequence that can be
extracted into a procedure, and so that the seman-
tics of the original code is preserved.

3. The statements are extracted into a new proce-
dure, and are replaced with an appropriate call.

Although step 1 is very interesting, it is not the
subject of this paper; we assume that the set of state-
ments has been identified, either by the programmer or
some kind of restructuring tool, such as those described
in [LV97, BGIS].

Step 3 involves deciding what the parameters to the
procedure should be, which parameters should be passed
by reference, and whether the procedure should return a
value. These are straightforward issues (e.g., discussed
in [LD9S]).

Our interest is in step 2; in particular, we investi-
gate the conditions under which it is possible to move a
set of selected statements together so that they become
“extractable”, and so that semantics are preserved. To
illustrate that this is a non-trivial problem, consider the
following code fragment, represented by a control-flow
graph (CFG):

Ezxample 1: Although nodes 3 and 4 are contiguous
in the CFG, they cannot be extracted into a procedure
because of structural concerns: node 3 has an outgoing
edge to node 8, and node 4 has an outgoing edge to node
5; if the two nodes are replaced by a call node (with a
single successor in the CFG), either node 8 or node 5
will become unreachable, leading to a malformed CFG.

Ezxample 2: Nodes 2 and 4 cannot be extracted into
a procedure because of control dependence concerns.
Moving node 4 before the if node would cause the
wrong value to be assigned to variable sum when z is
not positive; moving node 2 after the if node would
cause the wrong value of z to be used to evaluate the
condition. In either case, semantics would not be pre-
served.

Ezample 3: Nodes 4 and 6 cannot be extracted into a
procedure because of data dependence concerns. This
situation is similar to the one for nodes 2 and 4, dis-
cussed above: Moving node 6 before node 5 causes the
wrong value of y to be used in the assignment to z, and
moving node 4 after node 5 causes the wrong value of
sum to be used in the assignment to y.

Ezxample 4: Nodes 5 and 7 can be extracted. Node
7 can be moved up before node 6, which makes 5 and 7
an extractable sequence.

The chief contribution of this paper is an algorithm
that moves a selected set of CFG nodes together so
that they become extractable while preserving seman-
tics. We believe that this algorithm is the first to handle
an arbitrary set of selected nodes in an arbitrary (possi-
bly unstructured) CFG. Since semantic equivalence is,
in general, undecidable, it is not possible to define an
algorithm for this problem that succeeds iff semantics-
preserving procedure extraction can be performed for
the given set of nodes. Therefore, we identify conditions
based on control and data dependence that are suffi-
citent to guarantee semantic equivalence; our algorithm
succeeds iff those conditions hold. We also include a

proof of correctness for our algorithm (that it performs
only semantics-preserving procedure extraction).

A limitation of the algorithm is that it only moves
CFG nodes; no duplication is performed. In Example
1, for instance, the indicated extraction can be done if
the predicate is duplicated and the code restructured as
follows:

if x>0 then sum += x
if x>0 then y = sum*2; z = y%10; w = y/10
else sum -= x

Nevertheless, we feel that the algorithm is useful as is;
in particular, it can be used as part of an automatic
restructuring tool, and in that context failure of the al-
gorithm can provide feedback indicating that code du-
plication is needed.

The remainder of the paper is organized as follows:
Section 2 presents basic assumptions and terminology.
Section 3 presents our algorithm for performing step 2
of procedure extraction. Section 4 discusses the algo-
rithm’s theoretical complexity, and Section 5 presents
experimental results that give some insight into how
well the algorithm will perform in practice. Section 6
states two theorems: the first theorem shows that the
property we require to preserve control dependence is
reasonable, and the second shows that the algorithm is
correct (only performs semantics-preserving procedure
extraction). Proofs for these theorems are included in
an appendix. Section 7 discusses related work. Finally,
conclusions are presented in Section 8.

2 Assumptions and Terminology

We assume that each procedure in a program is rep-
resented by a control-flow graph (CFG) that includes
unique Enter and Exit nodes. Other CFG nodes repre-
sent predicates or simple statements (assignment, input,
output, unconditional branch, or procedure call). A re-
turn statement is modeled as an unconditional branch
to the Exit node. The Enter node is a special pseudo-
predicate; it has two outgoing edges: one labeled “true”
to the first statement or predicate in the procedure, and
one labeled “false” to the Exit node (these edges are
included so that all nodes in the body of the proce-
dure are control dependence descendents of the Enter
node). Normal predicate nodes also have two outgoing
edges, one labeled “true” and the other labeled “false”;
other nodes have one, unlabeled outgoing edge (for the
purposes of this paper, there is no need to represent
call/return connections among procedures; thus, a call
node has one outgoing edge whose target is the state-
ment or predicate that follows the call). Every node is
reachable from the Enter node, and the Exit node is
reachable from every node. N(G) denotes the nodes of
a CFG G and £(G) denotes the edges.

We assume that the program includes no uses of
uninitialized variables, and no assignments to dead vari-
ables. We also assume that appropriate static analy-
ses (e.g., pointer analysis and interprocedural may-use,
may-mod analysis) have been done so that the may-
use and may-define sets are known for each CFG node
(including call nodes).

For the purposes of this paper, two procedures are
semantically equivalent iff when they are called in the

same state (i.e., with the same mapping of variables —
including the special stream variables input and output
— to values), they finish in states that agree on the val-
ues of all variables that are (interprocedurally) live at
Exit (with output considered to be live at all points in
the program). A procedure that does not terminate, or
that causes an exception — e.g., a division by zero — is
considered to finish in the state in which all variables are
mapped to L. Two CFGs are semantically equivalent
iff the procedures that they represent are semantically
equivalent.

We provide definitions of some standard concepts
used in this paper:

Definition(domination) : CFG node p dominates node
q iff all paths from Enter to ¢ go through p. By defini-
tion, no node dominates itself. O

Definition(postdomination) : Node p postdominates node

q iff all paths from ¢ to Exit go through p. By definition,
every node postdominates itself. O

Definition(control dependence) : Node p is C-control
dependent on node ¢, where C'is either “true” or “false”,
iff ¢ is a predicate node, p postdominates the C-successor
of g but it does not postdominate ¢ itself.OI

Definition(flow dependence) : Node p is flow depen-
dent on node ¢ due to a variable v iff v is used by p and
defined by g and there is a CFG path from ¢ to p that
includes no node that must define v.0

Definition(anti dependence) : Node p is anti depen-
dent on node ¢ due to variable v iff v is used by p and
defined by ¢ and there is a CFG path from p to ¢.0O

Definition(output dependence) : Node p is output de-
pendent on node g due to variable v iff both nodes define
v and there is a CFG path from ¢ to p.O

Definition(def-order dependence) : Node p is def-order
dependent on node ¢ due to variable v iff both nodes
define v, there is a node u that is flow dependent on
both p and ¢ due to v, and there is a CFG path from ¢
to p.U

The definitions for flow, anti and output dependences
are based on the definitions in [KKP 81|, while the def-
inition of def-order dependence is from [BH93]. The
following additional terms are also used in the paper:

Definition(control dependence set) : The control depen-
dence set of node ¢ in CFG G is the set of predicate-
node, truth-value pairs (p, C') such that ¢ is C-control
dependent on p in G. O

Definition(hammock) : A hammock is a subgraph of a
CFG that has a single entry node, and from which con-
trol flows to a single outside exit node. More formally:
A hammock in CFG G is the subgraph of G induced by
a set of nodes H C N(G) such that:

1. There is a unique entry node e in H such that:
meN(G) —H)AN(ne H)A((m,n) € E(GQ)) =

n=e).

2. There is a unique outside exit node ¢ in N (G) — H
such that:
m € H)A(n € N(G) — H) A ((m,n) € £(Q)) =

n=t).

O

Definition(hammock chain) : A hammock chain
(H1,Hs,...,H,) in CFG G is a sequence of hammocks
with no incoming edges from outside the sequence to
any node other than H;’s entry node. That is,
Vie[2...m]:

1. the entry node of H; is the outside exit node of
Hi—17 and

2. (n€ Hy) A (m € N(G) — Hy) A((m,n) € E(GQ)) =
m e Hi—l)

O

It can be seen that any hammock chain is itself a
hammock. The entry node of the chain is the entry node
of the first hammock H; and the outside exit node of
the chain is the outside exit node of the last hammock
H,,.

Definition(atomic hammock) : An atomic hammock is
a hammock that is itself not a chain of smaller ham-
mocks. O

It can be shown that a hammock H with entry node
e is atomic iff for each hammock H; that is strictly
contained in H and also has entry node e, there exists
anode n in (H — H;) such that there is an edge from n
to e. This result is stated and proved as Theorem 3 in
the appendix.

3 Semantics-Preserving Procedure Extrac-
tion

In this section we define an algorithm for reordering a
given set of CFG nodes so that they can be extracted
into a procedure while preserving semantics.

We assume the following inputs to the algorithm:

1. P, the control-flow graph of a procedure.

2. the set M of nodes in P that have been chosen
for extraction (M is a subset of N'(P) — {Enter,
Exit})

The goal of the algorithm is to produce a CFG P, that
includes exactly the same nodes as P, so that:

e the nodes in M are extractable from P4, and
e Py is semantically equivalent to P.

A very high-level description of our algorithm is as
follows:

Step 1: Check whether the nodes in M are part of
a chain of atomic hammocks in P; if not, then
fail (P cannot be reordered to make the M nodes
extractable while preserving control dependences).

Step 2: Create a polygraph that represents the order-
ing constraints imposed on the hammocks in the
chain by data dependence considerations. (A poly-
graph is a graph with both “normal” edges and
“either-or” edges. This will be clarified in Sec-
tion 3.2 below.)

Step 3: Create the set of acyclic graphs defined by the
polygraph created in Step 2.

Step 4: If any of the graphs created in Step 3 has a
simple property (to be defined in Section 3.2), pro-
duce the corresponding CFG Pj; otherwise, fail.

Subsection 3.1 explains the notion of extractability,
and then step 1 of the algorithm, which concerns ex-
tractability and preserving control dependence. Sub-
section 3.2 elaborates on Steps 2—4, which have to do
with preserving data dependence.

3.1 Extractability and Control Dependence

As stated earlier, a requirement is that the nodes in M
be extractable from Py.. What this means is that step 3
of procedure extraction — extracting the M-nodes from
Py and replacing them with a procedure call node —
does not result in a malformed CFG. In the example in
the Introduction, nodes 5 and 7 can be moved together
to result in a new CFG from which they are extractable,
but this is not true for nodes 3 and 4 although they
are already together. In essence, since the extracted
procedure will have a single entry point, and the new
procedure call node will have a single CFG successor,
the set of M-nodes must have the same two properties
in Py, for the replacement to make sense: there must be
a single M-node that has incoming edges from outside
the set, and all edges leaving the set must go to the
same CFG node. It is thus easy to see that the nodes
in M are extractable from Py, iff they form a hammock
in PM.

Example 2 in the Introduction illustrates that a part
of a sufficient condition to guarantee the semantic equiv-
alence of P and Pj, is that each node in Py have the
same control dependence set as in P.

Theorem 1 in the appendix shows that both of these
objectives for the new CFG Py, — extractability and
control dependence preservation — can be achieved iff
in the original CFG P the nodes in M are part of a
chain C of atomic hammocks.!

Every hammock in C must be either an M-hammock
— a hammock in which all nodes are in M — or an O-
hammock — one that has no nodes in M. Figure 1(a)
illustrates this structure; the M-hammocks are shaded.
If we look back at Example 4 in the Introduction, (4, 5, 6,
is the chain that contains nodes 5 and 7 with each of
the nodes being an atomic hammock.

A part of the proof of the theorem also shows that P has such a
chain iff the following two control-dependence conditions are met:

1. For every predicate node p in M, all nodes that are control
dependent on p are also in M.

2. All nodes in M that are (directly) control-dependent on some
node outside M have the same control dependence set outside

M.

We say that M is well-formed in control dependence in P in this
case.

(b)

Figure 1: Chain containing M nodes

Algorithm Step 1 (finding chain C)
Step 1 of our algorithm determines whether there is
such a chain C in P as follows:

i. Identify the set of all hammocks in P:

for each node p in P
for each postdominator ¢ of p

(a) do a depth-first search starting from
p and not going past ¢; let H be the
set of nodes visited by the depth-first
search

(b) H is a hammock iff all edges coming
into H from outside H have p as their
target.

i. Eliminate from the set all hammocks that are nei-
ther M-hammocks nor O-hammocks (i.e., all ham-
mocks that contain both M-nodes and non-M-
nodes).

e

iii. Eliminate all non-atomic hammocks (see Section 2).

iv. Eliminate all non-maximal hammocks (a hammock
is non-maximal if all of its nodes are contained in
another hammock in the current set).

v. Check whether all M-nodes are included in the
final set of hammocks; if not, fail.

vi. Find the longest chain of atomic hammocks start-
ing with any M-hammock M as the current ham-
mock: if the outside exit node of the current ham-
mock is the entry node of some hammock H in the
set, and all edges to this entry node from outside

H come from the current hammock, then add H
to the chain and make H the current hammock.

vii. Extend the chain backwards from M, as far as
possible: start with M, as the current hammock;
if the entry node of the current hammock is the
outside exit node of some hammock H in the set,
and all edges into the current hammock are from
H, then add H to the beginning of the chain, and
make H the current hammock.

viii. If all of the M-hammocks are in the chain then
chain C has been identified; if not, fail.

Example: For the CFG shown in Figure 1(a), step
(ii) would eliminate from the set all hammocks that are
neither M-hammocks nor O-hammocks (such as the en-
tire CFG). It would leave in the set any O-hammocks
that occur in the upper and lower “clouds” of code,
and hammocks Oy, Oy, My, O3, Ms, and Ms, as well
as the non-atomic hammocks (O1,0z), and (Ma, Ms3).
Those non-atomic hammocks would be eliminated in
step (iii). Any non-maximal hammocks inside the M;s
or O;s or in the “clouds” would be eliminated in step
(iv). Such hammocks arise, for example, in the context
of a loop: the whole loop can be an atomic hammock, as
well as the individual statements inside the loop; how-
ever, the individual statements are not maximal ham-
mocks. Continuing with the example, step (v) would
succeed, and step (vi) could start with M7, Ms, or Ms.
If it started with My, it would find the chain (Ma, M3).
Step (vii) would then extend that chain backward; the
final chain would be: (01, 02, Ml, 03, MQ, Mg)

3.2 Data Dependence

The goal of Steps 2-4 of our algorithm is to determine
whether it is possible to permute the chain C into a
chain C,, by reordering its hammocks so that:

e the M-hammocks occur contiguously in C,,, and
e the semantics of P are preserved.

If this can be done, then the CFG obtained by replacing
C with C,,, — shown in Figure 1(b) — is our desired CFG
Pp.

To preserve the semantics, we must ensure that on
every execution, each node in P executes the same num-
ber of times and in the same states as in Pyq. It can
be shown that permuting C in any way cannot alter the
control dependence set of any node (see Part 3 of the
proof of Theorem 1 in the appendix). Intuitively then, a
permutation preserves semantics if it preserves the flow
of values in the program: for each execution, if a node
n in P uses a value defined at node m, then node n in
Py must also use the value defined at node m.

These observations lead us to define six kinds of or-
dering constraints (imposed by chain C) that must be
satisfied by the permutation. Some of the constraints
are simple constraints of the form “hammock A must
come before hammock B in the permutation.” Oth-
ers are “either-or” constraints of the form “either ham-
mocks A; ... A; must all come before hammock B in the
permutation, or hammock B must come before ham-
mock C.”

We can show that these 6 kinds of ordering con-
straints are sufficient: any permutation of the chain C
that satisfies all of the constraints imposed by C pre-
serves semantics. Theorem 2 in the appendix states
this result formally, and a proof is included.

Algorithm Step 2 (building the polygraph)
Step 2 of our algorithm involves building a polygraph
that represents the ordering constraints imposed by the
chain C. Each node of the polygraph corresponds to
one atomic hammock in C; each edge in the polygraph
represents one ordering constraint. A polygraph has
two kinds of edges: normal edges (e.g., A — B), which
represent simple constraints, and either-or edges (e.g.,
{A1,42,...4;} — B || B — (), which represent
either-or constraints. A polygraph defines a set of (nor-
mal) graphs. Each graph in the set has the same nodes
as the polygraph, and includes all of the polygraph’s
normal edges. For each either-or edge {41, As,... 4} —
B || B — C in the polygraph, a graph in the set either
includes the edges A1 — B, Ay — B, ... A; — B, or
it includes the edge B — C. A polygraph that has k
either-or edges thus defines a set of 2* normal graphs.
The six kinds of ordering constraints are induced by
instances of flow, def-order, anti, and output depen-
dences between the hammocks in C. The constraints are
defined below and are illustrated using the chain shown
in Figure 2, in which each node represents one atomic
hammock, and the shaded nodes are M-hammocks.
Note that because of our assumptions that there are
no uninitialized uses and no dead assignments, there
must be a definition of variable v outside the chain that
reaches chain entry, and v must be live at chain exit.
For the purposes of this example, we will assume that
the definition of v in hammock 8 does not reach the
chain entry, and that x is not live at chain exit.

1. Constraints induced by flow dependence: Normal
edge A — B is in the polygraph for chain C if

(a) hammock A comes before hammock B in C,
and

(b) there is a definition of a variable v in A that
reaches a use of v in B.

Example: For the chain in Figure 2, flow depen-
dences induce the normal polygraph edges 1 — 3,
2—53,3—4,3—5,and 6 — 7.

2. Constraints induced by def-order dependence: Nor-
mal edge A — B is in the polygraph for chain C
if
(a) A comes before B, and

(b) there are definitions of a variable v in both A
and B, and

(c) there is a use of v somewhere in the program
that is reached by the definitions in both A
and B.

Example: Def-order dependences induce the nor-
mal polygraph edge 1 — 2 (because of the use of
v in hammock 3).

3. Constraints induced by anti dependence: Normal
edge A — B is in the polygraph for chain C if

Figure 2: Chain used to illustrate ordering constraints
(each node represents one atomic hammock)

(a) A comes before B, and

(b) there is a use of a variable v in A that is
reached by a definition outside C, and there
is a definition of v in B.

Example: Anti dependences induce the normal
polygraph edge 3 — 8 (because of the definition of
v outside the chain that reaches chain entry).

4. More constraints induced by anti dependence: Either-

or edge {A1,As,...,A;} - B || B— C is in the
polygraph for chain C if

(a) C comes before any of the A hammocks, which
all come before B, and

(b) there is a non-empty set of variables V' that
are defined in both B and C, and

(c) every A; includes at least one use of a variable
v € V that is reached by a definition in C', and

(d) the set A4, ..., A; is maximal: every hammock
U that comes after C' and before B, and that
includes a use of a variable v € V that is
reached by a definition in C' is in the set.

Example: Anti dependences induce the either-or
polygraph edges ({4,5} — 6 | 6 — 3), ({3} —
8] 8 —=1), and ({3} — 8 || 8 — 2). However,
note that the second and third edges are redun-
dant, since normal edge 3 — 8 is also included in
the polygraph because of a type 3 constraint.

5. Constraints induced by output dependence: Nor-
mal edge A — B is in the polygraph for chain C
if

(a) A comes before B, and

(b) there is a definition of a variable v in both A
and B, and

(c) v is live at the exit of the chain C, and

(d) the definition in B reaches the exit of the
chain but the definition in A does not reach
the exit of the chain.

Example: Output dependences induce the nor-
mal polygraph edges 1 — 8 and 2 — 8 (because v
is live at chain exit).

6. More constraints induced by output dependence:
Either-or edge {A;, As,...,4;} - B || B —» C
is in the polygraph for chain é if

(a) B comes before C, which comes before any of
the A hammocks, and

(b) there is a non-empty set of variables V' that
are defined in both B and C, and

(c) every A; includes at least one use of a variable
v € V that is reached by a definition in C but
is not reached by any definition in B, and

(d) the set Ay, ..., A; is maximal: every hammock
U that comes af?ter C and that includes a use
of a variable v € V that is reached by a defini-
tion in C but is not reached by any definition
in B is in the set.

Example: Output dependences induce the either-
or polygraph edge {7} — 3 || 3 — 6.

Note that because we have assumed that input and
output are implemented using stream variables, there is
no need to include special cases for constraints induced
by I/O. For example, the statement input zis treated as
both a use and a definition of the stream variable input
(as well as a definition of x); therefore, if two hammocks
in the chain each include an input statement, there will
be a flow dependence from one hammock to the other,
and the constraints defined above will ensure that the
order of the input statements in the chain is maintained.

Example: The polygraph built for the example
chain in Figure 2 is shown in Figure 3 (only the two
non-redundant either-or edges are included). Normal
edges are shown using plain arrows; either-or edge
{A1,4,,..,A;} — B || B — C is indicated by en-
closing the A; nodes in a dashed circle, connecting that
circle to node B with a heavy dashed arrow, connecting
node B to node C with a second heavy dashed arrow,
and linking the two dashed arrows with an arc.

Algorithm Step 3 (creating the acyclic graphs
defined by the polygraph)

It is easy to see that a permutation C’ of C satisfies all
the constraints imposed by C iff C’ is consistent with the
edges of (at least) one of the graphs defined by the poly-
graph for C (which was created in step 2). Moreover,
no permutation of C can be consistent with the edges of
a cyclic graph defined by the polygraph. Therefore, to
find permutations of C that satisfy all constraints im-
posed by C, step 3 of our algorithm creates all acyclic
graphs defined by the polygraph. This can be done
with a recursive routine CreateGraphs whose inputs

Figure 3: Polygraph built for the chain of Figure 2

are a graph G and a set of either-or edges E. The in-
puts to the top-level call of this routine are: a graph
that contains all the polygraph’s normal edges, and the
set of all non-redundant either-or edges defined by the
polygraph. The steps of the routine are:

1. If E is empty, return {G} (G is one of the acyclic
graphs defined by the polygraph).

2. Select an either-or edge e = {A1, As, ...
B || B— C from E.

Aj} —

3. Let G’ be equal to G augmented with edge B — C;
if G’ is acyclic then call CreateGraphs recursively
with G’ and E — {e} as inputs. Let S1 be the set
returned by this recursive call.

4. Let G” be equal to G augmented with edges A; —
B,A; — B,...,A; — B. If G" is acyclic then call
CreateGraphs recursively with G” and E — {e} as
inputs. Let S2 be the set returned by this recursive
call.

5. Return S1 U S2.

Example: Two acyclic graphs are defined by the
polygraph shown in Figure 3. They are shown in Fig-
ure 4. Heavy dashed arrows indicate the edges that
were added to account for the polygraph’s either-or
edges; plain arrows correspond to the polygraph’s nor-
mal edges.

Algorithm Step 4 (creating the goal CFG Py)

Step 4 of our algorithm determines whether it is possi-
ble to move the nodes in M together so that they are
extractable, without violating any of the constraints im-
posed by data dependence. This is accomplished by de-
termining whether there is a permutation of the chain
C in which all of the M-hammocks are contiguous, and

Figure 4: Acyclic graphs defined by the polygraph of
Figure 3

that is consistent with the edges of (at least) one of the
acyclic graphs created in step 3. If such a permutation
Cr, is found, we can clearly produce Pp4 (in which all the
M nodes form a hammock, and are thus extractable)
by replacing C with C,, in P.

It is easy to see that permutation C,, exists iff there
is an acyclic graph G created in step 3 such that there
are no paths in G that run from an M-node to an O-
node to an M-node? (the existence of such a path would
preclude moving the endpoint M-hammocks together).

This property can be easily checked for each graph G
created in step 3 by using depth-first search as follows:

For each O-node n in G:
1. Use depth-first search from n to determine
whether there is a path to an M-node.

2. If yes, use reverse depth-first search from n to
determine whether there is also a path from
an M-node.

3. If yes, reject G
Once an acyclic graph G has been identified that
has no such “illegal” paths, a final ordering C,, of the

hammocks of the chain C can be produced by finding
topological orderings of three subgraphs of G:

1. The subgraph induced by the set of O-nodes from
which there is a path to an M-node.

2. The subgraph induced by the set of M-nodes.

3. The subgraph induced by the set of O-nodes from
which there is not a path to an M-node.

2Here we use O-node to mean a node in G that represents an
O-hammock, and M-node to mean a node in G that represents an
M-hammock.

The final ordering is the concatenation of the three
topological orderings. Since G is acyclic, and there are
no paths from an M-node to an O-node to an M-node,
the orderings are guaranteed to exist, and the concate-
nation is guaranteed to be consistent with the edges of
G, thus satisfying all of the constraints imposed by the
original chain C.

Example: The first graph shown in Figure 4 would
be rejected by step 4 of the algorithm because O-nodes
3, 4 and 5 are all reachable from M-nodes 1 and 2, and
can reach M-nodes 6 and 7. The second graph has no
such illegal paths; in fact, there are no paths from an
O-node to a M-node. Therefore, there are only two
topological orderings to concatenate to form the final
ordering (the ordering of the M-nodes, followed by the
ordering of the O-nodes). One such final ordering is
shown below.

4 Algorithm Complexity

The space complexity of the algorithm is polynomial
in the length of chain C, provided we make a minor
change to the algorithm: instead of creating all the
acyclic graphs in step 3 and then checking each of them
in step 4, we need to merge the two steps. Thus, when
an acyclic graph is created, step 4 should be applied on
it. If the graph is rejected for having a bad path then
it can be thrown away; otherwise, the algorithm can
generate final ordering C,, and stop.

The time complexity of the algorithm is dominated
by the combined steps 3 and 4. To see why, we begin
by observing that finding the chain C (step 1 of the al-
gorithm) takes time polynomial in the size of the CFG.
Building the polygraph for chain C (step 2 of the al-
gorithm) takes time polynomial in n, where n is the
number of hammocks in C (n itself is polynomial in the
size of the CFG).

The total time required to generate the acyclic graphs
defined by the polygraph and find one without a bad
path (combined step 3 and 4 of the algorithm) is de-
termined by the total number of calls to the recursive
routine CreateGraphs (described in Section 3.2). An
individual call to this routine can make up to two re-
cursive calls of its own, and therefore the total number
of activations at any given depth k from the top-level

activation is < 2¥. Since the maximum depth of recur-
sion is equal to the number of either-or edges, which we
refer to as e, and since k < e, the total number of calls
to routine CreateGraphs is bounded above by e x 2°.
Thus the time requirement of combined steps 3 and 4 is
bounded above by ((e x 2¢) x (some polynomial in n)).
e itself is O(n?) in the worst case, as for any either-or
edge {A1,As,...Aj} — B || B — C, there are O(n?)
distinct pairs of hammocks for B and C and the set
Ay, Ay, ... Aj is fixed for any particular B and C.

We can improve this upper bound by recognizing
that the number of activations of CreateGraphs at any
given depth k from the top-level activation is also bounded
above by n! (n! could be smaller than 2% as k could be

equal to e which itself is O(n?)). The reason for this
can be seen by considering the set of acyclic graphs re-
ceived as inputs by the activations at this depth: each
acyclic graph in the set has (at least) one permutation
of C that is consistent with its edges, no permutation of
C can be consistent with more than one graph in the set
(because any two graphs differ on at least one either-or
edge and no permutation can be consistent with both
alternatives of an either-or edge), and there are only n!
different permutations of C. Therefore an improved up-
per bound on the total time requirement of steps 3 and
4 is ((e x min(n!,2°)) x (some polynomial in n)).

This upper bound on the algorithm’s time require-
ment is not surprising, since we have been able to show
that the problem of finding a permutation C,, of C (if
one exists) such that the M hammocks occur contigu-
ously in C,,,, and C,, satisfies all the constraints imposed
by C, is NP-Hard in n. The NP-Hardness proof in-
volves a reduction from the NP—Complete problem of
determining whether a given schedule of database trans-
actions is view-serializable (see [Pap86]).

Although this upper bound looks prohibitive, there
is some evidence that the algorithm will work well in
practice: We have measured n and e for all chains
of atomic hammocks in a set of benchmark programs,
and the results of the study (reported in the next sec-
tion) are very encouraging. The bottom line is that in
all of the programs, fewer than 1% of the chains have
polygraphs with more than 5 either-or edges (i.e., have
e > 5). Thus, it seems likely that the algorithm will
usually have a reasonable running time.

Furthermore, the values of both n and e will be
known by the end of step 2 (creating the polygraph), af-
ter doing work only polynomial in the size of the CFG;
if both values are large, heuristics can be used in place
of step 3. Two possible heuristics are:

1. Instead of generating the acyclic graphs defined by
the polygraph, generate the permutations of C in
which the M-hammocks occur contiguously, and
in which the relative ordering of the M-hammocks
and the relative ordering of the O-hammocks are
the same as in C (there are only O(n) such permu-
tations). For each generated permutation, check
whether it satisfies the constraints of the poly-
graph. If so, use that permutation in place of C
to obtain the CFG Pxy.

2. Limit the number of graphs defined by the poly-
graph by arbitrarily converting some or all of its

either-or edges to normal edges, then generate the
corresponding acyclic graphs.

Of course, these heuristics will fail in some cases where
the actual algorithm succeeds, but they may work well
in practice.

5 Experimental Results

To provide some insight into the actual running time of
our algorithm, we analyzed all chains of atomic ham-
mocks in a set of benchmark programs. The steps car-
ried out by the analysis for each program are listed be-
low:

1. Use the SUIF compiler infrastructure front-end
[WFW™94] to build an intermediate form for the
program.

2. Build a CFG for each procedure from its interme-
diate form.

3. Perform pointer analysis on the entire program.
This provides information on the variables that
might be pointed to by pointer variables, which
in turn helps us in determining the variables that
might be defined/used by statements that derefer-
ence pointers.

4. Compute summary information for each procedure.

This information consists of the set of variables
that might be defined, and the set of variables
that might be used, as a result of a call to the
procedure. This summary information is used to
compute data dependences between call nodes and
other nodes.

5. For each procedure in the program:

(a) Identify all atomic hammocks. Compute the may-
use-before-defined set — the set of variables that
might be used in a hammock before being defined
— for each hammock by performing a backward
dataflow analysis within the hammock. Compute
the may-define set — the set of variables that may
be defined by a hammock — for each hammock by
unioning the may-define sets of all nodes in the
hammock. Compute the must-define set of each
hammock by unioning the must-define sets of all
nodes in the hammock that postdominate the en-
try node.

(b) Identify all maximal-length chains of atomic ham-
mocks in the CFG, as described in Algorithm Step
1 (in Section 3.1).

(c) For each chain, use the may-use-before-defined,
may-define and must-define sets of the hammocks
to compute the normal edges and either-or edges
in the chain’s polygraph.

The normal edges in the polygraph induce a tran-
sitive precedence relation on the hammocks in the
chain. If A and B are hammocks in a chain, then
the presence of a normal edge A — B implies that
A precedes B in the relation. An either-or edge
{A1,4s,...4;} — B || B — C is redundant if
one of the A;’s precedes or is preceded by B, or if

Number of

Program procedures Program size
No. of Iines | Total No. of
of source CFG nodes
agrep 65 6220 20725
allroots 6 449 724
anagram 16 655 1348
be 101 8576 16146
bison-1.2.2 150 7852 27769
flex-2.4.7 147 8459 21975
football 57 2327 19383
gzip-1.2.4 99 7624 17886
ispell-4.0 121 7768 16484
simulator 110 5307 12049

Figure 5: Information about benchmark programs

B precedes or is preceded by C. Every redundant
either-or edge is eliminated and replaced by a set
of normal edges; for instance if C' is known to pre-
cede B, then {41, A4s,...A;} = B | B— Cisre-
placed by the set of normal edges {A; — B, Ay —
B,...,Aj —>B}

Figure 5 gives some statistics for the benchmark
programs we analyzed; be, bison, flex, gzip and ispell
are Gnu Unix utilities; agrep is described in [WM92
anagram has been used in the experiments of [ABS94],
while allroots, football and simulator were used in the
experiments of [LRZ93].

Figure 6 gives the distribution of chains by length
in each program. The taller bar gives the percentage of
chains that have length < 10, while the solidly shaded
portion indicates the percentage of chains that have
length < 5. It can be observed that from 50 to 656%
of chains have length < 5. Figure 7 gives the cumu-
lative number of chains over all programs for various
chain lengths.

Figure 8 gives the distribution of chains by the num-
ber of either-or edges they have. The taller bar gives
the percentage of chains that have < 5 either-or edges,
while the solidly shaded portion indicates the percent-
age of chains that have O either-or edges. It can be
observed that from 91 to 99% of chains have no either-
or edges, and virtually all the remaining ones have <5
edges. Figure 9 gives the cumulative number of chains
over all programs that have a given number of either-or
edges.

Recall that the algorithm’s worst case time bound
is proportional to min(n!,2¢) x (some polynomial in n)
(where n is the length of the chain and e is the number
of either-or edges in it). Our experimental results indi-
cate that chain lengths tend to be short, and that the
number of either-or edges tends to be very small; this
is a strong indication that the running time of the algo-
rithm will actually be polynomial in n for most chains in
real programs, thus making it a feasible one in practice.

We also studied whether many either-or edges were
made redundant by normal edges. The results were in
the negative; in each program over 98% of the chains
had < 5 either-or edges even if redundant ones were
not eliminated. We believe this further validates our

3y

|:| length <= 10
- length<=5

100%

90 -

80

70

Figure 6: Distribution of chains by length

conclusions.

Finally, Figure 10 gives for each program the total
number of chains, length of the longest chain, and the
maximum number of either-or edges in any single chain.

5.1 Factors Affecting the Experimental Re-
sults

Although our experimental results are quite encourag-
ing, there are a number of factors that, if changed,
might cause somewhat different results to be produced.
These factors are discussed below.

Using the SUIF intermediate form: The SUIF
intermediate form is a low-level representation. Since
we build the CFG from the SUIF representation, each
source level statement can correspond to many CFG
nodes (this can be observed from the data in Figure 5).
As an example, the single source level statement “*p++
= 0" becomes a series of CFG nodes that first save the
original value of “p” into a temporary, then increment
p, and finally store 0 into the location pointed to by
the temporary. A result of this low-level representation
is that we will tend to have longer chains than if we
had worked at the source level, and we may have more
normal and either-or edges per chain. On the other
hand, the low-level representation has the advantage of
flexibility; in the above example, it allows an extracted
procedure to include just the increment of the pointer,
or just the storing of the value 0.

Handling of pointers: For the sake of efficiency, we
perform the flow-insensitive pointer analysis defined by
Andersen [And94]. This in general gives less accurate
results than a flow-sensitive analysis, which in turn could
increase or decrease the number of normal and either-or
edges in a chain.

Live Variable Analysis: Computing the normal edges

10

3000 r

2500 r

2000 r

1500 r

1000 r

Number of chains

500 r

0 1 1
0 5 10 15 20

Chain length (maximum length = 1030)

25

Figure 7: Chain lengths over all programs

|:| <=5 either-or edges
- 0 either-or edges

100%

95

90

Figure 8: Distribution of chains by number of either-or
edges (Note that the y-axis starts at 85%)

1

100000

10000

1000

100

Number of chains

10

0 2 4 6 8 10 12
Num. either-or edges (maximum = 179)

Figure 9: either-or edge counts over all programs

Total number | Longest | Max. num. of

Program of chains chain | either-or edges
agrep 1821 99 86
allroots 47 93 3
anagram 104 70 4
be 1514 169 8
bison-1.2.2 2487 80 35
flex-2.4.7 2151 194 179
football 1169 346 12
gzip-1.2.4 1680 127 133
ispell-4.0 1589 1030 6
simulator 1236 60 1

Figure 10: Measured statistics about benchmark pro-
grams

induced by output dependence (the fifth type of con-
straint described in Step 2 of the algorithm, Section 3)
for a chain requires knowing which variables are live at
chain exit. Rather than performing a whole-program
live-variable analysis we assume that no variables are
live at chain exit. This assumption can only increase
the number of either-or edges reported for any chain.

Computing summary information for procedures:
As mentioned earlier, we need to compute may-define
and may-use sets for each procedure so that data de-
pendence information for call nodes is known. We let
the may-define (may-use) set of a procedure be equal to
the set of variables that may be defined (used) by the
procedure itself and by other procedures that could be
(directly or indirectly) called by it.

We might have gotten different sets of normal and
either-or edges if we had computed may-use-before-define
summary information rather than just may-use infor-
mation, but that would require an expensive whole-
program analysis which we left out for the sake of effi-
ciency.

Another issue is which variable are included in the

11

may-define and may-use sets for a call node. Includ-
ing all variables in the called procedure’s may-define
and may-use sets — even variables that are not visible
to the calling procedure — can cause extra normal and
either-or edges to be included in the polygraph (e.g., if
a hammock chain includes two calls to the same proce-
dure, and that procedure both defines and uses a local
variable z, then there will be a flow dependence, and
therefore a normal edge, between the two call nodes,
since the definition of z at the first call will be consid-
ered to reach the use at the second call).

In our implementation we include in a call node’s
may-define (may-use) set all variables in the called pro-
cedure’s may-define (may-use) set that are global, static,
arrays, or structures, or whose addresses are taken. In-
cluding (local) structures is probably overly conserva-
tive; however, SUIF provides a single boolean function
that identifies arrays, structures, globals, and variables
whose addreses are taken; using that function provides
a safe approximation to the set of variables in the called
procedure’s may-define and may-use sets that should be
in the call node’s sets.

Handling calls to library functions: Since source
code for library functions is unavailable for analysis, we
provided summary functions for most library functions.
These summaries simulate definitions and uses of all
variables that are not local to the library function (our
summaries were based on the summaries that were used
in the experiments reported in [WL95]). Use of differ-
ent summary functions could lead to different sets of
polygraph edges.

6 Key Theorems

Here we state two key theorems; proofs are given in
the Appendix. The first theorem shows that it is pos-
sible to move the nodes in M together so that they
are extractable (they form a hammock) while preserv-
ing control-dependence sets for all nodes in P iff the
nodes in M are part of a chain C of atomic hammocks
in P. This demonstrates that Step 1 of our algorithm
(which fails if the nodes in M are not part of a chain of
atomic hammocks) is reasonable. The second theorem
demonstrates that our algorithm is correct, by showing
that any permutation of the hammocks in C that sat-
isfies the ordering constraints imposed by C (as defined
in Section 3.2) preserves semantics.

Theorem 1 : Given CFG P and set of nodes M, it is
possible to create a new CFG P, with the same nodes
as P, with each node having the same set of control
dependences as in P, and in which the M nodes form
a hammock iff there is a chain C of atomic hammocks
in P such that:

1. C includes all of the nodes in M, and
2. every hammock in C is either an M-hammock —

a hammock in which all nodes are in M — or an
O-hammock — one that has no nodes in M.

Theorem 2 : Given:
1. Chain C of atomic hammocks in CFG P, such that

all nodes in M are in the chain, and every ham-
mock is either an M-hammock (containing only

M nodes) or an O-hammock (containing no M
nodes), and

2. C', a permutation of C such that C' satisfies the
ordering constraints imposed by C (as defined in

Section 3.2), and

3. P, the CFG obtained by replacing chain C with
the chain C' in P

then: P and P’ are semantically equivalent.

7 Related Work

Related work falls into two main categories: work re-
lated to procedure extraction (including [GN93, LD98,
LV97, BG98)), and work on semantics-preserving trans-
formations (including [BD77, LMW79, Ram&8, PP96,
Fea82, LV97, BG98, BDFH97, CLZ86, FOW&T]).

[GN93] describes a tool that supports a set of meaning-

preserving transformations on Scheme programs, includ-
ing one that extracts a given contiguous sequence of ex-
pressions into a new function and replaces the sequence
by a call to the function. If the user wishes to extract
non-contiguous expressions into a function, the expres-
sions must first be moved together using a transforma-
tion that moves a given expression to a given point if
this does not change the program’s meaning. The user
is respunsible for identifying the correct program point
and the correct ordering for the expressions. Our algo-
rithm automates the aspect of bringing non-contiguous
code together while preserving meaning. Additionally,
our algorithm works on general unstructured programs
whereas their transformations are limited to structured
programs.

[LD98] also addresses the problem of procedure ex-
traction, but their goal and approach are quite different
from ours. Their goal is to discover and extract a mean-
ingful computation surrounding a programmer-specified
“seed” set of statements, within a programmer-specified
bounding hammock. Their approach is to take the
backward slice of the seed within the hammock, and
then attempt to extract the slice as a procedure. The
use of slices implicitly imposes the second part of our
control dependence well-formedness condition. Their
data dependence condition is quite restrictive: there
can be no data flow from the extracted computation
to the remaining computation in the bounding ham-
mock, and vice versa, and no variable can be defined
in both computations if the definitions reach uses out-
side the bounding hammock. In effect, they perform
extraction only when there is no data dependence inter-
action between the code to be extracted and the rest of
the code in the bounding hammock. In our approach,
code can be extracted successfully in many situations
where there are complex data dependence interactions
between the extracted code and the remaining code.
This flexibility comes at the price of a high worst-case
time requirement; however, our experimental results in-
dicate that this may not be a problem in practice. On
the other hand, their approach allows predicate nodes to
be duplicated, which may allow some procedure extrac-
tions that would not be possible using our approach. It
may be possible to combine the advantages of both ap-
proaches: applying our procedure extraction algorithm

12

on the backward slice of the seed will allow it to be ex-
tracted in some situations where their approach fails.
Conversely, we might be able to make our data depen-
dence condition more restrictive to reduce the time com-
plexity of our algorithm, and to extend our algorithm
to permit automatic code duplication when that is nec-
essary to prevent the algorithm from failing.

Both [LV97] and [BG98] describe tools that iden-
tify sets of statements to be extracted into a proce-
dure based on some user input. In [LV97], the pro-
grammer identifies a set of program variables as input
variables, and another set of program variables as out-
put variables. The tool then identifies the statements
that make up the computation that defines the out-
put variables using the values of the input variables.
In the approach described in [BG98], the programmer
specifies a set of variables, and the tool provides a vi-
sualization of the data flow graph of the computations
that depend on or define any of the specified variables.
The programmer then uses the visualization to select a
“root” node, and the tool identifies the set of nodes on
which the root node depends as a candidate for proce-
dure extraction. Both of these tools can identify state-
ments that are widely separated from each other or are
not extractable unless the program is restructured to
some extent. They do not address the extractability
issue in general, however, and presumably leave actual
extraction to be performed by the programmer. Our
work is complementary to theirs in the sense that our
procedure-extraction algorithm could be applied after
one of these tools identifies the statements to extract.

Automatic transformations on programs are discussed
in [BD77, Fea82, PP96, BDFH97]. [Fea82] proposes a
system that accepts a set of recursion equations, a start-
ing expression and a goal pattern. The system deter-
mines if there is a way to rewrite the starting expres-
sion into an expression that satisfies the goal pattern
by a series of simple transformation steps, where each
transformation step is a use of the recursion equations
to perform an operation like folding, unfolding, instan-
tiation or abstraction on the expression in hand. Al-
though procedure extraction was not an explicit goal
of these transformation systems, it is likely that simi-
lar techniques could be used to move the statements in
M together via a series of simple meaning-preserving
transformation steps.

Much has been reported in the literature about con-
verting unstructured programs to structured programs
by eliminating goto’s (e.g.,[LMW79, Ram88]). Our work
is related to this work in the sense that it involves
meaning-preserving program transformations, although
the goals of the transformations are different. In a sim-
ilar sense, our work is related to work done on optimiz-
ing transformations such as code motion out of loops
and other program regions (e.g., [CLZ86]). A notable
similarity in fact exists between the necessary condi-
tion checked by the “strict” approach (one that guar-
antees an improvement in execution time) described
in [CLZ86] and the condition checked by step 1 of our
algorithm; they too stipulate that a node be moved
out only if its control dependence ancestors can also
be moved out.

[FOW8T7] mention the use of chains of hammocks
in an approach to enable easy generation of sequential
code from a Program Dependence Graph. They suggest

factoring the control dependence subgraph of the PDG
into hierarchical chains of hammocks, and say that code
can be generated for a chain in any order consistent with
the data dependences between the hammocks. Their
concern however being program optimization and vec-
torization, they do not talk about procedure extraction
or how the main problem therein of moving together
a given set of nodes can be mapped to the problem of
finding a certain chain and permuting it under a certain
set of constraints.

8 Conclusions and Future Work

We have defined an algorithm that moves a selected
set of nodes in a CFG together so that they become
extractable while preserving program semantics. The
algorithm places no restrictions on the structure of the
CFG or on the selected set of nodes. Although the
algorithm has a worst-case exponential time complexity,
experimental results indicate that it may work well in
practice.

The algorithm succeeds in moving the selected nodes
together if and only if certain data and control depen-
dence properties hold. These properties guarantee that
semantics will be preserved; however they do not neces-
sarily hold in all instances where semantics preserving
extraction is possible. Our future research plans include
studying how often the algorithm succeeds in extracting
meaningful methods from real programs.

A Appendix: Correctness Proofs

This appendix includes proofs for the two theorems
stated in Section 6. Theorem 1 shows that it is pos-
sible to move the nodes in M together so that they
are extractable (they form a hammock) while preserv-
ing control-dependence sets for all nodes in P iff the
nodes in M are part of a chain C of atomic hammocks
in P. This demonstrates that Step 1 of our algorithm
(which fails if the nodes in M are not part of a chain
of atomic hammocks) is reasonable. Theorem 2 demon-
strates that our algorithm is correct, by showing that
any permutation of the hammocks in C that satisfies
the ordering constraints imposed by C (as defined in
Section 3.2) preserves semantics.

Finally, in Theorem 3, we state formally and prove
the characterization for atomic hammocks mentioned in
Section 2.

A.1 Necessity of a chain containing M

Theorem 1 : Given CFG P and a set of nodes M, it
is possible to create a new CFG P, with the same nodes
as P, with each mode having the same set of control
dependences as in P, and in which the M nodes form

a hammock iff there is a chain C of atomic hammocks
im P such that:

1. C includes all of the nodes in M, and

2. every hammock in C is either an M-hammock —
a hammock in which all nodes are in M — or an
O-hammock — one that has no nodes in M.

13

Proof:

The proof is in three parts. We first show that if
CFG P, with the specified properties exists, then the
following two conditions must hold for M in P:

1. For every predicate node p in M, all nodes that
are control dependent on p are also in M.

2. All nodes in M that are (directly) control-dependent
on some node outside M have the same control de-
pendence set outside M. In other words, if ¢ and
s belong to M, and both are control dependent
on nodes outside M, and p is some predicate node
outside M, then ¢ is C-control dependent on p if
and only if s is C-control dependent on p, where
C is either “true” or “false”.

We say that M is well-formed in control dependence in
P in this case.

Next we show that if M is well-formed in control de-
pendence in P, then a chain C with the specified prop-
erties exists in P.

Finally, we show that if the chain C exists in P then
the CFG P, can be obtained from P by permuting C.
Clearly the three parts together prove the theorem.

Before actually proving the three parts, we state
without proof some lemmas that hold for every CFG.

Lemma 1

Let ¢ be any CFG node that is neither the Enter node
nor the Exit node, and let

S = [(p1 = Enter) — ps — -+ — p,,, — ¢| be a path in
the CFG (m could be equal to 1 in which case the path
is simply [(p1 = Enter) — ¢]). There exists an integer
k,1 < k < m such that:

1. pi is a predicate node in S, and

2. the edge from pj to its successor in S is labeled C,
where C' is either “true” or “false”, and

3. ¢ postdominates only the C-edge of pg; i.e., q is
C-control dependent on py, and

4. for all [,k <1 < m: q postdominates p;
O

Lemma 2
Let S be a CFG path from node p to node ¢ such that:

1. g is control dependent on p, and
2. q postdominates all other nodes in S

Then, every node in S between p and ¢ is a control
dependence descendent of p. O

Lemma 3

Let p be a predicate node and let {q1,¢2,...,¢m} be a
set of nodes such that each ¢; is C-control dependent
on p.

1. There exists a total ordering on the ¢;’s imposed
by the postdominance relation.

2. If there is a path in the CFG from the C-successor
of p to g; that does not include ¢;, for any ¢ and j
such that ¢ # j, then ¢; postdominates g;.

O

Lemma 4
Let H be a hammock.

1. If pis a node in H and ¢ is a node outside H, then
all paths from p to ¢ include the outside exit node
of H.

2. No node g outside H can be control dependent on
a predicate node p inside H.

O

Lemma 5

Let H be a hammock in a CFG, p be a predicate node
outside H, and ¢ be a node in H. ¢ is C-control depen-
dent on p iff :

1. the entry node ey of H is C-control dependent on
p, and

2. q postdominates ep

A.1.1 Proof Part 1

Given that there is a CFG P, with the following prop-
erties:

1. P. and the given CFG P have exactly the same
set of nodes, and

2. the nodes in M form a hammock Hpq in P. (i.e.
the M nodes are extractable from P.), and

3. each CFG node has the same control dependence
set in P, asin P

the goal in this part is to show that M is well-formed in
control dependence in P. The strategy is to first show
that M is well-formed in control dependence in P,, and
then carry the result over to P.

First, we define some terms used in the proof:
Definition (control dependence parent/ancestor/
descendent): Node p is a control parent of node ¢ in
CFG G iff ¢ is control dependent on p in CFG G. p is
a control ancestor of q iff it is either a control parent of
q or it is a control ancestor of some control parent of ¢.
q is a control descendent of p iff p is a control ancestor
of ¢q. O

In the following lemmas, exq is used to denote the
entry node of hammock H .

Lemma 6
Let p and ¢ be CFG nodes such that p ¢ Haq and
q € Hpq. Every path in P, from p to g includes epq.

Proof:

This follows directly from the definition of a hammock
— all edges from nodes outside H 4 to nodes inside H g
come into epy. O

Lemma 7
((p is a predicate node) A (p € M) A (p is a control
parent of ¢ in P.)) = (¢ € M).

Proof:
For contradiction, assume that p is a predicate node in
M that is a control parent of ¢, but that ¢ is not in

14

M. As all the M nodes are contained in Haq, p must
be in Hpq. Clearly q is outside H g, but this violates
Lemma 4 part 2. O

Lemma 8

Let ¢1 and g2 be nodes in M and let p; and ps be nodes
not in M such that ¢; is Cj-control dependent on p;
and g9 is Cs-control dependent on ps in P,. It must
then be true that ¢; is also Cs-control dependent on po
and ¢o is also Ci-control dependent on p; in Pk.

Proof:

Clearly q1,q2 are in Hyq while p1,ps are outside H .
We make some observations, all of which result from
applying Lemma 5 on the given facts:

1. epq is Ci-control dependent on pq

2. ¢1 postdominates e (the earlier point and this
one are true because q; is Ci-control dependent

on py)
3. ea is Cs-control dependent on po

4. g2 postdominates exq (point 3 and this one are
true because g2 is Ca-control dependent on po)

From Lemma 5 and points 2 and 3 above it follows that
q1 is Cs-control dependent on ps. From Lemma 5 and
points 1 and 4 above it follows that g is Cj-control
dependent on p;. O

Definition(extDeps(gq, P)) : If ¢ is an M-node in the

CFG P, then extDeps(q, P) is the set of pairs (p,C)

such that p ¢ M and ¢ is C-control dependent on p in

CFG P. O
A corollary of Lemma 8 follows:

Corollary 1
(@ € M)A (g2 € M) A (extDeps(qr, Pe) # {}) A
extDeps(qgz, Pe) # {})) =
extDeps(qy, P.) = extDeps(qz, Pe)).
This corollary follows directly from Lemma 8. O

From Lemma 7 and Corollary 1 it follows that M
is well-formed in control dependence in P,. However,
control dependence well-formedness is a property based
only on the control dependence sets of nodes, and we
know that each node has the same control dependence
set in P, as in P. We thus infer that M is also well-
formed in control dependence in P.

A.1.2 Proof Part 2

Let M be well-formed in control dependence in P. Our
goal is to show that there then exists a chain of atomic
hammocks C in P such that:

1. C includes all of the nodes in M.

2. Every hammock in C is either an M-hammock —
a hammock in which all nodes are in M — or an
O-hammock — one that has no nodes in M.

All lemmas in this part of the proof implicitly apply
to the CFG P, and they assume M is well-formed in
control dependence in P.

Lemma 9 is really a specialized version of Lemma 1.

Lemma 9

Let e be a node in M. If

S = [(p1 = Enter) — ps — -+ — p,, — €] is a path in
the CFG such that p,, € M (m could be equal to 1 in
which case the path is simply [(p1 = Enter) — e]), there
then exists an integer k,1 < k < m such that:

1. pi is a predicate node in S, and

2. the edge from pj to its successor in S is labeled C,
and

3. e postdominates only the C-edge of pg; i.e., e is
C-control dependent on py, and

4. pr, ¢ M, and
5. for all [,k <l < m: e postdominates p;

Proof:

We consider two cases for p,,. If e does not postdomi-
nate p,,, then p,, must be a predicate node and e must
be C-control dependent on p,, where C' is the label on
the edge p,, — e. In this case, pr = p,» and we are
done.

The other case is e postdominates p,,. Applying
Lemma 1 on the path S, we know that there exists
a predicate node py in S such that e is C-control de-
pendent on pr where C' is the label of the outgoing
edge from pj in the path, and such that e postdomi-
nates every node on S between e and pi. Now applying
Lemma 2 on the suffix of path S from py to e, we infer
that py is a control ancestor of p,,. Since p,, € M and
M is well-formed in control dependence, no control an-
cestor of p,, — including px — can be in M. We thus
have our result. a

Definition(entry node of M) : A node e in M is said

to be an entry node of M iff there exists an edge m — e

such that m € M. o
Some corollaries of Lemma 9 are:

Corollary 2
For any entry node e of M, extDeps(e, P) # {}.

Since e is an entry node of M, there must exist a
path from the Enter node of P to e such that the last
node on the path before e is a node that does not belong
to M. Lemma 9 thus applies and tells us that there
must exist a predicate node ¢ M on which e is control
dependent. O

Corollary 3
If e; and es are any two entry nodes of M, then:
extDeps(e;, P) = extDeps(ez, P) # {}.

This follows from Corollary 2 and the definition of
well-formedness in control dependence. O

Corollary 4
If {e1,eq,...,em} is the set of all entry nodes of M
then there is a total ordering on this set imposed by
the postdominance relation.

This follows from Corollary 3 and Lemma 3. a

Definition(Region of an entry node) : Let e be an en-
try node of M. Region(e) is defined to be the set of
nodes in M that can be reached from e along CFG

15

paths that include only nodes in M. By definition,
e € Region(e). |

Lemmas 10 through 12 are used to prove Lemma 14,
which says that the nodes in Region(e) constitute an
M-hammock in P.

Definition(first node outside M from an M node) :

Let g be anode in M. t is said to be a first node outside
M from q if there is a path in P from ¢ to Exit such
that t is the earliest node in the path that does not
belong to M3, o

The following lemma with its corollaries says that
control flows out of a region of M nodes to a unique
node in the CFG.

Lemma 10
Let ¢ be any node in M. There is a unique node ¢ in P
such that ¢ is a first node outside M from gq.

Proof:

For contradiction, assume that ¢; and ¢, are two distinct
nodes such that both are first nodes outside M from gq.
The following observations can be made:

1. There exists a path
Sy = [(r1 =¢q) =1y — -1y — t1] such that all
the r;’s are in M (m could be equal to 1 in which
case the path is simply [(r1 = q) — t1]).

2. There exists a path
Sy = [(s1 =¢q) — 82 — -+ 8, — to] such that all
the s;’s are in M (n could be equal to 1).

3. There is a path S from the Enter node to g.

4. If ¢; is the Exit node of the procedure, then it
postdominates ¢ (the Exit node postdominates all
nodes).

We consider the case where t; is some node other
than the Exit node. ¢; cannot be control depen-
dent on any predicate in {(r1 = q),r2,...,7m} as
that would be a violation of the control depen-
dence well-formedness condition. Therefore apply-
ing Lemma 1 on the path S+ (the concatenation
of paths S and S7) we infer that ¢; postdominates
all the nodes {(r1 = q),r2,...,7m}. In particular
t; postdominates q.

5. By a similar argument to postdominates q.

The fact that ¢35 postdominates ¢ combined with the
fact that there is a path from ¢ to ¢; that does not in-
clude t5 implies that t5 postdominates ;. The fact that
t1 postdominates ¢ combined with the existence of the
t1 free path from q to to implies that ¢; postdominates
to. However it is not possible for two CFG nodes to
postdominate each other if the Exit node is reachable
from all nodes. We thus have our contradiction. O

Definition(outside(q)) : outside(q) denotes the unique
first node outside M from q. O

3

every node in M must have a first node outside M since by
definition, the Exit node does not belong to M.

Some corollaries of Lemma 10 are:

Corollary 5
Let e be any entry node of M. For any two nodes ¢
and g2 in Region(e), outside(q1) = outside(qz).

This follows directly from Lemma 10 and the fact
that ¢; and g2 are both reachable from e through paths
completely within M. If ¢; and ¢ have different first
nodes outside M then e would not have a unique first
node outside M. m|

Corollary 6
outside(e) postdominates all nodes in Region(e).
For any node g € Region(e), by Lemma 10, all paths

segment of Sy from p to es, we infer that p
is a control dependence ancestor of d. Since
de ¢ M and since M is well-formed in con-
trol dependence we infer that p ¢ M. Again,
because M is well-formed in control depen-
dence, we can use Corollary 3 to infer that e;
too is C-control dependent on p. Now apply-
ing Lemma 3, part 2 (the lemma is applicable
since the part of cycle S5 from p to e does not
include e;) we infer that e; postdominates es.

O

from ¢ to Exit go through outside(q). This means outside(q) Lemma 12

postdominates g. But by Corollary 5, outside(q) =
outside(e). We hence get our result. O

Lemma 11

Let e; and ey be two distinct entry nodes of M such
that es postdominates e;. Let do be a predecessor of e
such that do ¢ M. Then:

1. e; dominates ds, and

2. there exists a path from e; to ds that does not
include es.

Proof:

We prove both properties by showing that e; would
postdominate eg if they did not hold. This of course
contradicts the assumption that es postdominates e;.

1. Say e; does not dominate ds. Then there is a path
S from Enter to ey such that do — es is the last
edge in S and e; is not in S. Applying Lemma 9
there exists a predicate p in S such that the C-
successor of p is in S, es is C-control dependent
on p, and p & M. Applying Corollary 3, e; too is
C-control dependent on p. Since the part of the
path S from p to es does not include e, we apply
part 2 of Lemma 3 and infer that e; postdominates
€9.

2. Say e; dominates dz, but all paths from e; to ds
include es. Then for ds to be reachable from Enter,
there would have to be a path from es to do that
does not include e;. Hence there is a cycle S5 that
includes the edge do — es but not the node e;.
We consider two cases on do and show that both
cases lead to the contradiction:

(a) es is C-control dependent on ds. Applying
Corollary 3, e; too is C-control dependent
on do. Clearly there is a path from ds to es
that does not include e;. Therefore applying
Lemma 3, part 2, we obtain the result that e
postdominates es.

e2 is not control dependent on do; i.e. es post-
dominates dz. There must be a predicate p in
S such that ey is C-control dependent on p
and such that e, postdominates all nodes in
S5 between p and ey (dq is included in these
nodes). The reason such a node p must exist is
that otherwise there would be no way to leave
the cycle Sa, thus rendering the Exit node un-
reachable from e;. Applying Lemma 2 on the

16

Let e1 and ey be two distinct entry nodes of M. Region(eq)
and Region(ez) have an empty intersection.

Proof:
For contradiction, assume the intersection is non-empty
and let p € (Region(e1) N Region(ez2)). Applying Corol-
lary 5, we get outside(p) = outside(e1) = outside(ea).
One of e; or ey postdominates the other by Corol-
lary 4, so without loss of generality let us assume eg
postdominates e;. Let do be a CFG predecessor of es
such that ds is not in M. By Lemma 11, e; dominates
ds and there is a path S7 from e; to do that does not in-
clude es. Since e; postdominates eq, e postdominates
all nodes in S;. Let ¢ be the first node on S; that is
not in M (¢ could be dg). Clearly t = outside(e1). We
have already shown that outside(e;) = outside(es), and
therefore ¢t = outside(es). Applying Corollary 6 we in-
fer that ¢ postdominates e;. But es postdominates all
nodes in S, and we thus have a contradiction where es
and t both postdominate each other. O

Lemma 13
For every node n in M, there is an entry node e of M
such that n is in Region(e).

Proof:

Let n be any node in M. Let us consider a path .S from
Enter to n. Some suffix S; of this path must contain
only nodes from M. Let p be the first node in S;. p
cannot be the Enter node and therefore p is an entry
node of M. Tt is clear that n is in Region(p). 0

Lemma 14

If e is an entry node of M, then Region(e) is an M-
hammock, with e being its entry node and outside(e)
being its outside exit node.

Proof:

We first show that all edges from nodes outside Region(e)
to Region(e) come into e. For contradiction, say there
is a node ¢ such that ¢ € Region(e) and g # e and there
exists a node p € Region(e) such that there is a CFG
edge from p to q. If p € M then ¢ is an entry node
of M; this implies that ¢ € (Region(q) N Region(e)),
but this is impossible according to Lemma 12. We then
consider the case where p € M. By Lemma 13, p €
Region(ey) where e; is some entry node of M. We know
p € Region(e), therefore it follows that e; # e. Due to
the edge from p to ¢, g also belongs to Region(ey). This
means that ¢ € (Region(e) N Region(e1)), which is a
contradiction according to Lemma 12. We have thus
shown that all edges from nodes outside Region(e) to

Region(e) come into e.

All nodes reachable from e along paths that go through

only M-nodes belong to Region(e) (by definition), and
by Corollary 5 outside(e) is the first node outside M for
all nodes in Region(e). Therefore all edges from nodes
in Region(e) to outside go to outside(e).

Therefore Region(e) is an M-hammock, with e being
its entry node and outside(e) being its outside exit node.
a

Definition(X and Ord(X)) : ¥ is the set of all entry
nodes of M. Ord(X) is the total order induced on X by
the postdominance relation (Corollary 4). ad

Definition(Nodes in between consecutive regions) : Let

e; and e; be two distinct nodes in ¥ such that e; im-
mediately follows e; in Ord(X). InBetween(e;,e;) is
defined to be the set of all nodes that are outside M,
and that can be reached from outside(e;) along CFG
paths that include only nodes that are outside M. By
definition, outside(e;) € InBetween(e;, e;). O

Lemmas 15 through 19 are used to prove Lemma 20,
which says that InBetween(e;, e;) is an O-hammock.

Lemma 15
e; postdominates all nodes in InBetween(e;, €;)

Proof:

By Lemma 12, e; is not in Region(e;), and by Lemma 14,
there is a path from e; to outside(e;) that is completely
within Region(e;) (i.e., that does not include e;). This
together with the fact that e; postdominates e; implies
that e; postdominates outside(e;).

By definition, all nodes in InBetween(e;,e;) can be
reached from outside(e;) without including e;. There-
fore, since e; postdominates outside(e;), e; postdomi-
nates all nodes in InBetween(e;, ;). a

Definition(direct path) : Let e; and e; be in ¥ (e; could
be equal to e;). A direct path from outside(e;) to e; is
a CFG path from outside(e;) to e; that includes none

of the nodes in ¥ — {e;}. O
We now show some important properties of the nodes
in X.

Lemma 16
If e; and e; are two distinct nodes in ¥ such that e;
immediately follows e; in Ord(X), then:

1. there exists a direct path from outside(e;) to e,
and

2. there does not exist a direct path from outside(e;)
to any node in ¥ — e;, and

3. there does not exist a direct path from outside(e,,)
to e;, where e, is the last node in the sequence

Ord(%), and

4. outside(e;) dominates e;

Proof:
Let e; be any node in X such that e; appears after e; in

17

Ord(X). Let e, be any node in ¥ such that it is either
equal to e; or it appears before e; in Ord(X).

We derive some intermediate results that will be used
to prove the four parts of the lemma.

i. there exists a path from outside(e;) to e;, as, by
Lemma 15, e; postdominates outside(e;).

ii. there can be no direct path from outside(e;) to e;.
If we had a direct path from outside(e;) to e;, then
because of the fact that e; does not postdominate
e; (e; comes before e¢; in Ord(X)), we may infer
that e; does not postdominate outside(e;); this
however contradicts Lemma 15.

outside(e;) postdominates e;. The reason is that
outside(e;) postdominates e; (by Corollary 6), and
e; postdominates all nodes in X that appear before
it in Ord(%).

iii.

iv. we must have a path from outside(e;) to e; that
does not go through e;. If such a path does not ex-
ist then e, postdominates outside(e;) (because e;
postdominates outside(e;)), and this contradicts
our previous result that outside(e;) postdominates

€p.

v. we show that there can be no path S from outside(e;)
to ey that does not go through e;. Assume for the
sake of argument that such a path S exists. We
already know there is a path from outside(e;) to
e; that does not include e;. We thus infer:

(a) Since e is the entry node of hammock Region(ey),
we can assume there are no nodes in Region(ep)
before ep in S

(b) Informally speaking there must be a branch

point in .S where the path to e; separates; oth-

erwise all paths from outside(e;) would have
to go through e; to reach ey, or vice versa.

Formally, e, must postdominate exactly one

of the outgoing edges — say, the one labeled

C — of some predicate p that appears on S

before e,. Thus e is C-control dependent on

p.

(c) phasto bein N (P)—M, which implies (p, C) €

extDeps(ep, P). We prove this by contradic-

tion. Assume p € M. By point (a) above, p is
in Region(e.), where e, € ¥ and e, # e,. But
this cannot be true as by Lemma 4, part 2, ep
cannot be control dependent on any node in

Region(ec).

Since the prefix of path S up to p does not

have e; in it, e; has to postdominate both

outgoing edges of p for it to postdominate
outside(e;). In other words, e; is not control

dependent on p and (p, C') & extDeps(e;, P).

M being well-formed in control dependence,

extDeps(ey, P) # extDeps(e;, P) is not possible.
Therefore there can be no path from outside(e;)
to ey that does not go through e;, which means
there can be no direct path from outside(e;) to ey.

We now prove the four parts of the lemma.

1. By point i above there is a path from outside(e;)
to e, and by points ii and v this path does not go
through any node in 3 before reaching e;.

2. This part of the lemma follows from points ii and
v above.

3. We prove this part by contradiction: assume there
is a direct path S; from outside(e,,) to e;. Let
S be a path from the Enter node to outside(en,).
outside(ey,) postdominates e;, the reason being:
em postdominates e; (e, is either equal to e; or it
occurs after e; in Ord(X)), and outside(e,,) post-
dominates e, (Corollary 6). e; thus cannot post-
dominate outside(e,,), and therefore an applica-
tion of Lemma 1 on path S 4 S7 tells us that
e; is C-control dependent on some node p after
outside(e,,) in Sy. S1 being a direct path, it fol-
lows from the definition that p ¢ M. We now
apply Corollary 3 to infer that e; too is C-control
dependent on p. The suffix of S; from p to e;
does not include e;, and therefore an application
of Lemma 3, part 2, tells us that e; postdominates
e;. This gives us our contradiction, as e; coming
after e; in Ord(X) means that it is e; that post-
dominates e;.

4. Let D ={d; | ((dj — e;) € E(P))A(d; € (N(P)—
M))}. No CFG predecessor of e; can be in
Region(ey), where e, € ¥ and e, # e;; if this
were true then e; would be in Region(ex), but
this is ruled out by Lemma 12. Therefore, by
Lemma 13, any predecessor of e; that is not in
Region(e;) is in D. This, together with the fact
that Region(e;) is a hammock with e; as its entry
node (Lemma 14), implies that all paths from En-
ter to any node in Region(e;) include one of the
nodes in D. By Lemma 11, part 1, e; dominates all
nodes in D. Therefore we infer that e; dominates
e;. Since all paths from e; to e; include outside(e;)
by Lemma 4, part 1, outside(e;) dominates e;.

O
Let ¢; and e; be two distinct nodes in ¥ such that
e; immediately follows e; in Ord(X).
The following lemma shows that all edges going out
of InBetween(e;, e;) go to e;.

Lemma 17
(¢ € InBetween(e;, e;))A\(r & InBetween(e;, e;)) A((qg —
M e EP) = (r = c)

Proof:

For contradiction assume that there is an edge g — ey
such that ¢ is in InBetween(e;, e;), and ey, is some node
that is not in InBetween(e;, e;) and that is # e;. From
the definition of InBetween(e;,e;), it is clear that ey
is an M node. Moreover, since ¢ & M, e, € %. By
definition, ¢ is reachable from outside(e;) by a path that
does not include e;. Therefore there exists a direct path
from outside(e;) to ex. By Lemma 16, outside(e;) can
have a direct path to no node in ¥ other than e;, thereby

18

giving us a contradiction. We have thus shown that any
edge out of InBetween(e;, e;) goes to e;. ad

The next lemma shows that there cannot be an edge
from a node outside InBetween(e;,e;) U Region(e;) to
node e;.

Lemma 18
((p—¢5) €E(P)) =
(p € (Region(e;) U InBetween(e;, e;)))

Proof:

For contradiction, assume that p is neither in
InBetween(e;, e;) nor in Region(e;), and that there is
an edge p — e;.

We start by showing that p cannot be in M. To
prove this by contradiction, assume that p is in M.
Since it is not in Region(ej), by Lemma 13 it must
be in Region(e;) where e; is some entry node of M
such that e; # e;. The edge p — e; implies that e;
is in both Region(e;) and Region(e;), which contradicts
Lemma 12. Thus, p is not in M.

By Lemma 16, outside(e;) dominates e;. Since there
is an edge p — e;, outside(e;) also dominates p. Hence
there must be a path from outside(e;) to p. Since p is
not in InBetween(e;, e;), by Lemma 17, any path .S from
outside(e;) to p must first go to e;; by Lemma 4 part 1,
the path must then go to outside(e;). Let outside(er)
be the last node in S such that e; is an entry node
of M (e could be ej, but it cannot be e;). There
can be no entry node e; in S between outside(ey) and
p; if there were, then since p is outside M the path
would have to go from e; to outside(e;) before reaching
p (by Lemma 4) which contradicts the assumption that
outside(ey,) is the last outside exit node in S before p.

Therefore the suffix of path S from outside(ey) to
p followed by the edge p — e; gives us a direct path
from outside(er) to e;, where ey # e;. This contradicts
Lemma 16 and we thus have our result. O

The next lemma shows that there cannot be an edge
from a node outside InBetween(e;, e;) U Region(e;) to a
node in InBetween(e;, e;).

Lemma 19
((p — q) € E(P)) A (¢ € InBetween(e;,ej)) = (p €
(Region(e;) U InBetween(e;, e;)))

Proof:
For contradiction, assume p is neither in InBetween(e;, e;)
nor in Region(e;), q is in InBetween(e;, e;), and there
is an edge p — q.

We start by showing that p cannot be in M. To
prove this by contradiction, assume it is in M. By
Lemma 13, p is in Region(e;) where ¢; is some entry
node of M. However, since p ¢ Region(e;), we infer
that e; # e;. ¢ is not in M and therefore the edge
p — ¢ implies that ¢ = outside(e;). e; postdominates
g by Lemma 15, and therefore there must be a path S
from ¢ to e;. Sy includes no nodes in M, as if it did then
we would have a direct path from outside(e;) through
g to an entry node other than e;, which is not possible
according to Lemma 16. ¢ being equal to outside(e;),
the path S then is a direct path from outside(e;) to e;.
This is a contradiction of Lemma 16, as we know that
e; # e;. Thus we conclude that p is not in M.

We now consider two cases for p. If e; does not dom-
inate p then there is a path S from Enter to e; that in-
cludes p and ¢ but not e;. We apply Lemma 9 to infer
that there is a predicate n on this path that is not in
M, and on which e; is C-control dependent. As M is
well-formed in control dependence, we infer that e; too
is C-control dependent on n. Then applying Lemma 3,
part 2, we infer that e, postdominates e; which is a
contradiction. We therefore consider the other case: e;
dominates p. Since p € Region(e;) we apply Lemma 4,
part 1, and infer that outside(e;) dominates p. Now the
argument is just as in the proof of Lemma 18. Any path
from outside(e;) to p will have to include outside(e;)
because p is outside InBetween(e;, e;) and Region(e;).
There is also a path from p to e; through ¢ that does not
include any node in M. Together we infer that there is
a direct path from outside(ey) to e; for some ey # e;.
This cannot be true according to Lemma 16. a

Lemma 20
InBetween(e;, e;) is an O-hammock, with outside(e;)
being its entry node and e; being its outside exit node.

Proof:

1. By definition, no node in InBetween(e;,e;) is in

M.

2. Lemma 19 says that for any edge to come in from
a node p outside InBetween(e;,e;) to a node ¢ in
InBetween(e;, e;), p has to be in Region(e;). But
all edges from Region(e;) to outside Region(e;) (q
is outside Region(e;)) go into the node outside(e;)
(Lemma 14). Therefore any edge coming into
InBetween(e;, e;) from outside comes into node
outside(e;).

3. By Lemma 17, all edges from a node in

InBetween(e;, e;) to a node outside InBetween(e;, e;)

go to node e;.

O

Lemma 21

(Region(e;), InBetween(e;, e;), Region(e;)) is a hammock
chain in CFG P.

Proof:

With Lemmas 14 and 20, we have shown that Region(e;),
InBetween(e;,e;) and Region(e;) are hammocks, the
outside exit node of Region(e;) is the entry node of
InBetween(e;, e;), and the outside exit node of
InBetween(e;, e;) is the entry node of Region(e;). All
that remains to be shown is that no spurious edges come
into outside(e;) or into e;:

e By Lemma 19, for any edge p — outside(e;), p

must either be in Region(e;) or in InBetween(e;, e;).

e By Lemma 18, for any edge p — e;, p must either
be in Region(e;) or in InBetween(e;, e;)).
O
We now show the existence of the chain C in P:

o If there is only one entry node e € X, then Region(e)
is an M-hammock that contains all the nodes in

19

M (by Lemmas 14 and 13). Region(e) is a ham-
mock, and any hammock is by definition either an
atomic hammock or a chain of atomic hammocks.
Therefore the chain of atomic hammocks obtain-
able from Region(e) is the chain C.

o Let Ord(X) = (e1,e2,...em). Let e;,e; be two
consecutive hammocks in Ord(X). By Lemma 21,
(Region(e;), InBetween(e;, e;), Region(e;)) is a ham-
mock chain. Therefore it is clear that
(Region(ey), InBetween(eq, e2), Region(ez), . . .,
InBetween(em—1, em,), Region(ey,)) is a hammock
chain where each Region(e;) is an M-hammock
and each InBetween(e;, e;) is an O-hammock. By
Lemma 13, every M node is included in Region(ey,)
for some k € [1,2,...m]. As observed earlier, any
hammock is either itself atomic or is a chain of
atomic hammocks. Therefore the chain of atomic
hammocks obtainable from
(Region(ey), InBetween(eq, e2), Region(es),. ..,
InBetween(em—_1, em), Region(en,)) is the chain C.

A.1.3 Proof Part 3

Let there exist a chain of atomic hammocks C in P such
that:

1. C includes all of the nodes in M.

2. Every hammock in C is either an M-hammock —
a hammock in which all nodes are in M — or an
O-hammock — one that has no nodes in M.

Let C,, be a permutation of C (a chain is permuted by
reordering its hammocks) such that the M-hammocks
of C occur contiguously in C,,. Let P. = P|[C,,/C] be
the CFG obtained by replacing C in P by C,,. Our
goal in this part is to show that P. has the following
properties:

1. P. and P have exactly the same set of nodes, and

2. the nodes in M form a hammock in P, (i.e. the
M nodes are extractable from P.), and

3. each CFG node has the same control dependence
set in P, asin P

Since P, is obtained from P by permuting the chain
C in P, clearly the node sets of the two CFGs are the
same. The M-hammocks in C,, occur contiguously and
hence form their own chain of hammocks H x4 which is a
subchain of C,,,. By definition, any chain of hammocks is
itself a hammock, and therefore H ¢ is an M-hammock
(it may not be atomic) in P,. We are given that all the
M nodes are in C in P, and therefore all the M nodes
are in hammock H a4 in P,.

We now show that each node has the same control
dependence set in P, as in P. We begin by stating a
few lemmas.

Let ec be the entry node of chain C and let exq be
the entry node of chain C,,. Let t be the outside exit
node of both chains.

Lemma 22

1. A path S that includes no nodes in C exists in P
iff the same path S exists in P, while including no
nodes in C,,.

2. A path S whose last node alone is in C (the last
node will then be ec) exists in P iff a path S’ exists
in P, such that S’ is identical to S except that its
last node is eq.

Proof:
This is true because P and P, differ only in the two
chains.]

Lemma 23

Let g be a node in C. Therefore it is in C,, also. There
is a path in P from ec to t that does not include ¢ iff
there is a path in P, from e to ¢t that does not include

q.

Proof:

q will be present on all paths from the entry node to the
outside exit node iff ¢ postdominates the entry node of
the atomic hammock to which it belongs. This, together
with the fact that C and C,,, have the same set of atomic
hammocks gives us the result. O

Lemma 24

Let p be a predicate node outside C, ¢ be any node other
than Exit, and C be a condition, i.e. “true” or “false”.
There is a path in P from the C-successor of p to Exit
that does not include ¢ iff there is a path in P, from the
C-successor of p to Exit that does not include q.

Proof:

Let S be a path from the C-successor of p to Exit
in P that does not include ¢. If S does not include any
node in C then by Lemma 22, part 1, the same path
exists in P..

If S does not include ¢ but does include some nodes
in C, then it is composed of three subpaths:

1. 51, from p to ec such that ec is the only node in
S1 that is in C.

2. So, from ec to t, through C (S2 has to extend all
the way to t because the Exit node — as it has no

successors — may be equal to ¢ but cannot occur
inside C)

3. S3, from ¢ to Exit such that S3 includes no nodes
from C. S3 could be empty.

None of the above subpaths include q. Now consider
P.. By Lemma 22, part 2, there is a path S in P,
that is identical to S; except that its last node is epq.
Hence S does not include g (e # g because e occurs
somewhere in S3). By Lemma 23 we know there is a
path S} in P, from e to ¢ that does not include q. S3
carries over into P, directly. Thus S7 + S + S3 is the
path in P, from C-successor of p to Exit that does not
include q.

We have thus shown that there is a path in P from
the C-successor of p to Exit that does not include ¢
implies that there is a path in P, from the C-successor
of p to Exit that does not include q. The implication in
the other direction can be shown symmetrically.

O

Let p be a predicate node and g be any node. We
consider possible cases for p, and in each case show that
q is C-control dependent on p in P iff it is C-control
dependent on p in P..

20

1. pisin C. Therefore p is in some atomic hammock
HinC.

Let ¢ be C-control dependent on p in P. There-
fore by Lemma 4, q is also in H. Since C,, is a
permutation of C, H appears unchanged in C,,,
which implies that ¢ is C-control dependent on p
in P.. It can be shown in a similar manner that ¢
is C-control dependent on p in P, implies that it
is C-control dependent on p in P.

2. p is outside C. Applying Lemma 24 gets us our
result.

a

A.2 Ordering constraints guarantee seman-
tics preservation

Theorem 2 (meaning preserving permutations)
Given:

1. Chain C of atomic hammocks in CFG P, such that
all nodes in M are in the chain, and every ham-
mock is either an M-hammock (containing only
M nodes) or an O-hammock (containing no M
nodes), and

2. C', a permutation of C such that C' satisfies the
ordering constraints imposed by C (as defined in
Section 3.2), and

3. P, the CFG obtained by replacing chain C with
the chain C' in P

then: P and P’ are semantically equivalent.
Proof:

The proofis centered around two key lemmas. Lemma 27
says that the sets of live variables at chain exit and at

chain entry are the same for P and P’. Lemma 29 says

that if control enters C in P and C’ in P’ in the same

state (as defined in Section 2), then:

e at the entry point of every hammock H in C and
C’, the states in the two programs will be identi-
cal with respect to all variables that are upwards-
exposed in H (variables that might be used in H
before being defined), and

e at the chain exits, the states in the two programs
will be identical with respect to all live variables.

Since P and P’ differ only in the chains, these two lem-
mas can be shown to ensure identical semantics.

Let A be a hammock in C and C’. Let A.uses be the
set of variables that have upwards exposed uses in A;
i.e. the variables that could be used in A before being
defined.

Definition(PrecDefs) : For any variable v € A.uses,
let PrecDefs(A,v) be the sequence of hammocks that
precede A in C and have definitions of v that reach A.
That is, PrecDefs(A,v) = (D1, Ds, ..., D), where

1. a hammock H in C belongs to {D1, Ds, ..., Dy} iff
H precedes A in C and has a definition of v that
reaches the use in A.

2. D; precedes D;11 in C for eachi € 1...k—1, but
not necessarily immediately.

(Tt is possible that PrecDefs(A, v) is an empty sequence.)
In a similar manner let PrecDefs’ (A, v) be the sequence

of hammocks that precede A in C’ and have definitions
of v that reach A. O

Lemma 25

For any hammock A in C and C’ and for any vari-
able v in A.uses, the two sequences PrecDefs(A,v) and
PrecDefs(A,v)’ are equal.

Proof:
We make a series of observations which together give us
our result.

1. For each hammock D; in PrecDefs(A,v), there is
an edge D; — A in the polygraph of C induced by
a flow dependence. Therefore, as C’ satisfies C, D;
will come before A in C'.

2. Since every hammock in PrecDefs(A,v) has a defi-
nition that reaches A, there is an edge D; — D; 41
induced by a def-order dependence in the poly-
graph of C, where D; and D, are any two con-
secutive hammocks in PrecDefs(A,v). Thus the
hammocks in PrecDefs(A,v) occur in the same or-
der in C and in C'.

3. From the first two observations it is clear that
the only way there could be a hammock D; in
PrecDefs(A,v) but not in PrecDefs'(A,v), is if
there exists a different hammock that is not in
PrecDefs(A,v) but is in PrecDefs'(A, v), and that
“blocks” D;’s definition of v from reaching A in C'.
We prove that this cannot be the case by showing
that no hammock that is not in PrecDefs(A,v)

can be in PrecDefs' (A,v). This would wrap up
the proof of the lemma.

Let N be a hammock that is in PrecDefs'(A,v)
but not in PrecDefs(A,v). N either has to oc-
cupy a position in C before the first hammock in
PrecDefs(A,v) or it has to be after A. Otherwise
it would itself belong to PrecDefs(A,v). We thus
consider two possible cases, both of which lead to
contradictions:

(a) N comes before the first hammock in
PrecDefs(A,v) in C. Since the definition of
v in N does not reach the use in A in chain
C, we can infer two facts. Firstly, there is no
v-definition free path through the first ham-
mock D in PrecDefs(A,v), as otherwise it
would not be the first hammock in C to have
a definition of v that reaches A. Secondly,
the constraints induced by output dependence
will apply and will force N to either appear
before D; or after hammock A in C’. In the
first case, D1 would block the definition in N
from reaching A in C’ and thus N cannot be-
long to
PrecDefs'(A,v). In the second case it clearly

cannot belong to PrecDefs'(A,v).

21

(b) N comes after A in C. The argument here is
similar to the one above except that it uses
the constraints induced by anti dependence.

O

Definition(variable v is upwards exposed in a chain) :
We say a use of a variable v in a hammock U is upwards
exposed in chain C(C’) iff there is a v-definition free path
from the entry node of C(C’) to the use in U. i

Lemma 26
For any hammock A in C and C’ and for any variable
v € A.uses:

(PrecDefs(A,v) may define v) < (PrecDefs'(A,v)
may define v) < (the use of v in A is upwards exposed
in chain C) < (the use of v in A is upwards exposed in
chain C’)

Proof:

((PrecDefs(A,v) may define v) < (PrecDefs' (A, v) may
define v)) is true because

PrecDefs(A,v) = PrecDefs'(A,v) (by Lemma 25).

If (PrecDefs(A,v) may define v) is true, then there
can be no hammock that must define v and that is be-
fore the first hammock of PrecDefs(A,v) in chain C.
Therefore, there is no hammock before A in C that must
define v, which in turn implies that the use of v in A
is upwards exposed in chain C. Going the other way, if
it is true that the use of v in A is upwards exposed in
chain C, then it is obvious that no hammock preceding
A in C must defines v.

We can analogously show that ((PrecDefs’ (A, v) may
define v) < (the use of v in A is upwards exposed in
chain C")). m|

The following lemma says that same set of variables
are live at chain entry in the two CFGs P and P’. The
same is true at the chain exits. This property allows
us to characterize the input/output behavior of the two
chains.

Lemma 27

Let e(e’) be the entry node of the first hammock in
C(C'). Let t be the outside exit node of the last ham-
mock in C. Note that ¢ is also the outside exit node of
the last hammock in C’. The lemma has two parts:

1. The set of variables that are live just before ¢ in
CFG P is the same as the set of variables that are
live just before ¢t in CFG P’

2. The set of variables that are live just before e in
CFG P is the same as the set of variables that are
live just before ¢’ in CFG P’

Proof:

We prove the first property. A variable v is live just
before ¢ in a CFG if there is a use of v somewhere in the
program that can be reached by a (possibly interproce-
dural) path S from ¢ such that S includes no nodes that
must define v. If this use of v is outside C and C’, then v
is live before ¢ in both P and P’ for the following reason:
the parts of S that are outside P/P’ remain the same
no matter which chain is used, and a v-definition free

path through a chain implies the existence of a similar
path through any permutation of the chain.

On the other hand if the use of v is in the chain,
then Lemma 26 applies: the use of v must be upwards-
exposed in both C and C’. Thus the use is reachable
from ¢ in both CFGs which gives us our result.

For the second property, we know variable v can be
live just before e in C for two reasons:

1. vislive just before t in P and there is a v-definition
free path through C, or

2. there is a use of v in a hammock that is upwards
exposed in chain C.

By the first part of the lemma the same variables are
live just before ¢ in both P and P’; we have also seen
that a v-definition free path through a chain implies the
existence of a similar path through any permutation
of the chain. By Lemma 26 the same variables have
upwards exposed uses in both chains. We thus have
our result. a

An evaluation of a node in the CFG is the result
of executing the node in some program state. For an
assignment the evaluation is the value assigned to the
left hand side variable, for a predicate it is the value
of the predicate, for an input statement it is the value
extracted from the input stream, and so on.

The following lemma states (without proof) the some-
what obvious fact that the execution behavior of a ham-
mock H depends only on the values of the variables in
H.uses at the time control enters H.

Lemma 28

Let H be a hammock belonging to C and C’. Let control
enter H in the two CFGs P and P’ with the same values
for the variables in H.uses. It can then be shown that:

1. Control follows the same path of execution through
H in both CFGs

2. Let n be a node in H that occurs (maybe more
than once) in the path of execution through H.
An execution of n in the path through H in CFG
P evaluates identically as the corresponding exe-
cution of n in the path through H in CFG P'.

O
We now prove an important lemma, which says that
the two chains have identical input/output behavior.

Lemma 29

Let S be a program state (as defined in Section 2) re-
stricted to the variables that are live at the entry of
chain C (or C’). Let control enter chain C in CFG P in
state S, and let it also enter chain C’ in CFG P’ in the
same state S. It can then be shown that:

1. at the entry point of every hammock H in C and
C’, the states in the two programs will be identical
with respect to all variables that are in H.uses,
and

2. at the chain exits, the states in the two programs
will be identical with respect to all variables live
at that point.

22

Proof:
We first prove part 1 of the lemma. The proof is by
induction on the position of H in the chain C.
Base case: Let H be the first hammock in C. It is
clear that for any variable v € H.uses, PrecDefs(H,v) is
empty. By definition the empty sequence may define v.
Thus by Lemma 25, PrecDefs'(H,v) is empty and there
is no definition of v in C’ that precedes H. Therefore,
in both CFGs control enters H with v having the same
value as it did at entry, which is S.v.
Inductive case: Let H be a subsequent hammock in
C. The inductive hypothesis is: if N is a predecessor of
H in C, then control enters N in both CFGs with the
same values for variables in N.uses (N of course need
not be a predecessor of H in C’).

Let v be any variable in H.uses. We consider two
cases:

1. The last time v was assigned a value before con-
trol enters H in CFG P was before control entered
chain C.

We show that the same is then true in CFG P’.
For contradiction assume D is a hammock that
precedes H in C’ and that a definition of v in D
was executed prior to control entering H in CFG
P’. We make the following series of observations:

(a) Since D is before H in C’ and has a defi-
nition of v that reaches the use in H, D €

PrecDefs'(H,v)
(b) By Lemma 25, D also belongs to PrecDefs(H, v)

(¢) Therefore D precedes H in C and it must have
executed before control entered H in P

(d) Applying the induction hypothesis and Lemma 28
control must have followed the same path through

D in P as it did in P’. But then the same def-
inition of v in D that was executed in CFG
P’ would have been executed in CFG P also.
The last assignment to v in CFG P before
control enters H would then have been inside
chain C, which is a contradiction.

Therefore no definition of v was executed in any
hammock preceding H in either CFG, which means
control enters H in both CFGs with the value of
v being equal to S.v.

2. In CFG P, v was last assigned a value ¢ prior to
entering H during the execution of a hammock D
that precedes H.

We show that the same is then true in CFG P’.
Clearly D belongs to PrecDefs(H,v). By Lemma 25,
D € PrecDefs'(H,v). Therefore D comes before
H in chain C’ and it must have been executed be-
fore control entered H in CFG P’. The induction
hypothesis applies to D, and using Lemma 28 we
infer that v must have been assigned the value 4
before control leaves D in CFG P’. What remains
to be shown is that no other hammock redefines
v after control leaves D and before it enters H in
CFG P’. In that case it can be shown that the
same should have happened in CFG P which of
course contradicts our starting assumption.

Therefore control enters H in both CFGs with the
same value ¢ for v, and this value was assigned to
v by the same corresponding hammock D.

We now prove part 2 of the lemma. Let ¢ be the
outside exit node of both chains. Let us construct a
new dummy hammock F' such that F.uses includes all
variables that are live just before t. We state without
proof the following property: given that C’ satisfies C,
the chain C’ + F satisfies the chain C + F. C' + F is
obtained by appending hammock F' to the end of the
chain C’, and C + F is obtained analogously. For the
sake of analysis, let us then append hammock F' to the
end of chain C in P and to the end of ¢’ in P’. Using
the property just stated and using part 1 of this lemma
we infer that control enters F' in both CFGs with the
same values for all variables with upwards-exposed uses
in F; i.e., all variables that are live at chain exit. This
inference must clearly hold even if F' were not there at
the end of the two chains, and thus we show that control
leaves C in P and in C' in P’ with the same values for
all variables that are live at that point. O

We now show informally that Lemmas 27 and 29
guarantee that P and P’ are semantically equivalent;
i.e, starting execution of P and P’ in the same state
S, both procedures end with the same values of the
variables that are live at the Exit node. It is clear that
if for some starting state the path of execution does not
flow through the chain C in P, then the same is true
in P’. That is because the two procedures are identical
except for the chain. Therefore the state when control
reaches the Exit node will be identical in the two CFGs.

If the path from Enter to Exit in P does flow through
C, then we can decompose the path into a sequence of
subpaths as follows:

1. a path from Enter to e, the entry node of C

2. a path through C from e to ¢, the outside exit node
of C

3. zero or more occurrances of the following sequence:

(a) a path from ¢ to e
(b) a path through C from e to ¢

4. a path from t to Exit

Consider the execution path in P’ for the same start-
ing state S. It is clear that P’ will initially follow a sub-
path from Enter to €', where ¢’ is the entry node of C’.
Moreover this subpath is identical to subpath 1 above
with identical changes resulting to the state. Control
then follows a path through C’ and this could be differ-
ent from subpath 2 above. But Lemma 27 says that the
set of live variables at chain entry is the same for both
CFGs, and the same is true at chain exit. Using this
fact and the Lemma 29, it is clear that although sub-
path 2 through the chain could be different in the two
CFGs, in both cases control leaves the chain with the
same values for the variables that are live at chain exit.
Therefore, by repeating the argument on the rest of the
execution path to Exit, it follows that execution reaches
Exit in P and P’ with identical values for variables live
at that point. O

23

A.3 Characterization for atomic hammocks

Theorem 3 (Atomic hammock characterization)
A

hammock H with entry node e is atomic iff for each
hammock H; that is strictly contained in H and also
has entry node e, there exists a node n in (H — H;)
such that there is an edge from n to e.

Proof:

We first prove a property that holds for hammocks
in general:

Lemma 30
Two different hammocks cannot have the same entry
node and the same outside exit node.

Proof:

For contradiction, assume G and H are two different
hammocks with the same entry node e and the same
outside exit node t. One of the two hammocks must
have a node that is not in the other. Assume without
loss of generality that node g belongs to (G— H). There
has to be a path S from e to g that does not go through
t (that is because g belongs to G, and every node in a
hammock is reachable from the entry node through a
path that does not go through the outside exit node).
Let u be the earliest node in S that does not belong to
H (u has to exist as g does not belong to H). Clearly
u # t as t is not there in S. But this means H has
two outside exit nodes u and t which contradicts the
definition of a hammock. O

Let e be the entry node of a hammock H, and let ¢ be
its outside exit node. If H is not atomic, then by defini-
tion it can be decomposed into a chain (H;, Hj,...H,,).
No hammock Hy, j < k < m, can have e as its outside
exit node (as that would render the entire chain with
no path to Exit). Therefore, H; is strictly contained in
H but no node in (H — H;) has an edge to e. We have
thus shown that the characterization does not hold if H
is non-atomic.

We now consider the case where H is atomic. For
contradiction, assume that that the characterization does
not hold; i.e., assume there is a hammock H; with entry
node e that is strictly contained in H such that there is
no edge from any node in R = (H — H;) to e. We can
then show that R is also a hammock, using a series of
observations:

1. The outside exit node e; of H; belongs to R. The
reason for this is that if it didn’t it would then
have to be equal to ¢, which implies that two dif-
ferent hammocks H and H; have the same entry
and outside exit nodes — an impossibility according
to Lemma 30.

2. All edges coming into nodes in R have to come
in from nodes in H. That is because e does not
belong to R. Therefore all edges coming into R
from outside R come from H;. Since e; is the out-
side exit node of H;, we can infer that e; is the
only node in R that has edges into it from nodes
outside R.

3. No node in R can have an edge to a node outside
H unless the target node is ¢, as otherwise ¢ would
not be the unique outside exit node of H.

4. No node in R can have an edge to a node in H;.
This is because the target of such an edge would
have to be e, but our starting assumption is that
there is no edge from any node in R to e.

5. Points 3 and 4 imply that all edges from nodes in
R to outside R go to node t.

6. Points 2 and 5 imply that R is a hammock with e;
as its entry node and ¢ as its outside exit node.

In fact, (H;, R) is a chain, since all edges coming to
e; from outside R come from H; (by point 2 above).
Therefore H can be decomposed into the chain (H;, R)
which contradicts the starting assumption that H is

atomic.

O

References

[ABS94]

[And94]

[BD77]

[BDFHY7]

[BGS]

[BHO3]

[CLZ86]

[CY79]

T. Austin, S. Breach, and G. Sohi. Efficient
detection of all pointer and array access er-
rors. In ACM SIGPLAN ’9 Conference on
Programming Language Design and Imple-
mentation, pages 290-301, June 1994.

L. O. Andersen. Program Analysis and
Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of
Copenhagen, May 1994. (DIKU report
94/19).

R. M. Burstall and J. Darlington. A trans-
formation system for developing recursive
programs. J. ACM, 24(1):44-67, January
1977.

J. A. Bergstra, T. B. Dinesh, J. Field, and
J. Heering. Toward a complete transforma-
tional toolkit for compilers. ACM Transac-
tions on Programming Languages and Sys-
tems, 19(5):639-684, September 1997.

R. W. Bowdidge and W. G. Griswold. Sup-
porting the restructuring of data abstrac-
tions through manipulation of a program
visualization. ACM Transactions on Soft-
ware Engineering and Methodology, 7(2),
April 1998.

S. Bates and S. Horwitz. Incremental pro-
gram testing using program dependence
graphs. In ACM Symposium on Principles
of Programming Languages, pages 384-396,
January 1993.

R. Cytron, A. Lowry, and K. Zadeck. Code
motion of control structures in high-level
languages. In ACM Symposium on Princi-
ples of Programming Languages, pages 70—
85, 1986.

L. L. Constantine and E. Yourdon. Struc-
tured Design. Prentice-Hall, Englewood
Cliffs, New Jersey, 1979.

24

[Feal2)

[FOWS7]

[GNO3]

[KH99]

[KKP+81]

[LDYS]

[LMW79]

[LRZ93]

LS86]

[LVO7]

[Pap86]

[Par72]

[PPY6]

M. S. Feather. A system for assisting pro-
gram transformation. ACM Transactions
on Programming Languages and Systems,
4(1):1-20, January 1982.

J. Ferrante, K. J. Ottenstein, and J. D.
Warren. The program dependence graph
and its use in optimization. ACM Transac-
tions on Programming Languages and Sys-
tems, 9(3):319-349, July 1987.

W. G. Griswold and D. Notkin. Automated
assistance for program restructuring. ACM
Transactions on Software Engineering and
Methodology, 2(3):228-269, July 1993.

R. Komondoor and S. Horwitz. Semantics-
preserving procedure extraction. Techni-
cal report, Computer Sciences, University
of Wisconsin-Madison, 1999.

D. J. Kuck, R. H. Kuhn, D. A. Padua,
B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In
ACM Symposium on Principles of Pro-
gramming Languages, pages 207-218, Jan-
uary 1981.

A. Lakhotia and J-C. Deprez. Restruc-
turing programs by tucking statements
into functions. Information and Software
Technology, 40(11-12):677-689, November
1998.

R. C. Linger, H. D. Mills, and B. L
Witt. Structured Programming: Theory
and Practice. Addison—Wesley, Cambridge,
Mass., 1979.

W. Landi, B. Ryder, and S. Zhang. Inter-
procedural modification side effect analysis
with pointer aliasing. In ACM SIGPLAN
98 Conference on Programming Language
Design and Implementation, pages 56-67,
June 1993.

S. Letovski and E. Soloway. Delocalized
plans and program comprehension. IEEFE
Software, pages 198-204, May 1986.

F. Lanubile and G. Visaggio. Extract-
ing reusable functions by flow graph-based
program slicing. [IFEE Transactions on
Software Engineering, 23(4):246-258, April
1997.

Christos Papadimitriou. The Theory of
Database Concurrency Control. Computer
Science Press, Rockville, Maryland, 1986.

D. L. Parnas. On the criteria to be
used in decomposing systems into modules.
Communications of the ACM, 15(12):1053—
1058, December 1972.

A. Pettorossi and M. Proietti. Rules and
strategies for transforming functional and
logic programs. ACM Computing Surveys,
28(2):360-414, June 1996.

[Ram88]

[RSWY6]

[SJ87]

[WEW+94]

[WL95]

[WMO92]

L. Ramshaw. Eliminating go to’s while
preserving program structure. J. ACM,
35(4):893-920, October 1988.

S. Rugaber, K. Stirewalt, and L. M. Wills.
Understanding interleaved code. Auto-
mated Software Engineering, 3(1-2):47-76,
June 1996.

H. M. Sneed and G. Jandrasics. Software
recycling. In Proc. Conf. Software Mainte-
nance, pages 82-90, 1987.

R. Wilson, R. French, C. Wilson, S. Ama-
rasinghe, J. Anderson, S. Tjiang, S. Liao,
C. Tseng, M. Hall, M. Lam, and J. Hen-
nessy. SUIF: An infrastructure for research
on parallelizing and optimizing compilers.
In ACM SIGPLAN Notices, volume 29(12),
pages 31-37, December 1994.

R. Wilson and M. Lam. Efficient context-
sensitive pointer analysis for C programs.
In ACM SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implemen-
tation, pages 1-12, June 1995.

S. Wu and U. Manber. Agrep — a fast
approximate pattern-matching tool. In
Useniz Winter 1992 Technical Conference,
pages 153-162, January 1992.

25

