
Parametric Process Model Inference

Saurabh Sinha
IBM India Research Lab

saurabhsinha@in.ibm.com

G. Ramalingam
Microsoft Research India∗

grama@microsoft.com

Raghavan Komondoor
IBM India Research Lab
rkomondo@in.ibm.com

Abstract

Legacy applications can be difficult and time-consuming
to understand and update due to the lack of modern ab-
straction mechanisms in legacy languages, as well as the
gradual deterioration of code due to repeated maintenance
activities. We present an approach for reverse engineering
process model abstractions from legacy code. Such a pro-
cess model can provide a quick initial understanding of an
application, and can be a useful starting point for further
program exploration. Our approach takes as input a user
specification of interesting events, and creates a represen-
tation (i.e., a process model) that concisely depicts the oc-
currences of the events and the possible control-flow among
them. The key features of our approach are the use of a logi-
cal data model of the program for specifying the events, and
graph-projection techniques for creating the process model.

1 Introduction

Legacy applications constitute a large proportion of the
application portfolio of many organizations. These appli-
cations can be difficult to maintain for several reasons:
they are typically large and complex; their logical struc-
ture may have deteriorated due to evolution over decades;
they are written in legacy languages that lack modern ab-
straction mechanisms; they suffer from code tangling (a sin-
gle piece of code that implements several unrelated func-
tions) and code scattering (code that performs one logical
function may be scattered across multiple programs). Tools
that reverse engineer higher level, logical, abstractions from
legacy code can be of significant value in maintaining and
transforming such legacy systems. In this paper, we address
the problem of recovering process model abstractions from
code to help developers in understanding the functionality
implemented in legacy applications.

Fig. 1 is an example of an abstract process model recov-
ered from the Cobol program shown in Fig. 2. It is evident

∗Work done while the author was with IBM Research

Figure 1. An example process model abstrac-
tion of a program.

that such a model can be of value in understanding an un-
familiar legacy application. In fact, we have learned from
practitioners involved in maintaining Cobol-based legacy
applications that an understanding of the occurrences of cer-
tain “events” in the application, and the order in which they
occur, is often central to the program-maintenance tasks that
they perform. Such events could be reads from (or writes to)
persistent data stores, or could involve certain types of en-
tities; e.g., reading an Account object from persistent store,
updating it, etc.

Although the value of process models is widely acknowl-
edged, how to extract such models is not well understood,
partly because the problem is not technically well defined.
In this paper, we address this deficiency. Our hypothesis
is that an application ought to have not a unique process
model that distills its functionality, but that the user be able
to specify the kinds of events they care about. Therefore,
we present a two-step parametric process model inference
approach that, in the first step, accepts a user specification
of interesting events, and in the second step, produces (au-
tomatically) a process model abstraction that captures the
order in which the interesting events occur in the applica-
tion. The process model shown in Fig. 1 was generated by
a specification that the events of interest were updates to
“Account Balance”.

A key novelty of our approach is to specify interest-
ing events using a linked logical data model of the legacy



system. A logical data model for an application describes
the logical structure of the data manipulated by the appli-
cation at a high (abstract) level that is easy to understand,
and can be expressed as an E-R model or a UML-style
object-oriented data model. For example, the logical data
model may contain an entity-type or class Account with an
attribute Balance. Users can specify that the events of in-
terest are updates to Account.Balance. This adds significant
value to our approach because it simplifies the user’s task of
specifying events; the user need not know the actual imple-
mentation details to specify the events. Links connect the
logical data model to the program and show how the pro-
gram realizes the logical data model. Thus, links can be
used to map the specified events to program elements.1

Once occurrences of interesting events in a program have
been identified, it is possible to project the control-flow re-
lations among the event occurrences. However, doing this
in a straight-forward fashion can produce models that are
less than ideal. A second key element of our approach is
the use of techniques that have been used to create sparse
evaluation representations (e.g., [2, 5]) to produce the pro-
cess model from the set of event occurrences.

The process model that is produced in this fashion can be
used as a starting point for the user to understand the given
system. Users can drill-down into the system as necessary
to get a deeper understanding of the system. Specifically,
the model can be extended interactively by users by adding
other statements (e.g., data dependence or control depen-
dence predecessors of certain event occurrences) that they
consider to be relevant and interesting.

In this paper, we illustrate our ideas using Cobol pro-
grams as examples, and assume that events map to state-
ments in the program. However, the ideas presented in this
paper can be applied to programs written in any language.
Further, events can be mapped to computational steps at var-
ious levels of granularity: e.g., at one extreme, events can
be mapped to statements in a program, while at the other
extreme, events can correspond to a JCL step in a JCL job.
(JCL is a mainframe scripting language used widely to cre-
ate batch jobs, where each job step corresponds to the invo-
cation of a program.)

The contributions of the paper are as follows.

• We define process model extraction as consisting of an
event-specification step and a model-inference step.

• We introduce the idea of specifying interesting events
in a program using a logical data model of the program.

• We present an algorithm for projecting a program with
respect to interesting events, to produce a process
model that captures control flow among the interesting
events and abstracts out uninteresting events.

• We illustrate, using an example program and a real

1Section 2.3 discusses logical data models in greater detail.

Cobol application, how such process models can help
practitioners with some recurring program understand-
ing questions they face during maintenance.

The rest of the paper is organized as follows. In the next
section, using an illustrative example, we discuss how pro-
cess model abstractions can help in program understanding.
In Section 3, we present our approach for inferring process
models, and discuss a case study performed using a real
Cobol application. Sections 4 and 5 discuss related work
and directions for future work, respectively.

2 Process models for program understanding

In this section, we illustrate how developers can use our
approach to recover process model abstractions to under-
stand different functional aspects within an application. For
this, we use the example Cobol program ACCTRAN shown in
Fig. 2. This is an illustrative small program, potentially un-
derstandable as-is by a developer. However, depending on
the functional aspect that needs to be understood, in a real
application, the number of uninteresting events can vastly
outnumber interesting events; the abstracted process model
that is restricted to interesting events adds value.

Our approach (as detailed in Section 3) addresses inter-
procedural projections. However, to simplify the discus-
sion in this section, we assume that all PERFORM statements
(which essentially “call” paragraphs of code) in the exam-
ple program have been inlined. We will use the term “pro-
jection” to refer to the process model produced by our ap-
proach.

2.1 Events related to I/O behavior

Consider a scenario where the user wants to understand
the I/O behavior of a program; e.g., the order in which files
are read or written. Fig. 3 shows the projection of ACCTRAN
with respect to read and write statements. (In all the pro-
cess models we show in this paper, the numbers inside the
nodes correspond to statement numbers in the underlying
application program.)

The graph illustrates several aspects of file I/O in
ACCTRAN. The transaction file is read in a loop (state-
ment 6), and for each transaction, the account file in read
(also in a loop) to locate the related account (statement 16).
Following the read of the account file, the following events
may occur: (1) the customer account may be read (state-
ment 40) and updated (statement 39), or (2) the locked-
account file may be updated (statement 47). Finally, be-
fore the next transaction is read, the account file is updated
(statement 25). Thus, the projection not only provides a
summary of how file I/O occurs in ACCTRAN, but also re-
veals information about the functionality of the program.



FD CUSTOMER-FILE.
01 CUSTOMER-REC.

05 CUSTOMER-ID PIC 9(10).
05 CUSTOMER-INFO.

10 CUSTOMER-NAME PIC X(30).
10 CUSTOMER-ADDRESS PIC X(100).
10 CUSTOMER-TELEPHONE PIC 9(10).

05 CUSTOMER-STATUS PIC XX.
88 IS-PREFERRED-CUST VALUE "PC".
88 IS-NORMAL-CUST VALUE "NC".

05 NUM-OVERDRAFT-TRANS PIC 9(3).
FD TRANS-FILE.
01 TRANS-REC.

05 TRANS-ID.
10 TRANS-DATE PIC 9(8).
10 TRANS-ACC-ID PIC 9(10).

05 TRANS-CODE PIC X(2).
05 CUST-ID PIC 9(10).
05 TRANS-INFO.

10 TRANS-TYPE PIC X.
88 IS-WITHDRAW-TRANS VALUE "W".
88 IS-DEPOSIT-TRANS VALUE "D".

10 TRANS-AMOUNT PIC 9(10).
FD ACCOUNT-FILE.
01 ACCOUNT-REC.

05 ACCOUNT-ID PIC 9(10).
05 ACCOUNT-OWNER-ID PIC 9(10).
05 ACCOUNT-STATUS PIC X.

88 IS-CURRENT-ACC VALUE "C".
88 IS-LOCKED-ACC VALUE "L".

05 BALANCE PIC 9(10).
05 OVERDRAFT-LIMIT PIC 9(5).
05 NUM-CREDIT-OVERRUNS PIC 99.

FD LOCKED-ACC-FILE.
01 LOCKED-ACC-REC.

05 LOCKED-ACC-ID.
10 L-ACC-CUST-ID PIC 9(10).
10 L-ACC-ID PIC 9(10).

05 LOCKED-ACC-CUST-INFO PIC X(140).
WORKING-STORAGE SECTION.
01 ACC-ID PIC 9(10).
01 TRANS-AMT PIC 9(10).
01 MAX-CREDIT-OVERRUN-TRANS PIC 99 VALUE 11.

PROCEDURE DIVISION.
1. OPEN INPUT TRANS-FILE.
2. OPEN I-O ACCOUNT-FILE.
3. OPEN I-O CUSTOMER-FILE.
4. OPEN OUTPUT LOCKED-ACC-FILE.
5. PERFORM PROCESS-TRANSACTIONS.

PROCESS-TRANSACTIONS.
6. READ TRANS-FILE AT END
7. CLOSE TRANS-FILE
8. CLOSE ACCOUNT-FILE
9. CLOSE CUSTOMER-FILE

10. CLOSE LOCKED-ACC-FILE
11. STOP RUN.
12. MOVE TRANS-ACC-ID TO ACC-ID.
13. PERFORM GET-ACCOUNT-RECORD.
14. PERFORM PROCESS-TRAN.
15. GO TO PROCESS-TRANSACTIONS.

GET-ACCOUNT-RECORD.
16. READ ACCOUNT-FILE.
17. IF ACCOUNT-ID NOT EQUAL ACC-ID THEN
18. GO TO GET-ACCOUNT-RECORD END-IF.
19. IF IS-LOCKED-ACC THEN
20. GO TO PROCESS-TRANSACTIONS END-IF.

PROCESS-TRAN.
21. MOVE TRANS-AMOUNT TO TRANS-AMT.
22. IF IS-WITHDRAW-TRANS THEN
23. PERFORM PROCESS-WITHDRAW-TRAN
24. ELSE ADD TRANS-AMT TO BALANCE END-IF.
25. REWRITE ACCOUNT-REC.

PROCESS-WITHDRAW-TRAN.
26. IF TRANS-AMT IS GREATER THAN BALANCE THEN
27. SUBTRACT BALANCE FROM TRANS-AMT
28. IF TRANS-AMT IS LESS THAN OR EQUAL TO

OVERDRAFT-LIMIT THEN
29. MOVE 0000000000 TO BALANCE
30. SUBTRACT TRANS-AMT FROM OVERDRAFT-LIMIT
31. PERFORM UPDATE-CUST-FILE

ELSE
32. ADD 1 TO NUM-CREDIT-OVERRUNS
33. IF NUM-CREDIT-OVERRUNS IS GREATER THAN

MAX-CREDIT-OVERRUN-TRANS THEN
34. MOVE ’L’ TO ACCOUNT-STATUS
35. PERFORM UPDATE-LOCKED-ACC-FILE END-IF END-IF
36. ELSE SUBTRACT TRANS-AMT FROM BALANCE END-IF.

UPDATE-CUST-FILE.
37. PERFORM GET-CUSTOMER-RECORD.
38. ADD 1 TO NUM-OVERDRAFT-TRANS
39. REWRITE CUSTOMER-REC.

GET-CUSTOMER-RECORD.
40. READ CUSTOMER-FILE.
41. IF CUSTOMER-ID NOT EQUAL ACCOUNT-OWNER-ID THEN
42. GO TO GET-CUSTOMER-RECORD END-IF.

UPDATE-LOCKED-ACC-FILE.
43. MOVE CUSTOMER-ID TO L-ACC-CUST-ID.
44. MOVE ACCOUNT-ID TO L-ACC-ID.
45. MOVE TRANS-DATE TO L-TRANS-DATE.
46. MOVE CUSTOMER-INFO TO LOCKED-ACC-CUST-INFO.
47. WRITE LOCKED-ACC-REC.

Figure 2. Program ACCTRAN.

Figure 3. The projection of ACCTRAN with re-
spect to read and write statements.

2.2 Events related to variables

Suppose that a developer wants to understand how the
balance of an account is updated. The developer identi-
fies field BALANCE of record ACCOUNT-REC as the relevant
field, and indicates that statements that update BALANCE or
perform an I/O operation with ACCOUNT-REC as the argu-
ment are the interesting events. Fig. 1 shows the projec-
tion of ACCTRAN (created by our approach) with respect to
these events. The projection shows that updates to BALANCE
in statements 24, 29, and 36, are followed by a write of
ACCOUNT-REC to the account file in statement 25. State-
ment 6, which reads the transaction file, was not specified
as interesting by the developer, but is nevertheless treated
as an interesting event and included in the projection by the
algorithm, to avoid creating a representation that could have
a quadratic increase in the number of edges (as discussed in
Section 3.2). Note that the 47-line program has been ab-
stracted to a graph with only 8 nodes.

2.3 Events related to logical types

In many situations, events related to classes of variables
may be of interest; e.g., all variables that store account in-
formation or all variables that store customer IDs. However,
because Cobol has no notion of user-defined types, informa-
tion about such classes is not evident from examining the
data declarations in the program. In previous work [7, 12],
we have presented algorithms for inferring a logical data
model from a Cobol application. A logical data model links
program variables to classes (logical types), thus identifying
variables of the same class; it also contains inheritance and
containment relationships between the classes. Thus, our
approach is to infer a logical data model of an application,
and to let user specify interesting events in terms of all vari-
ables linked to a selected class in the data model.

For instance, say the user wanted to determine how
ACCTRAN processes a transaction amount. The user may
not know the program variable(s) that store transaction
amounts, to specify in the query. By browsing through
the variables, the user could select a variable, such as
TRANS-AMOUNT, based on its name, and ask for a projection
with respect to statements that refer to this variable. How-
ever, because TRANS-AMOUNT is assigned to TRANS-AMT

(statement 21) and TRANS-AMT is used in all subsequent
processing (TRANS-AMOUNT is not referenced again in the
program), the projection with respect to TRANS-AMOUNT

would contain only two nodes—corresponding to state-
ments 6 and 21. Clearly, this provides an incomplete picture
of how a transaction amount is processed.

To get a complete picture, the user should compute the
projection with respect to the variables that are of the same
type (i.e., are linked to the same class) as TRANS-AMOUNT.



Table 1. Some of the classes inferred for
ACCTRAN in its logical data model, and the
variables linked to these classes.

Class Variables in class
Id CUSTOMER-ID, ACCOUNT-OWNER-ID,

L-ACC-CUST-ID
AccountRec ACCOUNT-REC
AccId ACCOUNT-ID, TRANS-ACC-ID, ACC-ID, L-ACC-ID
Credit NUM-CREDIT-OVERRUNS,

MAX-CREDIT-OVERRUN-TRANS
Trans BALANCE, TRANS-AMOUNT, TRANS-AMT
TransDate TRANS-DATE, L-TRANS-DATE
CustomerRec CUSTOMER-REC
CustId CUST-ID
CustomerStatus CUSTOMER-STATUS
Info CUSTOMER-INFO, LOCKED-ACC-CUST-INFO

Figure 4. The projection of ACCTRAN with re-
spect to class Trans.

Table 1 lists (a portion of) a logical data model for the pro-
gram ACCTRAN. Note that variable TRANS-AMOUNT is linked
to class Trans; variable TRANS-AMT is also linked to this
class (because TRANS-AMOUNT is copied to TRANS-AMT),
as is variable BALANCE (see statement 24). Fig. 4 presents
the projection of ACCTRAN with respect to class Trans.
This projection, by including statements that define or use
TRANS-AMT and BALANCE, provides a better view of how
ACCTRAN processes a transaction amount.

2.4 Extending a projection iteratively

A process model is a starting point for further program
exploration, e.g., for program browsing, or for applying
other techniques such as program slicing and partial eval-
uation. After visualizing a projection, a developer may ex-
tend it by (a) expanding the set of interesting events, or (b)
selecting one or more nodes in the current projection (inter-

Figure 5. The projection for ACCTRAN with re-
spect to updates to ACCOUNT-REC and I/O op-
erations on ACCOUNT-FILE.

actively), and asking for control- and/or data-dependence
predecessors of these nodes (either direct or transitive pre-
decessors) to be added to the projection. In this way, the de-
veloper can start with a basic projection that provides very
concise information, and then extend it iteratively, until they
are satisfied with the level of detail. Such iterative extension
would, in practice, be more useful than having to specify the
events for, and having to view, the complete projection all
upfront.

Consider the projection in Fig. 1; this projection illus-
trates that there are one or more paths, represented by edge
(16, 25)2 along which BALANCE is not updated, but the
account file is written nonetheless. The developer would
want to check why the balance is not updated—and whether
some other field of ACCOUNT-REC is updated—along those
paths. To do this, the developer can extend the set of
specified events, by asking for the projection with respect
to updates to all other fields of ACCOUNT-REC, in addi-
tion to BALANCE; this (now extended) projection is shown
in Fig. 5. (The shaded nodes in Fig. 5 are additional
nodes over the projection in Fig. 1.) This projection shows
that along the two paths in which BALANCE is not up-
dated, NUM-CREDIT-OVERRUNS is updated (statement 32);
additionally, it shows that along one of these two paths,
ACCOUNT-STATUS gets updated to ‘locked’ (statement 34).
This helps the developer understand that the balance is not
updated because a credit overrun occurs.

While here, the developer might also want to know
the condition under which statement 34 (the update to
ACCOUNT-STATUS) executes. To do this, the developer
can interactively, using the approach, find the control-
dependence parent of statement 34 (i.e., statement 33), and
add it to the projection. For the sake of brevity, we omit the
resulting projection.

2An edge in a projection can represent one or more paths in the pro-
gram; edge (16, 25) in the example represents two paths to node 25: one
with final edge (33, 25), and the other with final edge (47, 25).



2.5 Process models vs. program slices

Program slicing [16] is a related projection technique
used for program understanding. A slice includes the tran-
sitive closure of data and control dependences, starting at a
given program point and set of variables. The original def-
inition of slicing [16] required a slice to be an executable
program; thus, ordering among the statements in a slice can
be computed by building the CFG of the sliced program.

However, to understand the ordering among an arbitrary
set of statements (i.e., statements that match interesting
events), slicing may not be the appropriate technique. To
use slicing for computing such an ordering, the slice must
include the transitive closure of control dependences of each
statement. (Without this constraint, the CFG of the sliced
program cannot be constructed.) This would cause unnec-
essary predicate nodes to appear in the projection; e.g., if
slicing were used to compute the ordering among the state-
ments in ACCTRAN that update account balance (shown in
Fig. 1), the projection would include the predicates in state-
ments 17, 19, 22, 26, and 28.

Unlike a slice, a process model is intended to neither be
semantically complete nor produce an executable program.
The goal of creating a process model is to show the order-
ing among an arbitrary set of statements. Creating a pro-
cess model—without the constraint of including all transi-
tive control dependences, and that has no more edges than
the CFG (as discussed in Section 3.2)—is a non-trivial prob-
lem, which has not been addressed in existing research.

3 Parametric process model inference

We propose process model extraction as a two-step prob-
lem: (1) specification of a set of interesting events, and (2)
inference of the order in which the specified events can oc-
cur. The notion of an “event” is central to our approach.
Informally, an event is any computational step or operation
that occurs in an application. The first step requires interest-
ing events to be specified, and matches of these events in the
application code to be found; this is the topic of Section 3.1.
The second step, which computes the potential control flow
among these event matches, is the topic of Section 3.2.

3.1 Event specification and matching

An event specification is a set of events.

E ::= {e1, e2, . . . , en}, n ≥ 1

An event ei is a pair consisting of an entity and a set of
operations on the entity.

ei ::= 〈Entity , {Operations}〉

An entity can be any element of an application (e.g., a
variable), or an abstract element (e.g., a class in the logical
data model). Each such entity has different operations that

can be performed on the entity; e.g., for a variable or a class
of variables, an operation can be a definition, a use, a read
from a data store, or a write to a data store.

Events can be generalized to incorporate a wide vari-
ety of entities (and their related operations) in an applica-
tion. We consider certain simple kinds of events, for which
matches are individual statements and finding the match-
ing statements is straightforward (extending the power of
events-specification is left to future work). Examples of
such events and their matching statements are:

• 〈BALANCE, {def , use, read ,write}〉: each statement
that defines, uses, reads from a file, or writes to a file,
the variable BALANCE.

• 〈Trans, {def , read}〉: each statement that defines or
reads from a file a variable that is linked to class Trans
in the logical data model.

• 〈ACCOUNT-FILE, {read ,write, update}〉: each state-
ment that reads, writes, or updates a record in the
ACCOUNT-FILE.

The main idea behind our two-step approach, of which
the event-specification step is manual, is to let developers
specify and understand the ordering among events they care
about. Thus, complete automation of the event specifica-
tion step is not a goal. Nonetheless, automatic recovery of
abstractions, other than logical data models, can be used to
make it easier to specify events.

Note that, formally, an event is a specification or a pat-
tern for a statement, whereas event matches are the actual
statements with respect to which the projection is done. (A
statement can match more than one event.) However, where
there’s no confusion, we have used (and will continue to
use) “event” to mean “event match.” An event specification
can also give a logical name to an event, which can be used
in the generated process model to make it more readable.

3.2 Graph projection

In this section, we present a graph-projection algorithm
that, given a program and a set of event matches, first con-
structs the control flow graph (CFG) for the program, and
then creates a projection of the CFG (i.e., the process model
abstraction) in which most non-matching nodes are omitted.
We call a node that matches any event an interesting node.
In Section 3.4, we describe a set of rules that can be used in
a postpass to reduce the size of the projection, if desired.

Characterization of the projection produced
Given a CFG G and a set X of nodes in G, we define the

projection of G with respect to X as follows.

Definition 1 Let G = (N,E) be a CFG and X ⊂ N
be a set of nodes. The projection of G with respect to
X is a graph GX = (N ′, E′): N ′ = X; E′ con-
tains an edge (u, v) if and only if there exists a path



(u, n1, n2, . . . , nk, v), k ≥ 0, in G such that for k ≥ 1
and 1 ≤ i ≤ k, ni /∈ X .

The projection GX can be constructed very simply by
deleting (in any order) nodes not in X , and for each deleted
node n, replacing each pair of edges (n1, n) and (n, n2)
with a single edge (n1, n2). Therefore, a naive approach
for creating a process model abstraction is to simply project
the CFG with respect to the interesting nodes. However, a
process model created in this manner may not be a desir-
able representation. Although the model would be minimal
in terms of the number of nodes (i.e., it would contain no
uninteresting node), it may contain a quadratic blowup in
the number of edges. If an uninteresting node x has n inter-
esting predecessors and m interesting successors, deletion
of x would lead to the introduction of mn edges, one from
each predecessor of x to each successor of x.

Therefore, our approach is to create a projection of the
CFG with respect to the set of interesting nodes plus cer-
tain other (uninteresting) nodes, which we call join nodes.
The join nodes, although uninteresting, are retained in the
process model to avoid a quadratic increase in the number
of edges. From an understanding perspective, the join nodes
preserve some topology of the CFG with respect to branches
and loops.

For example, consider the illustration in Fig. 6. The
shaded nodes in the CFG (part (a) of the figure) are the in-
teresting nodes. Fig. 6(d) shows the projection created by
our algorithm, which includes join nodes 2 and 10, while
Fig. 6(e) shows the projection with respect to just the in-
teresting nodes. It is evident that the presence of several
additional edges in part (e) makes the naive projection clut-
tered and difficult to understand. In fact, in this example,
the projection has more edges than the original CFG; in
the worst case, a projection with respect to an arbitrary set
of nodes can have number of edges quadratic in the orig-
inal number of edges. This blowup can cause the topol-
ogy (i.e., the branching and looping structure) of the CFG
to be completely lost. For instance, the outer loop in the
CFG (Fig. 6(a)) is difficult to identify in the naive projection
(Fig. 6(e)), whereas it is easily discernible in the projection
created by our algorithm (Fig. 6(d)).

In general, the projection created by our algorithm will
have no more edges than the original CFG.

Intraprocedural graph projection
To construct the projection, our approach uses elemen-

tary graph transformations that have traditionally been used
for generating sparse evaluation representations to improve
the efficiency of data-flow analysis [2, 5, 11].

A sparse evaluation representation can be generated by
applying graph transformations that remove unnecessary
nodes from a flowgraph [11]. Given a data-flow analysis
problem, the transformations potentially remove nodes that

preserve the solution (called p-nodes) or nodes at which
the solution is not required (called u-nodes); the remain-
ing nodes (called m-nodes), which may affect the solution,
are retained in the final representation.

In our approach, a node is classified as interesting or un-
interesting: an interesting node corresponds to an m-node;
an uninteresting nodes corresponds to a p-node or a u-node.
Thus, the transformations are directly applicable once nodes
have been classified. To construct the projection, we use the
following elementary graph transformations [11].

T2 Transformation. The T2 transformation, applicable to
an uninteresting node that has only one predecessor, merges
the node with its unique predecessor. Given an uninterest-
ing node u and its unique predecessor v, the T2 transforma-
tion removes the edge (v, u) from the graph and replaces
each edge (u,w) with an edge (v, w).

T4 Transformation. The T4 transformation, applicable to a
strongly-connected set of uninteresting nodes, reduces such
a set of nodes to a single uninteresting node. Given a set
N of uninteresting nodes that is strongly connected, the T4
transformation (1) replaces the nodes in N with a single
node w, (2) replaces each edge (u, v), where u /∈ N and
v ∈ N , with an edge (u,w), and (3) replaces each edge
(u, v), where u ∈ N and v /∈ N , with an edge (w, v), and
(4) deletes edges (u, v), where u ∈ N and v ∈ N .

T5 Transformation. The T5 transformation, applicable to
an uninteresting node that has only one successor, merges
the node with its unique successor. Given an uninteresting
node u and its unique successor v, the T5 transformation
removes the edge (u, v) from the graph and replaces each
edge (w, u) with an edge (w, v).

The algorithm for computing the projection has the fol-
lowing steps.3

1. Given original CFG G, compute a subgraph Gu of G that
contains only the uninteresting nodes. Gu is constructed
by removing all interesting nodes (and their incident edges)
from G. Identify the strongly-connected components in Gu.
Let N1, N2, . . . , Nk denote the set of strongly-connected
components in a topological sort order.

2. Apply the T4 transformation to each Ni in G, reducing each
Ni to node ni, resulting in CFG G1. Mark ni as “scc-node”.

3. Visit nodes n1 to nk of G1 in that order (a topological or-
der). For each node ni, apply the T2 transformation, if it is
applicable. We denote the resulting CFG as G2.

4. Let n1, n2, . . . , nk be the set of uninteresting nodes in G2 in
a reverse topological sort order. Visit nodes n1 to nk in that
order. For each node ni, apply the T5 transformation, if it is
applicable. Let the resulting graph be G3.

5. For each scc-node n in G3, add edge (n, n).

Fig. 6 illustrates the construction of the projection (inter-

3The algorithm is a simplified version of the algorithm for construct-
ing a partially equivalent flowgraph presented in the approach of Rama-
lingam [11].



Figure 6. Construction of the projection. (a) Original CFG. (b)–(d) Graphs resulting from T4, T2, and
T5 transformations. (e) Projection created by the naive approach.

esting nodes are shaded). Part (a) of the figure shows the
original CFG; parts (b), (c), and (d) show the graphs that re-
sult after T4, T2, and T5 transformations, respectively. The
T4 transformation replaces the strongly-connected compo-
nent consisting of nodes 5 and 6 with a single node (node 5).
Next, the T2 transformation merges each uninteresting node
that has a single predecessor (i.e., nodes 3, 5, and 7) with its
predecessor. Finally, the T5 transformation merges node 11
with its unique successor.

Interprocedural graph projection
In the interprocedural context, first call sites have to be

marked as interesting or uninteresting. A procedure is inter-
esting if it contains an interesting statement or a procedure
called from it directly or transitively contains an interesting
statement. A call site is interesting if it calls an interesting
procedure. After call sites have been marked, the CFG of
each procedure can be projected independently [11].

The algorithm for classifying procedures first marks each
procedure that contains an interesting statement as interest-
ing. Next, it traverses the call graph in a reverse topological
order, and marks a procedure as interesting if that proce-
dure calls an interesting procedure. After the procedures
have been marked, the algorithm marks each call site based
on whether it calls an interesting procedure.

Complexity analysis
Step 1 of the intraprocedural algorithm identifies

strongly-connected components; the complexity of this step
is O(N +E). Steps 2, 3, and 5 require time O(N). Step 4
processes CFG nodes in a reverse topological order, which
requires O(N + E). Therefore, the intraprocedural algo-
rithm is linear in the number of edges in the CFG. The
interprocedural algorithm incurs the costs of computing a
topological order of the call graph (linear in the number of
edges in the call graph), and processing each procedure.

3.3 Projection of a real application

We implemented a prototype tool that, given a Cobol
application and a specification of events, creates the inter-
procedural projection of the application with respect to the
events. The user can specify I/O events, events related to

variables, or a set of event matches (i.e., statement num-
bers) as inputs to the tool.

Using the tool, we computed a projection for a real
Cobol application (around 32000 lines) from the financial
domain. The goal was to understand how the application
updates the status of an Order; therefore, the projection
was done with respect to statements that refer to variable
ORDER-STATUS. Fig. 7(a) shows the interprocedural pro-
jection of one of the programs (2300 lines) in the applica-
tion that processes order registrations.4 The four shaded
nodes represent assignments to ORDER-STATUS. (The pro-
jection includes entry/exit/call nodes and call/return edges
to show control flow across paragraphs.) The projection
shows that paragraph P1 conditionally calls P2, in which
ORDER-STATUS is first set to ‘R’ (“received” status), in
node 2115, and is then potentially updated to ’C’ (“ac-
cepted” status), in node 2129. P2 calls P3, which can either
set ORDER-STATUS to ‘R’ (node 2223) or ‘C’ (node 2232),
or not update it at all.

The developer can interactively expand the initial pro-
jection to get a deeper understanding of the program. Be-
cause all the four shaded nodes update ORDER-STATUS,
the question arises as to what conditions these nodes exe-
cute under. Therefore, the developer asks for all control-
dependence ancestors of these nodes to be added to the
projection, the result of which is shown in Fig. 7(c). This
projection shows that fairly complex logic controls the up-
dates to ORDER-STATUS. Under several conditions, P2 is
not called, and if P2 is called, under further conditions,
ORDER-STATUS is not updated. These conditions, which we
have not shown for brevity, check, e.g., whether a transac-
tion is of a certain type or is rejected, whether a registration
is premature, etc. After being initially set to ‘R’ in P2, ad-
ditional properties of an Order determine whether its status
is further updated in either P2 or P3. P3 checks error condi-
tions and time constraints before updating ORDER-STATUS.

In this way, by computing an initial projection that pro-
vides very concise information (12 nodes), and interactively
expanding it to include conditionals, the developer can un-

4The node contents have been abbreviated, and variable names have
been changed for confidentiality.



Figure 7. (a) The projection of a real Cobol program. (b) The projection after the application of
postpass rules. (c) The projection including conditions that control the event matches.

Table 2. Data about the ORDER-STATUS pro-
jection of the financial application.

Total Num procs
cyclomatic with cyclomatic

Procs Nodes complexity complexity > 20
Original 728 28269 3720 42
Projection 73 365 170 1

derstand an important aspect of the processing done by a
fairly large program that is also doing many other things
not pertinent to the update of an order’s status.

The application contains 84 statements that update
ORDER-STATUS. There are so many updates because the
application processes many types of orders, and performs
multiple updates for each type of order. The interprocedu-
ral projection for the entire application contained 365 nodes,
which included 250 entry/exit/call nodes and 31 join nodes.
Although the projection is somewhat large, using the pro-
jection as a starting point instead of examining the entire ap-
plication still simplifies the task of understanding this aspect
of the application’s functionality. Table 2 presents some
quantitative data to illustrate the reduction in complexity.

3.4 Postpass to reduce projection size

The initial projection of the financial application is
somewhat large because of the large number of event
matches (84 updates to ORDER-STATUS) in the application,

and the inclusion of entry/exit/call nodes in the projection.
A postpass phase can be used to prune out some of the
nodes, and make a projection more compact. First, some
of the entry/exit/call nodes can be eliminated by inlining
projections for called procedures at call sites. This should
be done selectively, based on whether inlining would re-
duce the size of the projection. Second, some of the event
matches—those that have either the same successors or the
same predecessors—can be merged. We state these rules
more formally as follows.

1. Inline. For each procedure P (in a reverse topological
order of the call graph) with CFGG such thatG hasN
nodes and there are C call sites that call P : if C(N −
2) < C +N , inline G at each call site.

2. Same-successors. Given nodes e1 and e2 that
match event set e and that have the same successors
s1, s2, . . . , sk: (1) replace e1 and e2 with node e12, (2)
replace each edge (u, e1) or (u, e2) with edge (u, e12),
and (3) replace each pair of edges (e1, si) and (e2, si)
with edge (e12, si), 1 ≤ i ≤ k.

3. Same-predecessors. Given nodes e1 and e2 that
match event set e and that have the same predecessors
p1, p2, . . . , pk: (1) replace e1 and e2 with node e12, (2)
replace each edge (e1, u) or (e2, u) with edge (e12, u),
and (3) replace each pair of edges (pi, e1) and (pi, e2)
with edge (pi, e12), 1 ≤ i ≤ k.



After applying the first rule, Rules 2 and 3 can be ap-
plied repeatedly, until neither of them is applicable. Using
these rules, the size of the projection for ORDER-STATUS
decreased from 365 to 173. The number of procedures in
the projection decreased from 73 to 19. Rule 1 reduced the
number of entry/exit/call nodes from 250 to 86; Rules 2
and 3 reduced the number of event matches from 84 to 56.5

Fig. 7(b) shows the graph produced after application of the
three rules to the projection shown in part (a) of the figure.

The graph that is produced after the postpass phase is no
longer a projection of the CFG with respect to interesting
nodes because the nodes in the graph do not have a one-to-
one correspondence with nodes in the CFG—some nodes in
the graph represent more than one CFG node. However, this
is not a problem because the intention of a process model
is not necessarily to show control flow among individual
event matches (i.e., by distinguishing distinct matches of the
same event), but to show the order among the events (i.e.,
treating any match of an event as the same). Because such
a process model is not a projection of the CFG with respect
to interesting nodes, we restate the property that it satisfies.
In a postpass process model, a node n can represent a set of
CFG nodes such that each node in the set matches the same
event set e; in this case, we say that n matches e.

Definition 2 LetG = (N,E) be a graph and E be an event
specification. Let µ : N → P(E) be an event function
that maps node n to the event set to which n matches. If s
is a sequence of event sets, let non-empty(s) be the subse-
quence of s obtained by omitting all empty sets from s. Let
ψ = (n1, n2, . . . , nk) be a valid interprocedural path inG.6

We define the event-label for the path wrt event function µ,
Lµ(ψ), to be non-empty(µ(n1)µ(n2) . . . µ(nk)).

Theorem 1 LetG = (N,E) be a CFG, E be an event spec-
ification, andGp = (Np, Ep) be the postpass process model
created from G with respect to E . Let µ : N → P(E) and
µp : Np → P(E) be event functions over the nodes in
G and Gp, respectively. Gp contains a valid interproce-
dural path ψp with event-label Lµp

(ψp) = l if and only if
there exists a valid interprocedural path ψ in G such that
Lµ(ψ) = l.

A simple algorithm for the postpass phase is to pro-
cess procedures in a reverse topological algorithm. For
each procedure, first apply Rule 1; then, iteratively examine
pairs of nodes in the procedure’s (possibly, inlined) projec-
tion, and determine whether either Rule 2 or Rule 3 can be
used to merge the nodes. The algorithm can be expensive:
O(N3 ∗ A2), where N is the number of nodes, and A is

5The postpass rules are currently not implemented in our prototype; we
applied the rules manually to determine the reduction.

6A valid interprocedural path is one that respects calling contexts—i.e.,
it contains properly matched calls and returns.

the maximum number of predecessors or successors that a
node can have. In practice, the algorithm may be reasonable
because it is applied to a selectively inlined intraprocedural
projection, which typically should be small.

The postpass phase is an optional step in our approach,
which can be skipped if the size of a projection is too large.
Developing a more efficient algorithm for this step is left to
future work.

4 Related work

Techniques such as program slicing [4, 16] and partial
evaluation (or program specialization) [6] are well-known
techniques for extracting a view or part of a program that
can aid program understanding. The approach outlined in
this paper does incorporate some elements of both slicing
and partial evaluation, albeit indirectly. Specifically, our al-
gorithm for logical data model inference incorporates a gen-
eralized form of data-dependence analysis that combines el-
ements of slicing and partial evaluation. The results of this
model inference are utilized in identifying events of interest.

Slices and process models provide different views of a
program, and can be useful for program understanding in
different ways. A slice is intended to be semantically com-
plete, whereas a process model is intended to show only
the ordering among an arbitrary set of statements. Under-
standing the order among a set of interesting events can be
an end goal in itself, for which slicing is not an appropri-
ate technique. Alternatively, a process model, because of its
compactness, can be a useful starting point for program ex-
ploration. It can provide a quick initial understanding of a
system; then, slicing can be used to drill down, and examine
dependences selectively, as illustrated in Section 2.4.

Murphy et al. [10] exploit a human-specified mapping
between source files and logical modules (each module may
be linked to a set of source files). Given the mapping, they
produce a source model that describes the calling relation-
ships between the logical modules. Our use of a linked
logical data model and the process model we produce are
analogous to these concepts, but our use of data models and
event specifications leads to models different from the kind
of source models discussed in [10].

Several others (e.g., [9]) have proposed languages for
describing certain code patterns, and have described tech-
niques to find matches (either statically or dynamically) to
the specified patterns in code. These have typically been
used to find bugs in program (e.g., code fragments that vi-
olate certain design rules). Such techniques can be used to
enrich our event specification language. The distinguish-
ing aspects of our work, in relation to the above work, is
that we exploit a logical data model for event specifica-
tions (which is particularly important for systems written
in weakly typed languages such as Cobol), and we produce



a process model abstraction from the program rather than
just identify event occurrences.

Discovery of API usage rules is another area that has
attracted interest recently (e.g., [1, 17]). The goal here is
to identify constraints (especially temporal constraints) on
correctly using an API/library. Wagner and Dean [15] use
static analysis to capture the order in which system calls
may occur. Their goal is to infer a model that can be used
at runtime to detect divergence from expected behavior.

Others (e.g., [3, 8]) have discussed, in various contexts,
projecting the control flow of a program with respect to
a subset of statements. However, they do not address the
problem of quadratic increase in the number of edges in the
projection. To extract output file formats, Lim et al. [8] con-
struct a hierarchical finite state machine, which is a projec-
tion of the ICFG with respect to entry/exit/call nodes and
output operations. In the context of intrusion detection sys-
tems, Giffin et al. [3] create a projection of a program with
respect to system calls. They label each edge of a CFG with
the name of a system call or with ε. Next, they use a T4-like
transformation to reduce strongly-connected components of
ε-edges. Following that, they use the naive approach to re-
move the remaining ε-edges.

Rountev et al. [13] discuss reverse engineering of UML
sequence diagrams from source code. However, they focus
more on the translation of source language constructs into
UML constructs, and do not discuss producing abstractions
of the program, as we do.

Another related area is reverse engineering of state di-
agrams. For example, the Shimba tool [14] uses dynamic
analysis to collect event traces that show object interactions,
and synthesizes state diagrams from the traces.

5 Future work

This paper attempts to characterize process model ex-
traction as a technically well-defined problem, by decom-
posing it into two steps: definition of interesting events, and
inference of the order in which the events can occur. Such
a characterization is useful because it clearly identifies the
two sub-problems that should be addressed in developing an
approach for process model inference, and can, therefore,
guide future research in this space in developing solutions
that are designed to address the sub-problems.

Future research could extend our approach in several
ways. The notion of events could be generalized to cover
a wide variety of computational steps that may be of inter-
est in the context of program understanding. This may re-
quire more sophisticated analysis to identify occurrences of
events in programs. The projections could be presented at
coarser levels of granularity, such as a program level. Future
work could also define a formal language in which (gener-
alized) events could be specified.

The following is an example of a scenario that could
drive such generalization. Many entities have a lifecycle,
which can be captured concisely using a notation such as
UML state-transitions diagrams. Transitions between the
different states of such an entity is an example of an inter-
esting event. One could potentially extract the lifecycle of
specified entities in the form of UML state diagrams.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In
Symp. on Principles of Prog. Lang., pages 4–16, Jan. 2002.

[2] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction
of sparse data flow evaluation graphs. In Proc. of the 18th ACM
SIGPLAN-SIGACT Symp. on Principles of Prog. Lang., pages 55–
66, Jan. 1991.

[3] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote
call streams. In Proc. of the 11th USENIX Security Symp., pages
61–79, Aug. 2002.

[4] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Prog. Lang. Syst., 12(1):26–60, Jan.
1990.

[5] R. Johnson, D. Pearson, and K. Pingali. The program structure tree:
Computing control regions in linear time. In Proc. of the ACM SIG-
PLAN 1994 Conf. on Prog. Lang. Design and Impl., pages 171–185,
June 1994.

[6] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice Hall International, 1993.

[7] R. Komondoor, G. Ramalingam, S. Chandra, and J. Field. Dependent
types for program understanding. In Proc. of the 11th International
Conf. on Tools and Algorithms for the Construction and Analysis of
Syst., pages 157–173, Apr. 2005.

[8] J. Lim, T. Reps, and B. Liblit. Extracting output formats from exe-
cutables. In Proc. of the 13th Working Conf. on Reverse Eng., pages
167–178, Oct. 2006.

[9] M. Martin, B. Livshits, and M. S. Lam. Finding application errors
and security flaws using PQL: a program query language. In Proc.
of the 20th annual ACM SIGPLAN Conf. on Object Oriented Prog.
Syst. Lang. and Applications, pages 365–383, Oct. 2005.

[10] G. Murphy and D. Notkin. Software reflexion models: Bridging the
gap between source and high-level models. In Proc. of the 3rd Symp.
on the Foundations of Softw. Eng., Oct. 1995.

[11] G. Ramalingam. On sparse evaluation representations. Theoretical
Comput. Sci., 277(1–2):119–147, Apr. 2002.

[12] G. Ramalingam, R. Komondoor, J. Field, and S. Sinha. Semantics-
based reverse engineering of object-oriented data models. In Proc.
of the 28th Intl. Conf. on Softw. Eng., pages 192–201, May 2006.

[13] A. Rountev, O. Volgin, and M. Reddoch. Static control-flow anal-
ysis for reverse engineering of UML sequence diagrams. In ACM
SIGPLAN-SIGSOFT Workshop on Prog. Analysis for Softw. Tools
and Eng., pages 96–102, Sept. 2005.

[14] T. Systä. Understanding the behavior of Java programs. In Proc. of
the 7th Working Conf. on Reverse Eng., pages 214–223, Nov. 2000.

[15] D. Wagner and D. Dean. Intrusion detection vis static analysis. In
Proc. of the 2001 IEEE Symp. on Security and Privacy, pages 156–
169, May 2001.

[16] M. Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–
357, July 1984.

[17] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of
object-oriented component interfaces. In Proc. of the International
Symp. on Softw. Testing and Analysis, pages 218–228, July 2002.


