SCTP versus TCP: Comparing the Performance of Transport
Protocols for Web Traffic

Rajesh Rajamani, Sumit Kumar, Nikhil Gupta
Computer Sciences Department,
University of Wisconsin-Madison
{raj,sumit,nikhil } @cs.wisc.edu

May 13, 2002

Abstract

The HyperText Transfer Protocol (HTTP) is one of the
most widely used protocols on the World Wide Web today.
Typically, clients request documents from web servers and
display it to the user after the requested document has
been fetched. As the user base of this simple, but effective
protocol has expanded, users have come to expect quicker
responses.

Stream Control Transfer Protocol (SCTP) is a reliable,
message-oriented transport protocol that was designed
to transport Public Switched Telephone Network (PSTN)
signaling messages over IP networks. SCTP separates
the notion of data transmission streams from that of an
association, which is functionally equivalent to that of
a TCP-style connection. This allows multiple streams
within the same association. The data transmission over
these streams is fully ordered. However, data from differ-
ent streams are partially ordered over the association and
this can reduce the delay caused by head-of-line blocking
problems.

We hypothesize that SCTP could be an effective transport
protocol for web traffic and present the results of our com-
parison of SCTP and TCP.

1 Introduction

The World Wide Web is one of the primary reasons
which made the Internet accessible and popular. The Web
servers and browsers speak the Hypertext Transfer Pro-
tocol (HTTP), which uses TCP as the transport protocol.
The Internet that we know today is a huge network of net-
works that is still growing at a very fast pace. Though the
benefits of bringing information to everybody’s doorstep
or living room, are hardly in question, the size and de-
centralized nature of the Internet make it susceptible to

partitions and outages. The average user, quite oblivious
of this fact, wants quick responses. A lot of research has
gone into reducing the latency as perceived by the user
[6, 3, 7].

Browsers using the original version of HTTP (1.0) [12]
opened a new TCP connection for retrieving each data
item from the server. This was particularly inefficient
while fetching multiple documents from the same server,
because of the two extra Round-Trip Times (RTTSs) in-
curred in setting up a new TCP connection between the
client and the server [10, 6]. The newer version (HTTP
1.1) allows persistent connections and the browser can
use one or more of these to retrieve all data items from
a particular server. This, together with caching at various
levels, has greatly reduced the latency perceived by the
user.

In this paper, we present a comparison of SCTP and
TCP as the transport protocol for HTTP. We begin by
presenting our motivation for using an alternate protocol
for HTTP in the next section. In section 3, we give an
overview of SCTP and Section 4 describes our server ar-
chitecture. In secton 5, we present our hypothesis, which
is that SCTP is better suited for HTTP traffic and our rea-
soning behind this. In section 6, we describe our experi-
mental setup, followed by results in section 7. We provide
pointers to related work in section 8 and present our con-
clusions in section 9.

2 Motivation

For networked applications, the choice of transport pro-
tocol is as important as the choice of algorithms and data
structures at the application level. Today most applica-
tions use either the Transmission Control Protocol (TCP)
[9] or the User Datagram Protocol(UDP) [8]. Applica-
tions that need a reliable in-order delivery of the bytes

sent by its peer use TCP, whereas ones that can tolerate a
certain degree of loss prefer UDP, primarily because UDP
provides speedier delivery of packets. Most applications
prefer TCP over UDP and applications using TCP include
file transfer applications, electronic mail and the world-
wide web. UDP is used by streaming audio/video appli-
cations for which timely delivery is more important than
reliability.

In TCP, the notion of a byte stream and a connection
are equivalent. Every TCP connection has two endpoints,
whereas UDP is connectionless and allows applications to
send messages to one or many peers. There are also many
applications that mark message boundaries over the TCP
byte stream, because they need reliable message-oriented
transport. The Stream Control Transfer Protocol (SCTP)
is a new transport protocol which provides a message-
oriented, reliable transport. It is similar to other transport
protocols like TCP and UDP and is designed to hide the
abstractions of the network layers from applications.

In some cases, TCP either does not provide the exact
functionality needed by the application or provides more
functionality than is needed. In the first case, the ap-
plication needs to do extra work to be able to use TCP,
while in the latter, the extra functionality of TCP might
be an overhead. For instance, many applications need re-
liable message delivery, but TCP is a byte stream oriented
protocol. Message-oriented applications achieve their re-
quired functionality by delineating the TCP stream into
messages. Additionally, TCP provides both strict order-
ing and reliabilty, but many applications may not need
both. In this case, the applications will incur an overhead
in using TCP.

HTTP is a message-oriented protocol, where every
message has to conform to the RFC 1945 specifications
[10]. When multiple embedded files (embedded gifs/jpgs,
etc) are being transferred using HTTP, we desire that each
of the files be reliably transferred; however, ordered deliv-
ery of these files is not a requirement. In fact, we would
like to display all the embedded files in the shortest time
possible. Most browsers try to achieve this objective by
opening multiple connections to the server and dividing
the GET requests for these embedded files over them.
This allows the browsers to render as many embedded
files as can be fetched over the multiple connections, at
the same time.

Clearly, there is a mismatch between the requirements
of HTTP and the functionality provided by TCP. SCTP
[11] is a new transport protocol that provides reliable
message delivery and also does not impose a strict order-
ing. We hypothesize that SCTP would be better-suited for
HTTP traffic and help reduce the user-perceived latency
and also improve the throughput.

3 SCTP Oveview

SCTP [11] is areliable transport protocol operating on top
of a potentially unreliable connectionless packet service
such as IP. It was originally designed to be a general pur-
pose transport protocol for message oriented applicatons,
as is needed for the transportation of signalling data. It
provides acknowledged, error-free, non-duplicated trans-
fer of messages through the use of checksums, sequence
numbers and selective retransmission mechanism. SCTP
is a transport layer protocol and its services are at the same
layer as TCP and UDP. The format of an SCTP packet is
shown in Figurel.

Source Port Destination Port
SCTP
Verification Tag Common
Header
Checksum

Type ‘ Flags Length

Chunk 1
User Data

Type Flags Length

Chunk N
User Data

Figure 1: SCTP Packet format

Each SCTP packet can contain multiple chunks, which
may be either data chunks or control chunks. The
first 12 bytes of the packet contain the common header.
For identifying an association SCTP uses a Source
Port/Destination Port pair along with a 32 bit \erification
Tag. The common header also contains a 32 bit check-
sum (Adler-32 algorithm) for protecting the data against
transmission errors. Each chunk has a Type field to dif-
ferentiate between data chunk and various control chunks,
Flags field (which contains chunk specific flags) and the
Length field to denote the length of the chunk. The value
field contains the acutal payload of the chunk.

Instead of the three phase connection setup for TCP,
the initialization of an association is completed after the
exchange of four messages. The passive side of the as-
sociation does not allocate resources for the association
until the third of these messages has arrived and been val-

idated. This helps to address the issues of Denial of Ser-
vice attacks to an extent. The association can be termi-
nated either gracefully ensuring that no data in transit is
lost, or it can be aborted which might lead to lost data.
SCTP operates at two levels:

e Within an association the reliable transfer of data-
grams is achieved by using checksum, a sequence
number and a selective retransimission mechanism.
Every correctly received data chunk is then handed
over to a second level.

e This second level is responsible for realizing the par-
tial ordering of datagrams. That is, order is main-
tained within each stream, but not amongst the dif-
ferent streams.

Each of the data chunks is numbered with a Transport Se-
quence Number(TSN) to enable detection of loss and du-
plication of data packets. The acknowledgements sent by
the receiver are based on these sequence numbers. The
assignment of the datagram to one of the streams within
an association is done by the user. Each of the datagrams
is assigned a Stream Sequence Number(SSN) by SCTP.
This sequence number is used to realize reliable delivery
of datagrams at the receiver. The information about the
number of streams to be set up within an association is
exchanged between the peers at the time of association
setup.

Another important difference between SCTP and TCP
is the support for multi-homed nodes in SCTP, i.e. nodes
which can be reached using more than one IP addresses. If
the nodes and the interconnection network are configured
in such a way that the the data from one node to another
travels on physically different paths if different destina-
tion IP addresses are used, the association can become
tolerant against physical network failures. The informa-
tion about multiple addresses is exchanged at the time of
association setup. One of the addresses is selected as the
primary path over which the datagrams are transmitted by
default. However, retransimissions can be done on one of
the available paths.

SCTP uses an end-to-end window based flow and con-
gestion control mechanism similar to the one that is used
in TCP [5]. The receiver specifies a receive window size
and returns its current size with all the SACK chunks.
The sender maintains a congestion window to control the
amount of unacknowledged data in flight. The acknowl-
edgements contain a Cumulative TSN Ack, that indicates
all the data that has been successfully reassembled at the
receiver’s side. The Gap Blocks indicate the segments of
data chunks that have arrived with some data chunks miss-
ing in between. If four SACK chunks have reported gaps

with the same data chunk missing, the retransmission is
done via the Fast Retransmit mechanism.

The congestion control mechanisms for SCTP have
been derived from [5] with some modifications made for
multihoming. For each destination address (i.e. each pos-
sible path), a discrete set of flow and congestion control
parameters is kept, so that from the point of view of the
network, an SCTP association with a number of paths
behaves similarly as the same number of TCP connec-
tions. Each path may either be in Slow Start or Con-
gestion Avoidance mode. For successfully delivered and
acknowledged data the congestion window (CWND) is
steadily increased and once it exceeds a certain boundary
(Slow Start Threshold, SSTHRESH), the mode changes
from Slow Start to Congestion Avoidance. Generally,
in Slow Start, the CWND is increased faster (roughly
one MTU per received SACK chunk), and in Conges-
tion Avoidance mode, it is increased by roughly one
MTU per Round Trip Time (RTT). A timeout causes a
new Slow Start with CWND=MTU and a Fast Retran-
simit sets CWND=SSTHRESH. Both of these also cause
SSTHRESH to be cut down drastically.

The use of congestion control and flow control mech-
anisms similar to TCP ensures that SCTP can be intro-
duced without problems in networks where TCP is in
widespread use, as has been studied in [1].

4 Server Architecture

In this section we will explain the server architecture that
we used for our experiments. The protocol used for file
transfer in all the cases is HTTP 1.1 [10] with persistent
connections and chunked transfer encoding.

The architecture for single file transfer is similar for
both TCP and SCTP and is shown in Figure 2. The client
establishes a connection with the server and sends the
HTTP GET request. The server receives the request and
forks a child process for handling the request. The child
process processes the request and if the request can be sat-
isfied, the child sends the requested file, otherwise it sends
an appropriate error message.

The server architecture for multiple file transfer (i.e.
embedded files) for TCP is shown in Figure 3. As be-
fore, the client establishes a connection with the server.
It then sends the request for the first file (file 0) to the
server. The server forks a child process and the child pro-
cess either sends the requested file or an error message.
On receiving the first file successfully, the client makes
requests for a specific number of files (i.e the embedded
files). The requests for all the files are sent by the client
in a pipelined fashion. The child process on the server

request file

Server

Client process

fork child

send file

Child process

Figure 2: Single File Transfer - TCP and SCTP

side receives these requests and sends the requested files
one after another. The pipelining of requests by the client
reduces latency, as the server does not have to wait to re-
ceive a new request after sending one of the embedded
files - the request would have already arrived while the
first transfer was in progress. The transfer of files is done
using a persistent connection, i.e. all the subsequent files
are transferred on a single TCP connection.

request file O

Server

Client
fork ¢hild
process

send fileO

Child process
request files 1..N

sendfiles1,2,..N

Figure 3: Embedded Files Transfer - TCP

The server architecture for multiple file transfer for
SCTP is significantly different from TCP and is shown

in Figure 4. The client establishes a connection with the
server, sends the request for the first file and the server
forks a child process to handle the request. The child pro-
cess now sends the requested file on the first stream (i.e.
stream 0). The client process on receiving the first file
sends the requests for subsequent files. The child process
on the server side receives these requests and instead of
sending all the files one after another as in the case of TCP,
sends these files in parallel on different streams. Thus,
all the files are being transferred simultaneously and the
loss of packets for a particular stream would not affect the
other streams. The number of streams to be established in
a single connection is negotiated between the client and
the server at the time of association setup. If the number
of streams is less than the number of files to be sent, some
or all of the streams will need to be used more than once.

request file 0

Server

fork child

Client process

send file 0 — stream O

request files 1..N Child process

send file 1 — stream 1

send file N — stream N

Figure 4: Embedded Files Transfer - SCTP

5 Hypothesis

As mentioned earlier, there is a semantic gap between
TCP and HTTP. SCTP provides services that, we think,
are closer to the requirements of the HTTP protocol.
Though SCTP is a message-oriented protocol like UDP,
it is closer to TCP in terms of some of the services it
provides. Like TCP, SCTP provides ordered delivery of
messages of the same stream and has a congestion con-
trol and flow control mechanism built in. It also uses a
32-bit checksum to detect corrupted packets. The major
difference between TCP and SCTP is that, while TCP as-
sociates every connection with a byte stream, an SCTP
association can have multiple streams in it. SCTP guaran-

tees ordered delivery of messages within each stream, but
the messages sent over the association are only partially
ordered, since all the streams are multiplexed over a sin-
gle association. This feature can alleviate the head of line
blocking problem present in a TCP byte stream. SCTP
also provides multi-homing capability as a fault-tolerance
measure.

We reason that over lossy links, SCTP would improve
both latency and throughput. We define latency as the
elapsed clock time between when a particular document
is requested and when it is received fully and throughput
as the elapsed clock time between when a document is
requested and when the document and all embedded files
referred by it are available at the receiver. We expect an
improvement in the latency of each file, because while
in TCP the head of line blocking would prevent pack-
ets belonging to other documents being delivered to the
receiving application, SCTP would deliver packets sent
over streams that did not suffer losses. Note that any
packet sent over physical media can be lost or corrupted.
It is only the transport protocol that sees (over a period
of time) streams with gaps in the sequence numbers re-
ceived, which imply lost or corrupted packets and streams
which receive all packets without a gap in the sequence
numbers and hence are considered loss free. Loss-free
streams may suffer losses in any subsequent period; lossy
streams may continue to suffer losses or be loss-free in
any subsequent period.

Throughput would improve because the multiple
streams in SCTP share the send side kernel buffers. The
kernel buffers data that has been sent but unacknowledged
and also unsent data. If only some of the streams suffer
losses, more kernel buffers would be freed (correspond-
ing to the streams that did not suffer losses) and hence
the application would be able send data at a faster rate.
TCP would block the application from sending more data
whenever there is a loss and it runs out of kernel buffer
space.

6 Experimental setup

We used the BSD kernel implementation of TCP and
SCTP for performing all our tests. The Kkernels
were built from the head of the kame CVS repository
http://www.kame.net. We had access to three BSD sys-
tems, one of which acted as a router and ran dum-
mynet. All traffic between the other two systems were sent
through this router. Dummynet [4] allows the user to con-
trol the bandwidth, loss rate, propagation delay and other
parameters between two endpoints. For our experiments,
we used a constant RTT of 80 milliseconds between the

sender and the receiver. This value is an approximation of
the RTT between the east coast and west coast of conti-
nental United States.

We varied the loss rates between 0% and 25% as
shown in the performance results. For the bandwidth met-
ric, we chose four values - 40Kbps, 400Kbps, 3Mbps
and 10Mbps. These values were obtained by taking
the average of the results of ten speed tests available
at http://bandwidthplace.com/speedtest/. The aforemen-
tioned test tries to evaluate the peak bandwidth attain-
able using the HTTP protocol over links that use a dial-
up modem (56Kbps), cable modem, wireless LAN or a
100Mbps ethernet to connect to the network.

7 Results

7.1 Single file transfer test

We first ran a test to compare the performance of SCTP
with that of TCP under no loss. This was done to make
sure that the overheads involved in marking message
boundaries and chunks does not make SCTP unviable as
compared to TCP.

Figure 5 shows the latency of a file transfer between
the server and client. The line representing SCTP follows
that of TCP. The difference may be due to the overhead in-
curred by SCTP in framing messages. TCP being a byte
stream protocol tries to buffer data in the kernel in order to
send out Maximum Transmission Unit (MTU) sized pack-
ets. SCTP can also put more than one data chunk [11] in
a packet, provided both the chunks can be accomodated
in the packet. Since our client and server used a message
size of 1024 bytes and the maximum data payload in a
single SCTP packet is 1408 bytes, we did not see SCTP
marshalling more than one message into a single packet.
As a result, SCTP sends nearly twice as many packets as
TCP for the largest sized file shown in the figure below.
This, together with the fact that the kernel implementation
of SCTP is only 7 months old and has not been optimized
for performance, may provide an explanation to the dif-
ference between the two protocols.

We performed the same single file transfer test with
bandwidth values of 400 Kbps, 3 Mbps and 10 Mbps.
Due to space constraints, we show the plot of only
the 10 Mbps test. The interested reader is referred
to http://www.cs.wisc.edu/~raj/sctp where all plots are
archived. As shown in figure 6, the results of this test are
similar to the earlier figure, in that SCTP’s curve follows
that of TCP. TCP is able to better utilize the higher band-
width and we believe this plot brings out the unoptimized
nature of the SCTP implementation. The anomalies in
this graph are due to the variance in the queuing delays

2.5e+07

2e+07

1.5e+07

1e+07

Time(microseconds)

5e+06

0 1 1 1 1 |
0 20000 40000 60000 80000 100000

size of file

Figure 5: Time taken to transfer a single file from server to
client. Dummynet was used to restrict the bandwidth to 40
Kbps.

introduced by Dummynet. Each point in figures 5 and 6
are the average values of five samples. We believe taking
more samples would have reduced the variance.

1.2e+06 T
TCP —+—
SCTP ---%---
1e+06 B
7—3\ 800000
c
o
[
Q
%]
© 600000
2
£
g v
£ 400000
200000
0 1 1 1 1 |

0 20000 40000 60000

size of file

80000 100000

Figure 6: Time taken to transfer single file from server to
client. This test was performed with our highest bandwidth
- 10 Mbps.

7.2 Multiple files transfer tests

This test was designed to be simulate the behavior of a
typical web browser. Most websites have a certain num-
ber of embedded links which are fetched by the browser
automatically. Our client first requests a document and af-
ter receiving it, pipelines n requests. The n requests rep-
resent fetching embedded links. For our tests, the size of

the first file was 50KB and the client then requested seven
files (n=7) each of which were 4KB.

Table 1 shows the latency of getting these eight files
from the server while using TCP and SCTP. Each data
point is the average value of twenty data samples. The
loss percentages indicated are the loss metric used in each
direction, so the cumulative loss is a little less than twice
the value indicated. Under no loss conditions, each file is
available at the client earlier when using TCP. However,
when there is loss, we see that using SCTP reduces the
latency.

Figure 7, which plots time taken to fetch all eight files
against different values of loss supports our hypothesis
that SCTP can help improve the throughput. This can be
explained by the fact that more send side kernel buffers
are freed by SCTP, as not all streams may suffer loss dur-
ing a window of time. The variance for loss values 10%
and 15% is too high and therefore, should not be taken
into account. We believe taking more samples would have
reduced the variance.

8 Related Work

HTTP performance has been studied very extensively.
Given its popularity and widespread use, this comes as no
surprise. One of the most influential works is that of Pad-
manabhan and Mogul [6], in which the authors present an
analysis of the sources of latency in the HTTP 1.0 pro-
tocol and suggest a set of improvements. This work put
forth the ideas of persistent connections and pipelining,
which have since been incorporated into the HTTP 1.1
protocol. [2] presents a comparison of the HTTP 1.0 and
HTTP 1.1 protocols. Others have worked on various as-
pects of caching, which is a widely used mechanism to
reduce the latency [3, 7].

Because SCTP is a relatively new protocol, it has not
been studied very much. [1] presents an evaluation of
the performance of SCTP in a wide area network, espe-
cially when competing with TCP. The authors conclude
that SCTP is TCP-friendly and its introduction does not
degrade the performance of existing protocols. However,
the effects of SCTP on application-level protocols is not
treated in this work. Our work tries to address this issue
and is closest to [6].

Table 1: Latency of each file in multiple file transfer test, B/w=10Mbps and all times in microseconds

Protocol | Loss File 1 File 2 File 3 File 4 File 5 File 6 File 7 File 8
TCP 0% 679395 768656 3873273 3910344 3942401 4243416 4273269 4708352
SCTP 0% 802931 888264 4468128 4507111 4607180 4834083 4878979 4887073
TCP 1% | 4930718 | 5595977 | 29598318 | 31047085 | 31924275 | 33460332 | 34333089 | 38222168
SCTP 1% | 4299919 | 4775626 | 24132252 | 24536217 | 25106516 | 26678879 | 27143072 | 29628740
TCP 2% | 5983277 | 6725730 | 35361679 | 37232434 | 38509110 | 40681890 | 42568811 | 45179090
SCTP 2% | 5506176 | 6098121 | 31539786 | 32164926 | 32692426 | 33117396 | 33981264 | 41551992
Time taken to xfer eight files (bw=10Mbps,delay=80ms)
5e+07 T T T T T T T
TCP ——
4.5e+07 | Std.deviation(tcp) ---*--
SCTP ---%---
4e+07 | Std.deviation(sctp) -5 1
) 3.5e+07 o
c |
8 3er07 | =
()
[4)]
O 2.5e+07
Q
E 2e+07
£
£ 1.5e+07
le+07
5e+06
0

loss (%age)

Figure 7: Time taken to transfer multiple files from server to client. Dummynet was used to restrict the bandwidth to 10

Mbps.

9 Conclusions and Future work

In this paper, we present our comparison of the effects of
using TCP and SCTP as the transport protocol for web
traffic. The results support our hypothesis that SCTP can
help reduce the latency and improve throughput. This,
together with some other features of SCTP like multi-
homing and better protection against Denial of Service
attacks, make it a very attractive choice for future web
traffic. Though the focus is on web traffic, we feel the re-
sults bring out the deleterious effect of head of line block-
ing that applications using TCP suffer from, because TCP
couples the delivery mechanism and reliability. By sep-
arating these two important issues and also by providing
a reliable message-oriented transport, SCTP provides de-
velopers with both flexibility and efficiency. It will be in-
teresting to know the mix of applications that use TCP as
a byte stream and those that use TCP as a reliable trans-
port for messages that are delineated by the application
level protocol.

There are some significant weaknesses in our work
which we plan to address in the near future. Our com-
parison pits SCTP against TCP reno (default mode of
TCP on BSD). Since, SCTP uses Selective Acknowledge-
ments(SACK), we believe this is not a very fair compar-
ison. SACK was introduced to improve TCP’s perfor-
mance when multiple packets were lost from one win-
dow of data. Our results for high loss rates, when such
an event is likely to occur shows high variance and we
recommend that the reader ignore them. We would also
like to compare the performance of multiple TCP streams
against multiple associations of SCTP. A future study will
have to address all these issues to conclusively prove that
SCTP offers an advantage over TCP.

10 Acknowledgements

We would like to thank Prof.Paul Barford for providing
guidance and support for this work. Our many thanks
to Randy Stewart for his valuable inputs and help in de-
bugging the BSD kernel implementation of SCTP. Doug
Thain, Joel Sommers, De Byrd, Jim Gast and the CSL
helped us sort out various problems.

References

[1] A.Jungmaier, M.Schopp, et al. Performance Evaluation of
the Stream Control Transmission Protocol. In Proceedings
of the IEEE Conference on High Performance Switching
and Routing, June 2000.

[2] P. Barford and M. Crovella. A performance evaluation of
hyper text transfer protocols. In Measurement and Model-
ing of Computer Systems, pages 188-197, 1999.

[3] L.Fan, P.Cao, et al. Summary cache: A scalable wide-
area cache sharing protocol. In Proceedings of ACM S G-
COMM Conference, pages 254-265, Sept. 1998.

[4] L.Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. ACM SGCOMM Computer Com-
munication Review, 27(1):31-41, 1997.

[5] M.Allman, V.Paxson, and W.Stevens. TCP Congestion
Control. RFC 2581, 1999.

[6] V.Padmanabhan and J. Mogul. Improving HTTP Latency,
Dec. 1995.

[7]1 P.Cao and C.Liu. Maintaining strong cache consistency
in the world-wide web. In 17th International Conf. on
Distributed Computing Systems, pages 12-21, May 1997.

[8] J. Postel. User Datagram Protocol. RFC 768, Aug. 1980.

[9] J. Postel. Transmission Control Protocol. RFC 793, Sept.

1981.

R.Fielding, J.Gettys, J.Mogul, H.Frystyk, and T.Berners-

Lee. Hypertext Transfer Protocol - HTTP/1.1. RFC 2068,

Jan. 1997.

[11] R.Stewart, Q.Xie, etal. Stream Control Transmission Pro-

tocol. RFC 2960, Oct. 2000.
[12] T.Berners-Lee, R.Fielding, and H.Frystyk. Hyptertext
Transfer Protocol - HTTP/1.0. RFC 1945, May 1996.

[10]

