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ABSTRACT

We introduce MobiCare — a remote wireless patient monitoring
system that exploits the recent advances in clinical sensor/actuator
systems and wide-area wireless communication networks to pro-
vide better healthcare services in a wide-range of scenarios.

MobiCare consists of three important building blocks: a body
sensor network (BSN) consisting of wearable sensors and actuators
with wireless inter-connections; a BSN Manager (also called Mo-
biCare client) that connects the BSN to an ‘always-on’ wide-area
communication interface using wide-area cellular wireless link; and
back-end infrastructure support (MobiCare servers) at healthcare
providers to implement necessary healthcare functionalities.

MobiCare enables a wide-range of programmable and reconfig-
urable services with efficient remote monitoring for mobile patient
care. Some of these services include: (1) health-related services in
medical devices and sensors to be remotely installed, self-activate,
reconfigure or even self-repair with new health services and/or ap-
plications, (2) secure and reliable remote dynamic software up-
grades or updates services applied to the native code of the clin-
ical device, and, (3) remote registration and (re)configuration of
body sensors as well as remote health data services such as patient
health report downloads and diagnosis data uploads with provider
servers. Collectively these services in MobiCare address a range
of patient medical monitoring needs by accelerating deployment of
new health-related services, thus reducing medical costs and im-
proving the quality of patient care. We have implemented an initial
proof-of-concept prototype of a MobiCare client and we demon-
strate its feasibility in an experimental wireless testbed consisting
of short-range Bluetooth and GPRS/UMTS cellular network infras-
tructure. We believe that MobiCare is a feasible and useful infras-
tructure paradigm for the next generation healthcare.

1. INTRODUCTION

A significant proportion of the human population suffer from
various medical conditions, including chronic ailments and med-
ical emergencies due to sudden injuries. In absence of continuous
medical care, many chronic ailments prove to be fatal. On the other
hand, in various medical emergency scenarios, timeliness of med-
ical attention is even more important. For example, in cardiac ar-
rests, the risk to a patient’s life can be considerably minimized by
improving the quality and timeliness of medical care in the “golden
time window” immediately following the injury. However, under
the existing healthcare systems, the fatality rate in the US from
heart failures itself is more than 42%, many of which are due to
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Figure 1: Medical monitoring services with MobiCare.

delays incurred in alerting and initiating medical intervention.

In this work we present MobiCare — a wide-area mobile patient
monitoring system that enables continuous and timely monitoring
of patients thereby enhancing quality of care for patients and po-
tentially saving many lives.

Important healthcare benefits using MobiCare include:

e Continuous Monitoring for Chronically-ill patients: Remote
monitoring enables chronically-ill patients to conform to long-
term course of medical treatment that can considerably reduce
the crisis and relapse rate for such patients.

e Better Quality Care and Feedback: By enabling more effec-
tive monitoring of patient’s condition, MobiCare provides more
accurate and useful information to medical personnel which ul-
timately leads to better medical advice and feedback to patients.
This also leads to better treatment of ailments and an overall im-
provement in the quality of care for patients.

e Increased Medical Capacity: Medical centers using MobiCare
can treat many more patients. Hospitals often have patients with
ailments which require a long recovery period. Using MobiCare
many such patients can be very effectively monitored and treated
in their homes. This offers the potential for increased medical ca-
pacity and personalized healthcare.

e Reduced Medical Cost: The proposed mobile healthcare mech-
anisms reduce relapse rates of ailments and hospitalization pe-
riod for patients. Not only it reduces the need for frequent medi-
cal consultation, but also by ensuring such reductions, the mobile
healthcare system can significantly reduce medical costs.

Healthcare systems today have failed to efficiently exploit con-
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Figure 2: Shows (a) capture of two ECG signals for a pa-
tient with congestive heart failure, and, (b) data-rate require-
ments when number of the ECG leads are varied. The ECG
signals were sampled at 250 samples per-second with 12-bit
resolution over a range of 10 millivolts. (ECG data source:
http://www.physionet.org)

tinued advances in mobile and wireless systems, despite their sig-
nificant advantages, to provide better healthcare services. Our goal
in this work has been to define a programmable remote patient
monitoring infrastructure that exploits the recent advances in wire-
less and clinical sensor systems. By programmable we mean a
reconfigurable, efficient, flexible, more trustworthy and evolvable
mobile medical healthcare infrastructure.

MobiCare consists of three important building blocks (figure 1):
a body sensor network (BSN) consisting of wearable sensors and
actuators that are inter-connected using the wireless medium; a
BSN Manager (also called the MobiCare client device) that con-
nects the BSN to an ‘always-on” communication wide-area inter-
face, e.g., a GPRS/UMTS cellular link; and backend infrastruc-
ture support (servers) at healthcare providers that provide necessary
healthcare services to patients.

MobiCare aims to accelerate the deployment of next genera-
tion medical applications and services and significantly enhance
the quality of patient care. In recent years, significant progress
has been made areas of sensing and monitoring healthcare devices
for clinical applications ranging from managing chronic diseases
and acute diabetes to epilepsy and other debilitating neurological
disorders (as an example, see [37]). These wearable sensing de-
vices enable continuous monitoring of physiological signs as op-
posed to occasional episodic reviews with doctors and healthcare
staff. More recently, a growing interest in smart, implantable in
vivo monitoring and intervention devices is starting to emerge (for
a complete description, see [11]). While considerable progress has
been made in the technologies associated with micro-sensing and
actuation, infrastructural issues related to flexible acquisition, fu-
sion and dissemination of multi-sensory data and the development
of flexible, health-related protocols and mechanisms, for depend-
able, robust, and secure wireless monitoring systems have been left
unaddressed. Our goal in MobiCare has been to build a system and
support infrastructure to enable health-related services and appli-
cations to be flexibly developed and deployed by health providers,
without causing significant interruptions in the normal day-to-day
lives of the patients.

Enablers of MobiCare

A number of recent innovations enables the efficient design of the
MobiCare architecture. Advances in medical sensors today enable
efficient, remote monitoring of patients. For example, sensors to
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Figure 3: Shows typical priority and time requirements in clin-
ical measurements.

measure ECG are now commercially available from Numed [7] and
Health Frontier [3]. There are several devices commercially avail-
able: Agilent, Philips and Nelcore produce handheld pulse oxime-
ters for noninvasive monitoring of blood oxygen saturation and
pulse (SpO3). Other sensors from Nonin [6] and Linde AG [5] use
wireless connectivity (Bluetooth-based) to provide remote monitor-
ing of vital body signs. Vendors like omron (www.omron.com) pro-
duces a range of portable wrist devices. For personlized healthcare
products like chest-worn Polar (www.polar.fi) can measure heart
rate. The SenseWear from BodyMedia (www.bodymedia.fi) mea-
sures activity, temperature parameters, and galvanic skin response
with additional option for chest-worn sensor for heart rate mea-
surement can be attached. The CodeBlue project at Harvard has
also developed (using the Berkeley MICA2 mote) a low-power,
low-frequency, wireless pulse oximetry and ECG sensor for pa-
tients [17]. The University of Alabama has developed a wear-
able ECG monitor that provides real-time feedback to the users
[22]. Other research groups have developed monitoring devices
to understand the reaction of the human body to stress [21] and/or
improve recovery process from strokes [29]. With clinical sens-
ing technologies advancing at a much faster rate one can expect
a range of such energy-efficient wireless medical sensors devices
to become available. MobiCare exploit such sensors to construct
the BSN that monitor the patient’s health non-invasively to gather
vital health data, e.g., heart condition, blood pressure, serum glu-
cose level, temperature, oxygen saturation (02). These sensors in
BSN self-organize and connect to a wireless interface to commu-
nicate such data to the BSN Manager and ultimately to the remote
back-end servers.

MobiCare exploits the continued increase in coverage and band-
width of cellular wireless networks being deployed worldwide to
build the “‘always-on’ wide-area interface of the BSN. For instance,
the newly deployed UMTS 3G network in Europe and CDMA 2000
EvDO network in the US can provide for data-rates that are much
higher than offered by conventional fixed-wire dial-up modems.
Such mobile networks therefore open up possibility for patients to
be continuously monitored and their vital health data to be very ef-
ficiently transported from the BSN to back-end servers to be moni-
tored, thereby enhancing the timeliness and quality of medical care.
These recent developments in mobile and wireless systems open-
up the possibility for easy access and affordability to new mobile
health-related services and applications.



Design Goals in MobiCare

To identify the key design goals in a mobile health care system
such as MobiCare, we investigated the monitoring requirements
for patients. Figure 2 illustrates an example of monitored ECG
data from a heart patient and the corresponding data-rate require-
ments when the number of such ECG leads are varied. Figure 3
also summarizes the typical time requirements and relative prior-
ity of some vital body signs including blood pressure, blood gases
(O and COs,), heart condition (ECG), and enzymes. Thus design
of a mobile healthcare system should consider the medical require-
ments to derive the design goals. We derive the following important
observations.

First, vital body signs have different time requirements in patient
monitoring (Figure 3). Such monitoring may be needed periodi-
cally or may involved on-demand continuous monitoring. Time re-
quirements of such monitoring vary significantly — from few min-
utes to several hours — depending on the condition of the patient
and the severity of the ailment. Flexible and remote configuration
of sensors is therefore crucial for effective mobile medical moni-
toring. Second, clinical sensors that address different monitoring
requirements of patients can potentially be built by different ven-
dors and may use different wireless protocols and technology, each
operating in a different part of the wireless spectrum. Such uncoor-
dinated clinical sensor design (as exists today) can make integration
and self-organization of such body sensors exceedingly difficult to
achieve. In order for such sensors to function together in a single
BSN, remote adaptation and reconfiguration should be an integral
requirement of the architecture. Finally, due to its time-critical na-
ture, reliability, security and timeliness of data delivery from the
BSN to the back-end servers is crucial.

We accomplish these design goals with several unique features
in MobiCare:

Devices and Services Reconfigurability. A mobile health
care system should be able to dynamically integrate, organize and
configure new body sensors based on the needs and the require-
ments of patients and health providers. MobiCare fulfills these de-
sign goal with secure reliable dynamic code update functionality
that is implemented as part of each MobiCare client and sensor de-
vice.

Why secure reliable updates in medical sensors? Secure reli-
able medical sensor updates, though seems futuristic and somewhat
risk-prone, however when appropriately used can be very useful in
remote medical sensor systems like MobiCare. While there are
legal and privacy issues with remote device updates in medical set-
tings, there are also many potential advantages. Some key benefits
using secure reliable updates in medical sensors include:

e No manual intervention — Medical devices and sensors can be
remotely installed, self-activate, reconfigure or even self-repair
with new services and/or applications,

e Customization — New heterogeneous clinical sensors can be au-
tomatically added or dynamically configured and customized to
the monitoring needs of the patient and health provider. This
decouples patients from the hassles of manual intervention with
medical devices and wearable sensors thus enabling them to lead
a life without interruption.

e Configuration — This feature provides the necessary control to
a health provider to configure and control the operation of the
different sensors in a body sensor network,

e Updates — This enables applications to be dynamically updated
in a sensor device or enable new device sensing features that also

improve the quality and reliability of the medical device.

Service Flexibility. Service requirements in clinical monitor-
ing imposes additional timeliness and priority constraints on the
monitoring system. For example, some vital sign data have higher
priority than others. MobiCare enables service components to dy-
namically self-activate, (re)-configure, update, and customize so as
to suit the monitoring needs of the patient and the health providers.
By using these mechanisms, the service components are able to
effectively address the time and priority requirements in the moni-
toring of patients.

Wide-area Link Availability. The nature of health data avail-
able from a patient sensor network requires reliable, secure and
time-bound data delivery to the provider servers. However, data
delivery over wireless cellular links can be challenging. Such links
are plagued by problems of high and variable round trip times (RTTs)
and relatively low bandwidths. Links occasionally experience “stalls’
due to the loss of coverage (severe fades in the ‘holes’) and during
handovers (device or patient mobility). Collectively, these issues
exacerbate the challenges of reliable and time-bound data delivery
over wireless cellular links. MobiCare overcomes these challenges
through design of service protocols that helps to quickly adapt to
the changing conditions of the underlying network. Additionally,
MobiCare protocol design considers the “nature’ of the clinical data
available and can effectively prioritize transmission of the health-
critical data as required.

Data Privacy and Security. Data privacy and security can
introduce myraid of problems in mobile healthcare. For example,
patient health data can be misused by corporations (e.g. in decid-
ing promotions), insurance companies (e.g. in refusing health cov-
erage) etc.. Healthcare applications therefore must meet the stri-
gent requirements of the Health Insurance Portability and Account-
ability Act (HIPAA) [39, 4] in the US and/or the data-protection
ACT 1998 in Europe [37]. MobiCare addresses these issues with
an infrastructure that enables: (1) secure data administration with
healthcare providers, (2) sound network security, (3) secure sens-
ing and monitoring devices, and, (4) stronger patient-provider au-
thentication. Using these guildlines, MobiCare enables protection
of personal health information while simultaneously enhancing the
quality of patient care.

Contributions

We make the following unique contributions:

e We introduce a mobile healthcare infrastructure that efficiently
exploits the recent advances in clinical sensor systems and wide-
area wireless networks to provide better medical services to pa-
tients.

e \We show that clinical (sensor) device reconfigurability, service
flexibility, wide-area link availability and data security/privacy
are integral components of a mobile health system. We imple-
ment an initial proof-of-concept MobiCare client prototype that
integrates these unique features.

e \We demonstrate MobiCare as a next generation healthcare paradigm
using an experimental wireless testbed consisting of Bluetooth
and wide-area cellular (GPRS/UMTS) networks.

Roadmap

Our paper is laid out as follows. The next section details the Mo-
biCare architecture while Section 3 elaborates on its services de-
scription. Section 4 discusses the MobiCare client and server-end
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Figure 4: MobiCare System Architecture and Components. Dotted components of the client highlight modules that are dynamically
reconfigurable. The ‘MobiCare client’ functionality is shown to operate in a wearable wristwatch device.

design issues while Section 5 elaborates at length the design and
implementation of dynamic software update functionality for Mo-
biCare clients. Section 6 presents our evaluation while we discuss
some related issues in Section 7. Section 8 covers related work and
the last section concludes our paper.

2. THE ARCHITECTURE

The MobiCare architecture (detailed in Figure 4) consists of three
components: the body sensor network, a client connected to wide-
area communication infrastructure and backend support at the health-
care service providers.

We discuss each component in detail:

Body Sensor Network — Client Interface. A body sensor network
(BSN) is a wearable network of medical sensors and actuators that
are interconnected using the wireless medium. A Body Sensor Net-
work Manager (BSNM) interacts with the BSN to aggregate data
gathered by the body sensors. This body sensor network manager
functionality is implemented in a ‘MobiCare client” device that can
interact with the health provider servers to offer mobile healthcare
services to the patients.

The MobiCare client (or the BSN Manager) functionality is, there-
fore, implemented in a device which has a wide-area wireless net-
work interface. It periodically monitors various clinical sensors to
aggregate vital body signs and uploads important health informa-
tion to the provider servers using a secure wireless communication
channel, e.g., a cellular link.

A wearable device such as the IBM wristwatch [15] is well-
suited to serve as a MobiCare client in mobile medical settings for
patients. Other similar portable devices can also be used to im-
plement such functionality, e.g., Intel’s Personal Server [35] or a
cellular phone. Such devices are power-efficient, user-friendly, and
they provide the necessary wide-area wireless connectivity to in-
teract with the local environments. In particular, a cellular phone
readily offers wide-area wireless connectivity and is potentially the
best-suited device for such use. The MaobiCare client consists of
standard “built-in” functions to offer flexible customized services
to a patient as needed by the healthcare provider. These functions
optimize use of link bandwidth or transmission energy of the pa-
tient’s health data that are being actively probed by the body sen-
sors, as well as some other costs and optimizations involved.

A MobiCare client offers remote dynamic software update func-
tionality applied to the native code of a device. With dynamic up-
date functionality, a MobiCare client device can customize itself to
new medical applications and services, and new clinical sensors can
connect to this client and be configured into an existing body sensor
network. By using flexible service components can help reconfig-
ure service-related parameters based on the instructions available
from the healthcare vendor. This feature is very useful to patients
that need constant monitoring of their vital body signs. For ex-
ample, to measure the pulse rate and oxygen (O2) saturation for a
patient, an oxi-meter sensor is attached to the patient’s finger while
ECG electrodes (probes) are entwined on their body vests to mon-
itor and acquire necessary health data. Once configured these ser-
vice parameters can be used to probe and configure body sensors
periodically, as well as upload the sensor data collected with the
provider servers.

Non-invasive body sensors can monitor patient vital body sign
even when they are on-the-move and following their daily activi-
ties. Sensor data collected this way is stored and then transmit-
ted to the provider servers over the cellular data network. This
enables round-the-clock monitoring of the patient’s health by the
health provider. Physicians can access individual (patient) data and
can provide feedback. Alternatively, the provider can reconfigure
(program) these sensors remotely using flexible available service
parameters.

MobiCare Communication Infrastructure. MobiCare offers the
ease of mobility for patients with cellular wireless connectivity. A
MobiCare clients acts as the central unit to serve or connect to a
nearby communication gateway using a public 2.5G, 3G cellular
network or even a WLAN network. High speed mobile connec-
tivity is readily available in most cellular handsets, and network
support to handle transmission and problems such as network dis-
connections (e.g. moving through tunnels) or network-supported
adaptations (e.g. adaptation proxy) necessary during network han-
dover events are also supported.

The 2.5G and 3G communication infrastructure helps transmit in
real-time vital body sign data, video and images of patient activities
via the cellular links to MobiCare health providers. This improves
the quality and timeliness of care provided to a patient and gives
better information access to health providers for necessary action



and feedback. During health emergency, the availability of vital
signs (and video data if necessary) to a remote consulting physi-
cian can change the care provided during transport.

Healthcare Provider Support. MobiCare health providers pro-
vide back-end support for healthcare services for the purpose of
trial and evaluation. Services offered by the center enables patients
to be continuously monitored and specialists able to observe the
evolution of patients, and intervene, if necessary. MobhiCare health
centers also provide continuous collection of biological data for pa-
tients e.g. ECG, temperature, blood glucose level etc.

Decision making by specialists located remotely forms an impor-
tant component in MobiCare. Hence training strategies and deci-
sion aids are effective in supporting such remote decision making.
These decisions aids also sometimes help manage the limitations
in data made available from the medical systems and information
support.

3. DESCRIPTION OF SERVICES

MobiCare defines the mechanisms for health care services as
well as functions to activate and configure service-specific param-
eters. These functions include health information downloads and
periodic uploads with the provider servers.

Mobicare Mobicare — Account
Client Server Server
[ — =

Registered| Patient
Clients Records

Figure 5: Device Activation in MobiCare.

3.1 Protocol Definition

MobiCare uses of an application protocol built using standard
HTTP. An application layer protocol enables health providers to
reuse service infrastructures (servers), have easy access to exist-
ing services as well as the flexibility to compose new ones. Ser-
vices in MobiCare are invoked using the standard HTTP protocol
by submitting an HTTP request as a base URL (uniform resource
locater) acting as a common access point for MobiCare services.
The name of the service is then appended to the base URL as the
final path component, and arguments to each service are encoded
and appended as URL query parameters. Consider the example:

http://ww. Mobi Care. net/ servi ces/ Activati on?Sel ect

In this URL Activation corresponds to the name of the service
and Select gives the service step for Activation. To interact with the
servers a MobiCare client makes use of the standard HTTP POST
method in the request header along with the URL meant for that
service. The benefit using the POST method is that it allows data to
be sent to the server in a client request itself. This data is typically
directed to a data handling program that server has access to (e.g.,
CGl, servlet). Unlike the HTTP GET method, the data sent to the
server is in the body section of the client’s request. After the server
processes the POST request and headers, it passes the body to the
server program specified by the URL.

MobiCare provides adequate parameter flexibility in its proto-
col definition. Any services can create custom parameters as suit
their needs. The entity in the POST message constitutes service-
specific parameters, and these services can pick amongst standard
service parameters and execute the protocol service steps between

the client and the server. The rules and syntax that governs Mobi-
Care protocol are similar to those of standard HTTP.

3.2 Service Definition

MobiCare offers services such as the device activation, remote
(sensor) configuration, health data services such as downloads and
health diagnosis uploads as well as remote dynamic code update
service for client devices. We discuss each of the service in detail.

3.2.1 Device Activation and Management Service

The device activation service in MobiCare enables client devices
to self-activate and establish an account with the health provider.
This process is also known as remote registration (activation). While
the device is typically activated once, it may go through multiple
registrations as both involve similar protocol steps.

For instance, a virgin client device when activated for Mobi-
Care services initially will make use of a URL preset to connect to
the MobiCare server (as shown in figure 5). The MobiCare server
makes use of a unique device identifier (Clientld) for a MobiCare
client and logs corresponding device-specific data during the ac-
tivation process. The account server uses this unique Clientld to
create the patient record and returns an allocated account code in
response to this initial connection data.

A MobiCare server associates the allocated account code cor-
responding to the Clientld of the device. This account code also
serves to update other information such as the configuration of new
and existing service parameters. The client device can also use an
account code to query for different other services from the health
provider and load MobiCare service-specific information available
from the server. All service-specific information is stored in the
persistent memory (e.g. flash) within the device for use later. In
this way the client device logs and manages sensor-specific service
information for its body sensor network.

3.2.2 Remote Configuration Service

The configuration service allows flexible composition and con-
trol over service parameters — new service parameters can be added
or modified. These service parameters are present and stored in the
persistent memory (flash) of the device.

Remote configuration service is very useful to health providers
for remotely manipulating service-specific parameters within the
client device. For example, this feature allows health providers to
configure sensor service-specific parameters to manage and control
settings of a body sensor network. Furthermore, it can also help fix
a problem in the client device due to some misconfiguration of data
and during remote dynamic device updates to help fix problems that
require new settings for certain service-related parameters.

Figure 6 shows example steps during configuration service pro-
tocol exchange. In this example the server responds with the action

confi rnConf i g, instructing the client to proceed with conf i r nConf i g
and to be followed by the WriteConfig service steps. The conf i r nConfi g

step enables the server to check if there is a need to (re)configure
service-specific parameters in the client. If the response of the
server is a stop (i.e. configuration not required) or try later (i.e.
server busy), the client will stop the sequence of actions. However,
in the usual scenario the server responds with a number of service-
specific identifiers to r ead their value. The client continues with
the wri t eConfi g message, presenting the identifiers and their
values as requested. The response of the server inwr i t eConfi g
holds the identifiers and their values. The client writes this new
value back to the persistent memory of the device.

3.2.3 Health Data Services



MobiCare data services are of two types: (i) download data ser-
vices for health information downloads, and, (ii) upload data ser-
vices for health diagnostic uploads.

Download data service in MobiCare is used for health informa-
tion downloads to the MobiCare clients. This service is particu-
larly useful for chronically-ill patients that need regular feedback
about their health and vital body signs. However, other than the
health information, download data samples may also include soft-
ware modules (e.g. updates or upgrades), new applications (e.g.
micro-browser) or even content (e.g. video or jpeg images) for the
device.

Health diagnostic upload service allow client devices to collect
and upload patient health data to the health providers. The health
data is collected by periodically monitoring the body sensors and
uploading this data to the health providers. The data is analyzed
by the health providers to provide any health feedback (using the
download service) if required.
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Host: www.mobicare.net
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Figure 6: Configuration Service Protocol Exchange.
Both upload and download service involves a three step protocol

action. Both services initiate by sending the standard quer ySer vi ce
message to the MobiCare server. The server responds with Cont i nue

and action Downl oad for download service (or Upl oad for up-

load services). The client issues the next request conf i r rDownl oad

(or conf i r mMJpl oad) as an indication to the server that it is ready
for information download (or that it has health diagnosis data for
upload). The server responds to the client with the appropriate
URL for upload server (or download server) for data to upload (or
download). The client in the final step posts the doUpl oad (or
doDownl oad) message with health diagnosis data appended to
its body. The server responds with success once all data is success-
fully uploaded (or download).

3.2.4 Dynamic Updates for Devices

Dynamic code updates service is the key service in MobiCare
useful in mobile healthcare settings for: (i) Updates: These are
enhancements that improve the quality or reliability of the device.
This can be a release for an existing piece of system software for
the device (e.g. a new MAC protocol for a new sensor) or a new
medical application for the device, (ii) Upgrades: These are exten-
sions that transform an existing client device into a new device that
offer novel functionalities. (iii) Application data: This consists of
application data (an application package) or content that is down-
loaded by client devices from their health providers. We discuss

dynamic updates in detail in Section 5.

4. MOBICARE DESIGN

In this section we discuss in detail the design of the client and
the server-end system in MobiCare.

Client Design

A MobiCare client runs in an embedded device such a wearable
wristwatch device [15], personal server [35] or a mobile phone.
Recall that the main job of the client device is to manage the body
sensor network on instructions from the health provider, implement
MobiCare services and provide a network interface to the cellu-
lar wireless network. A reconfigurable device architecture in Mo-
biCare requires client components be implemented in a modular
fashion shown in figure 7.
In the following we discuss each component in detail:

Persistent Data Module (PDM). The PDM manages, stores and
provides access to the service specific parameters in persistent mem-
ory (flash) of the client device. A virgin client device when acti-
vated retrieves this service-specific information from the server and
stores them in the PDM. The PDM exports an API (or a secure API
as an option) to be accessed by other client modules while commu-
nicating with the MobiCare server.

Service Scheduling Block. Service scheduling block schedules
service calls. After accepting service calls from other client mod-
ules it schedules them based on first-come first-serve basis. Al-
ternatively, service scheduling with priority is also implemented.
Scheduling services with priority is useful since in many cases up-
loads of critical health data should take precedence to less critical
health data. During the device first-time boot-up process, appro-
priate calls are scheduled in this block for applications to boot-up.
The block also maintains a separate timer to query the server (using
quer ySer vi ce) periodically and may reschedule service calls
postponed by the servers.

Communication Handler (CH). The communication handler im-
plements the application protocol as service steps between Mobi-
Care clients and server. In this module, MobiCare service specific
messages are assembled and sent to the server using the socket API
supported by the target platform. As discussed earlier, the tech-
nique used here is the HTTP POST method for interacting with
the MobiCare servers. A secure channel to the server may be re-
quested (if available) as an option. The handler runs an indepen-
dent task and communicates with other modules (Request Schedul-
ing, Download and PDM) through target OS-specific IPC (inter-
process communication) mechanisms. For certain service actions
like activation (registration) and configuration, it can directly write
the service-specific and user subscription related data to the PDM.
However, during downloads (e.g. update, upgrades etc.), it invokes
the functions of the download module that takes care of the down-
loaded data. It typically operates on a per-call basis. After re-
ceiving a response from the server, it performs message parsing for
MobiCare specific parameters and if necessary schedules the next
call to be made as defined by the protocol action for that service.

Download Module. The download modules unpacks modules avail-
able from the server, stores them in the device file-system and causes
the dynamic loader to integrate the software module(s) in the client’s
software stack. This module is dynamically instantiated on avail-
ability of downloaded offers from the communication handler (avail-
able from the health server). Once the downloaded data is trans-
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Figure 7: MobiCare Client-Side Design.

ferred to this module, it reads the headers of the download pack-
age (discussed in Section 5.3) to determine the type of downloaded
data. Note that the downloaded data can be an entirely new med-
ical application; or a new release of an existing service module
within the client device. The data downloaded is then exported to
its appropriate location to be stored within the device. The module
also makes use of the dynamic loader module (discussed in Section
5.2) for loading and unloading modules from the device memory.

Health Diagnosis Module. The health diagnosis module (DM)
periodically uploads health-related patient data from the MobiCare
client device to the health servers. The DM collates vital health sig-
nals from the body sensors, samples and filters them to report the
patient data to the health server in an appropriate human-readable
format. Depending on the severity of the vital health data received,
urgent report uploads are possible using composable service proto-
col actions.

Server-end Resources

Server-end resources for medical infrastructure like MobiCare can
be broken into three different layers — the service layer, the function
(protocol) layer and the resource layer. The service layer involves
device activation, configuration, including data services such as pa-
tient health diagnosis data uploads and downloads. Additionally
this layer implements tools to enable remote dynamic device code
update services. Services at the server-end system are implemented
using standard (protocols) functions such as the quer ySer vi ce,
upl oad, downl oad and conf i gur at i on functions.

At the resource layer, MobiCare server-end systems consists of
the web servers with support for their own set of servlets (server
programs), a SQL database, and one or more backend servers. Web
servers run their own set of servlets (with JServ) and that also im-
plements the service interface with MobiCare clients.

5. DYNAMIC CODE UPDATES

The novelty in MobiCare is a new technique for remote dynamic
code updates applied to the native code of the client (clinical) de-
vice. As discussed earlier, this functionality in devices helps to
accelerate deployment of new mobile health features, services and
applications in different ways.

First, it allows for easy sensor device customisation — new di-
verse clinical sensors can be added to the body sensor network
without consequence to other sensors. New sensors can be dynam-
ically configured to join the body sensor network and this is very

useful to the patients and providers. Second, it provides the neces-
sary control to a health provider to configure and operate sensors
in a body sensor network. Finally, software updates enable new
medical features to be incorporated in the device at run-time (e.g.
a new sensor MAC protocol) or even help fix software bugs. Such
updates and upgrades can improve the quality and reliability of the
client device.

In order to support dynamic code updates in MobiCare clients,
we need to adhere to an approach similar to that used in Microsoft’s
component object module (COM) model [32]. However, since
most embedded real-time OSes lack this functionality, we consider
in detail solutions that enable support of this functionality in an
embedded client device.

Note that support for dynamic updates requires existing client
modules to be able to offer that ‘extra functionality” that requires it
to be independent of other existing client modules. This additional
functionality enables modules to be able to detach their interface
and end instantiation when needed. Modules can also release other
modules’ interface when instructed to allow for its release.

.globl ProxyTbl
ProxyTbl:
Global Proxy word FirstProxy # start address
Table > word 2 # number of Proxies
word 11 # size of Proxy in words

globl ProxyTbl

9 oy Wrapper
Code

mod_retreat

mod_detach

mod.o

Figure 9: A sample wrapped module.

This leads to the following requirements in MobiCare:
Modular code organization for embedded clients.

Worapper tool The wrapper tool is a compile and link time tool
that can proxy-patch modules and prepare them for dynamic
binding in client devices. Wrapping is the first step to prepare
client modules for dynamic updates.

Dynamic Loader (DynRTL) This enables two important func-
tions in MobiCare clients: (i) run-time dynamic binding in-
cluding dynamic loading and unloading of modules, and, (ii)
dynamic updates/replacements of modules.

PackBuild Tool A Server-end tool that packages modules in a
format intended for easy distribution and download by the
MobiCare client devices.

In the following sections, we discuss in detail the design and
implementation of the functionality that enables ‘hot’ modular up-
dates in MobiCare client devices.

5.1 Wrapping Modules for Dynamic Updates

Wrapping is the first step to enable dynamic modular updates in
MobiCare client devices. MobiCare offers a post-compilation tool
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platform).

called the wrapper tool that externally compiles and links individ-
ual client modules and prepares them for dynamic binding. The
tool operates at various steps during the wrapping process of an
object module before it is downloaded by the client device. The
tools functions to read and interpret the ELF (Executable and Link-
ing format) file format supported by our target client platform, Vx-
Works (a real-time operating system). The tool reads multiple ELF
files (essentially the file to act upon and the file containing the sym-
bols) along with their section headers, the symbol table, the asso-
ciated string table, with the ability to modify the attributes of the
symbols. The file layout remains unchanged by the wrapper tool —
only the modified symbol table is written back to its original place.

The chief function of this tool is to externally patch client mod-
ules with the “wrapper code” that prepares them for modular up-
dates (figure 9). The tool operates in three steps. In the first step it
reads the module and intercepts unresolved references to external
functions and and inserts the proxy functions that invokes dynamic
binding with the DynRTL loader (discussed in the next section) to
resolve these function calls. The second step of the tool patches
function code that enables existing client modules to detach (by
providing the Detach function) from the (retreating) module being
replaced. The final step makes use of the retreat function that an-
nounces a module that it is being replaced, asks permissions for this
replacement and performs the retreat actions.

The function <ModuleName>_Detach resets all proxy functions
referring to a given target module. This module (actually its code
segment) is delimited by begin and end addresses of the target OS.
The following code fragment shows the Detach function, where
this data structure is used:

Function Interception Code. To intercept external function refer-
ences in client modules, the wrapper code makes use of the proxy
functions. This interception code is applied to each individual mod-
ules by making use of an indirection (j unp) instruction that redi-
rects it to the Bi nd proxy function. The Bi nd function invokes
dynamic binding (dyn_bi nd) with DynRTL to resolve the exter-
nal reference. Figure 8 shows an interception code for function

af unc and Bi nd proxy implemented using the MIPS instruction
set.

The (MIPS) code for Bi nd is wrapped to the individual client
modules using the wrapper tool. The Bi nd proxy function calls
the function dy! _bi nd of the DynRTL module, inserts the address
obtained into the proxy and re-executes this proxy function. The
dy! _bi nd function resolves the function call and the procedure
works as follows. First, it searches for the symbol in the system
symbol table and if a symbol is found, returns with the memory
address of that symbol. However, if the symbol is not found, it will
search for all available modules (including the device file system)
for that symbol. If the symbol is detected, it will load the cor-
responding module into the memory. It then returns the memory
address of that function. Note that dyl _bi nd delays any request
while a download operation is still in progress, until the download
process is completed. This avoids the need to explicitly remove
entries of any module from the system symbol table.

Dynamic Modular Replacements. Client modules implement ad-
ditional functions that allow for dynamic modular updates. No-
tice that in figure 8 the Modul eName argument is passed to the
dyn_bi nd DynRTL function. This is used by DynRTL for client-
server administration of the resident modules in a client device.
This administration of modules is needed by DynRTL when a mod-
ule retreats and therefore must ask all other modules using it to
detach.

The function <ModuleName>>_Retreat takes care to detach all
other client modules using this module. It delegates this task to
dyl _Det achFr omof DynRTL, adding the Modul eNan®e as an
argument. The following code fragment shows the implementation:

Also notice use of can_r et r eat inthe <ModuleName>_Retreat

function — this is useful for modules that are active. An active
module runs its own task (a light-weight process), and is usually
difficult to replace. This is because the internal state of a task is
unknown.

One technique to use here could be to wait and first make sure
that the module first gets into a state for it to be replaced. The idea



here is to probe the internal state; MobiCare therefore makes use
of a separate can_r et r eat function that are implemented by all
other modules within the client device. Use of can_r et r eat en-
ables a module to first deactivate itself before being removed. The
can_r et r eat function: (i) investigates whether the internal state
of the module allows a retreat, and, (ii) waits until ongoing func-
tion calls have returned, save pertinent status information in persis-
tent memory to be picked up later by the module being replaced.
However, a drawback using this technique is that it may introduce
problems when replacing modules implemented by third party or
legacy modules that may or may not implement a can_r et r eat
function. A simple solution to this problem could be to externally
patch such legacy modules with a dummy can_r et r eat func-
tion, although even for such cases the internal state of the module
may still remain unknown.

5.2 Dynamic Loader (DynRTL)

A dynamic loader (DynRTL) in MobiCare offers run-time sup-
port for resolving inter-module function references (binding) as
well as functions for dynamically loading and unloading of mod-
ules. DynRTL module makes extensive use of the target OS sys-
tem symbol table. The symbol table contains externally accessible
functions in the system and its associated memory addresses. Dyn-
RTL is responsible for its relocation, registration of entry points for
existing and any new modules with the system symbol table and if
needed its removal as well.

The DynRTL implements two important functions:

DynRTL main entry function:
extern"C" {
bool DnLd_Main( unsigned char *dBytes);
I8
DynRTL external functions:

extern"C" {
struct MODULE * dyl_Load( char * filename);
bool dyl_Unload( const char * moduleName);
unsigned int dyl_Bind( const char * client_name, char * name);
bool dyl_DetachFrom( const char * module);
void dyl_DownloadinProgress( bool b);

Figure 10: Dynamic Loader (DynRTL) functions

Resolving inter-module References. Requests usually originate
from the ‘proxy” functions located in the wrapper layer of the mod-
ule. DynRTL helps to resolve a reference to functions available in
the system. Upon reception of a request, first the system symbol
table is consulted to check whether the function is already present
in memory. If not, all available modules in a dedicated directory of
the local file system are searched for the required function and - if
found - the module containing the symbol is loaded into the mem-
ory. In both cases, the address of the requested function is returned.
For the module or application itself, this mechanism is completely
transparent.

Administration of the Modules. Whenever an inter-module func-
tion reference is resolved, a data structure in which inter-module
client-server relations are recorded is updated. This data structure
contains, for each module loaded in memory, a list of other modules
that use it. When a loaded module must be unloaded, it must notify
all clients of its forthcoming retreat. The Ret r eat function of the
module to be unloaded delegates this task to the Dynamic Loader.
In DynRTL, Det ach functions of every known client module is
called, which in turn resets all the proxy functions that refers to a

particular retreating module. In this way, any module can be un-
loaded without leaving any dangling references.

Figure 10 shows the functions exported by the DynRTL module.
The main entry function for DynRTL is the DnLd_Mai n. When-
ever there is a new software update available from the provider
server, the download module in the MobiCare client (shown in fig-

ure 7) transfers the downloaded data to the DynRTL using DnLd_Mai n.

The DnLd_Mai n function performs administrative tasks for opera-
tions that are specified in the software update package itself. Some
of these operations include:
e Loading, unloading and replacement of existing client modules.
e Installing, deleting and replacing files in the local device file sys-
tem (data files as well as application software).
e Creating or deleting directories within the local file system.
e Identifying modules that must be loaded and started when the
system is booted.
The rest of the functions exported by the dynRTL API are used
by the other client modules, as well as the application software in
the client device.

6. EVALUATION

We present results of our preliminary MobiCare client function-
ality implemented in C and C++. We used a commercial avail-
able embedded real-time operating system and related development
tools. Our client hardware consists of an Algorithmics P4032 board
with a R5 MIPS, the RM5231 from QED, running at 133MHz. The
web server is Apache 1.3.22 running Linux 2.4.21 (single CPU
500MHz, 1GB Memory). Appropriate servlet support is enabled
using JServ at the web server.

6.1 Client Measurements

In this section we demonstrate the feasibility of hot (dynamic)
software updates applied to the native code of the client device, and
also do so efficiently. To measure the efficiency of our implementa-
tion, we adhere to an approach originally used in [30]. We examine
use of the time and space costs imposed by the design and imple-
mentation of our DynRTL. We then compare these overheads with
those of the standard Linux DLopen/ELF implementation. (Native
Linux DLOpen/ELF provides dynamic binding but no ‘*hot” modu-
lar replacements.) Our measurements show that the time overheads
using DynRTL are competitive. Next, we analyze the space over-
head incurred in enabling the dynamic code update functionality
using DynRTL and measure other metrics (e.g. code size, size in
the memory, etc.) for our initial client implementation.

6.1.1 Time Overheads

The execution time overheads imposed by the dynamic binding
using DynRTL in a MobiCare client occurs in three different time
scales:

1. Start-time Overhead (ts): The is the time required for a
new module to register its statically-linked code (symbols)
into the system symbol table. Note that this overhead is in-
curred during system initialization (e.g. boot-up) or during
‘hot” modular updates.

2. Run-time Overhead (t,-): This is time taken for each ex-
ternal reference of a given module to be indirected from the
module’s proxy Bi nd function to the dyn_bi nd of Dyn-
RTL before being resolved.

3. Load-time Overhead (t;): This is the time needed by a run-
ning program to load a module and link it by executing its
initialization i ni t function.



DynRTL DLOpen
Time Overhead | (VXxWorks)

(Linux)
Start-time (ts) 1.23ms —
Run-time (t,) 0.45ms 0.21ms
Load-time (t;) 0.69 ms 0.38 ms

Table 1: Time overheads for a software update using Dyn-
RTL/VxWorks and DLOpen/Linux. (averaged from over 10
runs)

In Table 1 we present the different components that contribute to
the time overheads for a sample dynamic code update. \We compare
these components for our DynRTL implementation in our embed-
ded RTOS with that of the standard DLOpen implementation using
native Linux. The start-time overhead for DynRTL for a sample
software update is 1.23 ms and is negligible. At run-time the ad-
ditional overhead comes from using the proxy Bind function that
provides dynamic binding in DynRTL. We find that the run time
overhead in this case is twice that of DLOpen/Linux implementa-
tion. The load-time overhead is also better for the DLOpen/Linux
when compared to our DynRTL/VVxWorks implementation. The
main difference comes from using the native ELF loader in Linux,
which is quite optimized and that also makes use of the string hash-
table in modules for faster look-ups. In contrast, our current imple-
mentation of DynRTL makes use of simple linked lists. Note that
these differences in the overheads using DynRTL have no notice-
able impact on the performance of the different applications.

6.1.2 Space Overheads

The wrapper code in MobiCare client enables devices to dynam-
ically bind to other client modules as well as detach and retreat
when requested. Nevertheless, the use of a wrapper layer increases
the size of these modules (binary file size or footprint) relative to
their size after compilation.

The use of a wrapper layer in a module imposes three additional
space-related costs: (i) a global proxy address table and indirection
for all exported symbols of that module, (ii) ‘Bind’ as a common
proxy to all (exported) functions, and, (iii) use of Detach and Re-
treat functions that are patched to that module for enabling ‘hot’
updates. Notice that ‘Bind’ and use of Retreat/Detach function in-
curs only a fixed space overhead, whereas the size of the global
proxy table increases with the number of export symbols (external
references) of a given module. Thus, the total space requirements
using the wrapper code for a given module is the sum of all the
above three costs. The corresponding split for our RTOS platform
is shown in table 2.

When the number of export symbols in a module are reasonable,
the increase in the object file size due to the wrapper layer is not
much. The total increase in the number of bytes for a module file
size varies between few hundred bytes to at the most few kbytes
and this is typically insignificant for most embedded applications.
Note the length of mangled names resulting from the use of C++-.
For example, the use of the standard string class (implemented in
C-++) and used in our implementation for parsing application pro-
tocol messages results in names lengths that are often between 100
and 200 bytes long.

6.2 Cellular Links Tests

We conduct tests to provide a realistic picture of cellular link per-
formance and to analyze what impact it may have on the transport
of periodic (or on-demand continuous) mobile health data. Our
tests have two goals. First, we wish to see if cellular links offer

data-rates that are feasible for mobile health data transfers (espe-
cially in the uplinks). Second, we evaluate cellular link availability
for such health data uploads. Based on the outcome of these tests,
we evaluate techniques that improve performance.

Our test bed setup consists of a commercial cellular GPRS and
UMTS 3G network testbed as shown in figure 11. The client con-
nects to the Vodafone UK’s GPRS and UMTS 3G network using a
PPP (point-to-point) link. In these tests we use an Ericsson T39m
‘4+1" handset for GPRS (PPP connection using Bluetooth) with
maximum data-rate of 53.2 Kbps and 13.3 Kbps for the down-
link and uplink, respectively. For 3G we use a dual-mode 3G-
GPRS PCMCIA card (Qualcomm chipset) that provides a maxi-
mum downlink data-rate of 384 Kbps and an uplink data-rate of 64
Kbps. Link-layer (ARQ) retransmissions for both GPRS and 3G
network is kept enabled (network default).

| Wrapper Source | SpaceCost |

Bind Indirection (fi xed) 44 bytes
(per proxy)

Bind Proxy Code (fi xed) 496 bytes

+

Modul eNane_Det ach

Modul eNane_Ret r eat (fi xed)

Length of Names (variable) 100-200 bytes

for all Proxy Functions (per proxy)

Table 2: Space overhead from Wrapper Code.

6.2.1 Link Tests for Health Data Uploads

We performed tests to measure packet latencies as well as up/down
link bandwidth using TCP. In these tests we measured the aggregate
up and downlink throughputs available using GPRS and 3G net-
works simultaneously. During these tests any incidence of packet
loss and re-ordering was noted. To understand the steady-state net-
work behavior we selected a reasonably large file size (> 500KB)
for these transfers (We note that other custom transport protocols
for mobile healthcare would give roughly similar link performance
in steady state). The traces collected were then analyzed using
t cptrace [9]. Itis to be noted that research has already investi-
gated performance of cellular (e.g. GPRS) downlinks thoroughly.
However, in this study, we also evaluate uplink performance in
UMTS 3G that is crucial for health data uploads in MobiCare.
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Figure 11: Test Bed Set-up.

Figure 12 (a) and (b) shows the measured uplink and downlink
throughputs for UMTS 3G and GPRS networks, respectively. As
can be seen, TCP over 3G achieves good data-rates for up/down
link and close to the maximum offered data-rates. We find from
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Figure 12: Shows (a) uplink and (b) downlink throughputs
measured over GPRS and UMTS 3G networks. (Cellular links
are prone to sudden throughput fluctuations.)

figure 12 that UMTS 3G offers up/down link data-rates that are an
order magnitude higher than that of GPRS. This can have interest-
ing implications for MobiCare. For example, an uplink transfer of
50 KB file in 3G may take around 8 secs while the same file takes
more than 80 secs to upload in GPRS! We can also see that both
GPRS and 3G show significant, often sudden, throughput fluctua-
tions as can be observed from figure 12 (b). The measured round
trip times (RTT) observed for the UMTS 3G links was between
250-350 ms, which is lower than the average RTT (around 800 ms)
offered by GPRS.

During file upload tests, we observed that UMTS 3G links are
also prone to frequent handovers to GPRS. Using a dual-mode
3G/GPRS card, we found that 3G link would typically handover
to GPRS and back. Figure 13 shows one such example that cap-
tures the impact of the link-layer 3G—GPRS handover (link-layer
as there is no change of the network IP address) with a file upload in
progress. Here, we can observe that such handovers can potentially
impede data transfer (during uploads) for a significant amount of
time. The total handover interval in this case comes to around 22
secs, during which time a number of TCP retransmissions occurred
before data transfer could resume.

These experiments show that, while although GPRS/UMTS cel-
lular links offer data rates that are sufficient for mobile health data
transfers (both up and downloads), they still pose many challenges
to overcome. Because of the ‘health-critical’ nature of certain mo-
bile medical applications, link reliability for efficient and timely
data delivery is crucial and therefore comes as an important metric
for health applications.

6.2.2 Data Adaptation and Link Availability.

From the previous section we can see that cellular links are band-
width limited and they exhibit wide asymmetry also evident in fig-
ure 12. Therefore, compressing mobile health data can be very
useful to reduce the amount of data transferred and enable faster
and efficient data delivery over cellular links. For example, 2-lead
ECG signals captured with 12-bit resolution gives a data-rate re-
quirement of around 60 Kbps. However, by using compression the
data-rate requirements can be effectively reduced to around 8 Kbps,
an improvement by a factor of at least 3. Thus MobiCare can ben-
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Figure 13: Shows impact of the link-layer 3G—GPRS han-
dover during data (file) upload with (top-left and clockwise) (a)
time-sequence plot, (b) throughput plot, (c) outstanding-data
plot, and, (d) round-trip time plot. (UMTS 3G links are cur-
rently prone to such frequent handovers to GPRS.)

efit from medical data adaptation.

An important and useful technique that can overcome link fluctu-
ations and outage-like situations is by exploiting the simultaneous
coverage access available from multiple cellular providers. The
main idea is to exploit wireless diversity from multiple such cellu-
lar access links, thereby reducing the overall chance of longer dur-
ing of link-outages that currently plague mobile cellular systems.
MAR commuter router [33] is one such system that can efficiently
aggregate bandwidths by exploiting cellular diversity from multi-
ple wireless links simultaneously, thus eliminating the chance of a
link-outage or potential performance degradation due to severe link
fluctuations during data transfers. MobiCare clients can also benefit
using a highly reliable wireless uplink, by aggregating bandwidths
and exploiting uplink diversity similar to the MAR system.

7. DISCUSSIONS

In this section we discuss some other important issues relevant
in the context of MobiCare.

Security Issues. A continuous concern in a healthcare infras-
tructure like MobiCare is that of security. In fact, several open
questions remains to be addressed: How safe and dependable are
these clinical devices that are worn or implanted? How do we en-
sure confidentiality in a body sensor network? For instance, an
ECG signal of a patient is jammed, error’ed or modified such that
wrong diagnosis and treatment are prescribed which may cause
even death. More detailed description on these clinical/wearable
sensor system security can be found in [34].

It is difficult to address all such open security-related concerns in
a system like MobiCare, however in this paper we will review some
of the key ones. Data integrity across such multiple clinical sensors
can be ensured using shared keys with client devices. On the other
hand, MabiCare client and server security can be addressed at the
application-layer itself. For example, Wireless Application Proto-
col (WAP) based Wireless Transport Layer Security (WTLS) pro-
tocol could be used to provide privacy, data integrity, and authen-
tication over the cellular link [10]. WTLS also closely resembles
Secure Socket Layer (SSL)/Transport Layer Security (TLS) proto-
col, yet is optimized for use over cellular links and suits resource-



constrained mobile devices. Further, application servers hosting
and storing patient health information may also introduce security
vulnerability. Any potential leakage of the personal health infor-
mation can be limited to some extent by ensuring that only clients
from select cellular networks and provider-authenticated person-
nels connect to these provider servers.

Legal and Privacy Concerns. A remote patient health mon-
itoring infrastructure like MobiCare may impose additional restric-
tions. For example, mobile health systems may cause unwanted
intrusion in the lives and privacy of patients. Although prior stud-
ies in this area have demonstrated that this is not the case for most
patients (e.g. [23]), our ongoing research work still investigates
such issues further with a full-scale integration of diverse medi-
cal sensors and real test-trails with patients. A large-scale test-trial
provides the right context for mobile health services. Addition-
ally, these tests can help demonstrate the feasibility of the mobile
medical applications, through their usefulness as well as testing for
interoperability.

MobiCare also imposes new legal and security-related challenges
[39, 40, 18]. For example, in some developed countries health
providers may not get prior approval for dynamic software updates
before they could be used in clinical trials. However we believe
that the service flexibility offered in MobiCare to chronically-ill
patients far outweighs the legal issues and hurdles involved in its
deployment, once health services and applications are test-trialled
by a provider on a medium to large-scale basis. Moreover, the flex-
ibility of deploying new health-related services and application in
MobiCare is its primary appeal, and new guidelines can be enforced
for secure and reliable dynamic updates and deployment of security
solutions that offer acceptable trade-offs between flexibility and se-
curity.

Device Reconfigurability. MobiCare offers a modular archi-
tecture (instead of a monolithic system) that enables inter-module
references to be resolved at run-time; modules can be replaced
without consequences to other modules. Thus device reconfigura-
bility comes as a natural benefit using a modular system architec-
ture. MobiCare implements dynamic loading functionalities that
are partly similar to, and partly to exceed those that are found in
a dynamic link library (DLL). Traditionally, DLLs are loaded to-
gether with the applications that use it, whereas client modules
in MobiCare are loaded-when-needed. A loaded-when-needed ar-
chitecture is quite similar to the Microsoft’s Component Object
Model (COM) [32]. However, in contrast to COM the concept of
Queryl nterface is not used. This makes the system slower
(the process of finding a required function reference is more elab-
orate) but at the same time more flexible (no grouping of functions
is enforced).

System modularity in MobiCare introduces no special require-
ments on the modules that populate the system. Whereas COM
modules must be built according to the strict and complex rules of
the COM architecture, MobiCare offers a much simpler architec-
ture. The important benefit comes using an arbitrary third-party
module, built with a monolithic OS model in mind, that can now be
proxy-patched using the wrapper tool and ready for use in dynamic
environments. This feature of dynamic run-time modular replace-
ments is unique to MobiCare.

Radio Over-exposure. Radio exposure caused by surrounding
radio devices may introduce additional health-related risks. How-
ever, it is unclear to what extent this exposure may exacerbate the
risk towards a patient’s health. For example, Ericsson suggests

heart pacemaker users to keep a distance of at least 15 cm between
a cell-phone and the pacemaker [1]. Wearable wireless sensor de-
vices may also introduce additional risks to a patient’s health due
to unwanted electro-magnetic radiation. Important factors that may
influence exposure coming from radios are frequency, transmitted
power level, modulation, and distance. An indepth study is re-
quired to critically understand and investigate issues so that such
risks could be identified and mitigated. A recent study conducted
by NPRB [19] in the UK recommends restricting radio exposure to
a level below a certain threshold. Restricting radio exposure pro-
tects from potentially adverse effects on certain patients susceptible
to electrical stimulation.

8. RELATED WORK

Researchers all over the world have initiated new research projects
to investigate the potential in mobile healthcare e.g. see [2, 17, 8].
Interestingly, much instigation in this area is stimulated by the rapid
advances made in the areas of wearable computing, sensor systems
and wide-area wireless networks.

Early clinical trials to gain insight into how medical systems may
help patients evolve in mobile settings were conducted in the mid-
nineties by the National Institute of Health (NIH) in the Mobile
Telemedicine project [23]. Key lessons learned from these tests
were: (i) achieving reliable, high-bandwidth wireless data commu-
nications is difficult, (ii) transmission of critical patient data during
emergencies can make significant difference in patient outcomes,
and, (iii) remote patient diagnosis is difficult.

However, since these test-trails involved second generation GSM
cellular networks, the limitations seen in the Mobile Telemedicine
project have been overcome by the recent advances made in the
areas of clinical sensors, wearable computing and mobile commu-
nications. The European Mobihealth project [2] inspires from the
worldwide introduction and the deployment of high-speed cellu-
lar technology. It also aims at developing and testing new mobile
value-added services such as healthcare services to the patients.

Dedicated clinical sensors have long been used (though rather re-
strictively) in various medical settings. Such sensors are examples
of small-form wearable devices that accomplish certain dedicated
tasks. However, sophisticated wearable device such as the IBM’s
Linux Wrist Watch [25, 15, 16] go way beyond the potential of the
such wearable clinical sensors. Similarly, amon [37] is a wearable
wristwatch-style medical monitoring and alert system for patients.
We believe that such wearable devices combine the necessary func-
tionalities to accomplish the different tasks in medical care settings.
Therefore, barring few simple modifications to such wristwatch de-
vices, porting MobiCare client functionality should be straightfor-
ward. For patients a wearable device like the wrist-watch will not
only monitor their “health-critical’ data, but can also collect, store
and perform periodic uploads with the health servers.

The CodeBlue project at Harvard offers many useful features for
patient sensor networks: (i) a robust co-ordination and communica-
tion substrate across sensor devices, (ii) a publish/subscribe model
for data delivery, and, (iii) a “mesh-like” secure data connectiv-
ity for sensor nodes. Using the MICA2 mote (originally designed
at UCB [26]), CodeBlue has developed a wireless pulse oximetry
sensor and electrocardiogram (ECG) sensor that can continuously
monitor and record vital sign and cardiac information from large
number of patients. These services however compliment those of-
fered by MobiCare for remote wide-area monitoring. In fact, both
can very well co-exist to provide very effective remote mobile med-
ical monitoring.

MobiCare shares many of the goals and objectives with the Pa-
tient Centric Network (PCN) project at MIT [8]. This project is de-



veloping a prototype to address service-specific issues for patient
sensor network. The system will consists of software components
running on general purpose computers and networks to link users
with a variety of medical sensors and actuators. The goal in PCN
is to accelerate innovation, decrease cost, and improve the clinical
quality of medical care.

Intitiatives taken by the UK e-science programme, within the
MIAS/Equator Medical devices project, investigates core techno-
logical problems involved in extending the grid by exploring these
challenges within the medical domain [14]. The ultimate goal of
the project is to increase the availability of medical care in order
to reduce the demands on hospital services and improve the long-
term care and recovery of patients. Other research projects also
investigate healthcare from a pervasive computing perspective. For
instance, medical healthcare monitoring using wearable sensors has
been investigated in [28] while [40] investigates pervasive comput-
ing issues for medical care to elderly patients.

Other commercial solutions like Bitfone [13], Redbend [36], and
DoOnGo [20] support over-the-air cell phone firmware updates ser-
vices. Unlike MobiCare that enables fine-grained dynamic soft-
ware updates, these solutions support only partial image updates as
differential updates or replacements of complete cell phone firmware.
Further, such commercial solutions do not support ‘hot’ (dynamic)
software updates. Thus after each software update device needs to
be ‘rebooted’, i.e., manual intervention is required.

Work on reconfigurable services and quite close to ours is [31].
In this work, Roman et al. present a dynamically reconfigurable
middleware that allow network carriers and developers to correct
middleware behavior, configure and update it without external user
intervention and without stopping the execution of applications.
Unlike MobiCare that enables native device code updates through
internal module administration using a new dynamic loader, they
make use of a technique called externalization that preserves the
state, the logic, and the internal component structure of middle-
ware services thus providing an error-free device experience to the
users.

Related research work has investigated programmable architec-
tures in some other contexts. The work in [27, 38] investigates
the programmability at the physical layer based on digital signal
processing techniques. The programmability at the physical lay-
ers allow new functionality to be incorporated such as modulation,
equalization, channel coding etc..

Programming quality of service (QoS) in mobile networks has
been thoroughly explored in [12, 24]. [12] proposes a new pro-
grammable MAC framework, while [24] presents Mobiware mid-
dleware that exerts QoS control over wireless access networks for
adaptive mobile multimedia applications. Our work in MobiCare
inspires from such works on programmable architectures to help
accelerate deployment of new mobile health services and applica-
tions.

9. CONCLUSIONS

The vast opportunity in the ‘point-of-care’ access and the cap-
ture and transmission of patient information will continue to drive
the healthcare industry towards increased mobility. The impor-
tance is in the shifting awareness that mobility in healthcare set-
tings increasingly refers to — the mobility of sensor/actuator de-
vices, the healthcare providers (health ‘outsourcing’) and of the pa-
tient (users) themselves.

MobiCare leverages the point-of-care patient access to offer im-
portant benefits:

e Quality Health Care: MobiCare enables continuous, round-
the-clock monitoring for chronically-ill patients. This not only

improves the quality of patient care, but also reduces relapse
rates, overall hospitalization period and costs.

e Programmable Architecture: A programmable architecture al-
lows for easy introduction, configuration and customization of
diverse medical sensors to a patient sensor network. Client de-
vices can update with new medical features, applications and ser-
vices that are tailored to meet the requirements of patients and
the health providers.

e Flexible Service Components: Services in MobiCare can dy-
namically self-activate, (re)configure, update and can be cus-
tomized to suit (medical) monitoring needs of the patient and
the health providers. These services effectively address the re-
quirements of the patient’s medical monitoring needs — the most
significant challenge in mobile healthcare.

e Medical Systems Integration: MobiCare enables medical sys-
tems integration with full control for a body sensor network.
Health providers can have continuous access, control, and con-
figuration of body sensors using ‘always-on’ cellular connectiv-
ity.

MobiCare enables healthcare personnels to be able to timely ac-
cess, review, update and send patient information from wherever
they are, whenever they want. These factors, coupled with expand-
ing healthcare applications, will further enhance personal health
and ultimately population health thereby increasing productivity.

Other than population well-being, a sound health care infras-
tructure can commensurately impact the economic health of a na-
tion. In terms of overall economics healthcare constitutes a signif-
icant fraction of a nation’s overall Gross Domestic Product (GDP).
Therefore, large-scale deployment and use of such mobile health-
care infrastructure may lead to significant economic benefits and
cost savings for a nation. In this way mobile healthcare can have
both long-term social as well as economic implications for a nation.

MobiCare is an ongoing project and much work remains to be
done. We are currently investigating the potential long-term, chal-
lenging research problems in MobiCare including the body sensor
network security, reliable and secure sensor code updates and up-
grades, the potential legal hurdles and privacy issues that arise with
such remote updates and other technological barriers that needs be
addressed to enable a ubiquitous computing and communications
infrastructure for large-scale, pervasive healthcare services.
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