CHECKPOINT PROCESSING AND
RECOVERY: AN EFFICIENT,
SCALABLE ALTERNATIVE TO

REORDER BUFFERS

PROCESSORS REQUIRE A COMBINATION OF LARGE INSTRUCTION WINDOWS AND

HIGH CLOCK FREQUENCY TO ACHIEVE HIGH PERFORMANCE. TRADITIONAL

PROCESSORS USE REORDER BUFFERS, BUT THESE STRUCTURES DO NOT SCALE

EFFICIENTLY AS WINDOW SIZE INCREASES. A NEW TECHNIQUE, CHECKPOINT

PROCESSING AND RECOVERY, OFFERS AN EFFICIENT MEANS OF INCREASING THE

INSTRUCTION WINDOW SIZE WITHOUT REQUIRING LARGE, CYCLE-CRITICAL

STRUCTURES, AND PROVIDES A PROMISING MICROARCHITECTURE FOR FUTURE

HIGH-PERFORMANCE PROCESSORS.

Haitham Akkary
Portland State University

Ravi Rajwar

Srikanth T. Srinivasan
Intel Microarchitecture
Research Lab

0272-1732/03/$17.00 © 2003 IEEE

eeeeee Achieving high performance in
modern microprocessors requires a combina-
tion of exposing large amounts of instruction
level parallelism (ILP) and processing instruc-
tions at a high clock frequency. Exposing max-
imum ILP requires the processor to operate
concurrently on large numbers of instructions,
also known as the instruction window; a high-
frequency design requires frequently accessed
structures to be small and fast. These require-
ments are somewhat at odds with each other—
hardware structures must be sufficiently large
to buffer and process all instructions in a large
instruction window, yet must remain fast
enough to support high frequencies. Thus,
new designs that focus on eliminating large,

Published by the IEEE computer Society

cycle-critical hardware structures become nec-
essary to achieve high performance.

We have proposed Checkpoint Processing
and Recovery (CPR) as an efficient microar-
chitecture capable of sustaining large instruc-
tion windows without requiring large critical
structures.' In our original work, we present-
ed a detailed study of performance issues for
large instruction windows in addition to a
CPR design. Here, we focus on an out-of-
order processor with a reorder buffer (ROB).

In conventional designs, each instruction
in the instruction window must have an entry
in the ROB. We argue that to build scalable,
large instruction windows, future processors
must move away from a ROB-centric design

MICRO TOP PICKS

[EEE MICRO

of key processor mechanisms and toward a
checkpoint-oriented processing model. We
show how a ROB, although conceptually sim-
ple, limits the microarchitecture’s scalability.
We then demonstrate how a CPR microar-
chitecture overcomes the inherent limitations

of the ROB while truly allowing scalability.

Reorder buffers

Modern out-of-order processors typically
consist of several pipeline stages, which per-
form several operations on an instruction:
fetch; decode and rename; issue and execute
out of order; reorder to return the instructions
to the original program order; and retire.

In the front-end of the pipeline, the proces-
sor fetches and inserts instructions into the
pipeline. If a branch instruction redirects con-
trol flow to a new location, the processor must
redirect instruction fetch to that location. The
processor cannot determine the new location
with certainty until the branch completes exe-
cution; waiting for the branch to execute
before redirecting fetch could introduce sig-
nificant delays. Hence, the processor employs
branch prediction and speculatively process-
es instructions after the branch.

The decode and rename stage examines
fetched instructions and constructs depen-
dences. This process detects both true data
dependences (read-after-write hazards) and
false data dependences (write-after-write and
write-after-read hazards). Although the
processor retains true data dependences, it
removes false data dependences by renaming
the logical registers to a larger pool of microar-
chitecture-visible physical registers and record-
ing the renaming using a rename map table.

The processor issues an instruction for exe-
cution once its operands are ready. If it is a
memory instruction, the processor takes
appropriate steps to ensure the maintenance of
dependences via memory locations, through
loads and stores. As long as the processor
maintains both register and memory depen-
dences, instruction issue can occur in any
order. This is the out-of-order aspect of mod-
ern processors.

Once these instructions complete execu-
tion, the processor reinserts them back into
the original program order to implement pre-
cise interrupts and exceptions,? typically using

the ROB. The processor allocates a ROB

entry in program order for every instruction
dispatched by the pipeline’s front end. This
entry serves as a holding area for the instruc-
tion until it retires.

ROB-hased instruction retirement

When a completed instruction reaches the
head of the ROB, it retires. Instruction retire-
ment typically consists of committing the
instruction’s register or memory data to archi-
tectural state and freeing its ROB entry. Thus,
the ROB enforces an in-order retirement of
instructions, which simplifies register recla-
mation and rename map table recovery in the
event of branch mispredicts, interrupts, and
exceptions.

ROB-hased register reclamation

A conventional scheme reclaims a physical
register when the instruction that remaps the
logical register corresponding to the physical
registers retires. Such a scheme uses the in-
order retirement of instructions to guarantee a
reclaimed physical register is not needed to be
a part of the processor architectural state later.

ROB-hased rename map tahle recovery

If the front end mispredicts a branch,
instructions from the incorrect path can
update the rename map table. Once the mis-
predicted branch completes execution, the
processor must recover the correct rename
map table and undo the incorrect-path
instruction updates. This recovery must occur
before renaming correct-path instructions that
follows the mispredicted branch.

Three ROB-based techniques for this map
table recovery exist. In the first, the processor
maintains an additional rename map table at
retirement and updates it only with correct-
path instructions. Once the mispredicted
branch reaches the ROB’s head, the processor
copies this table to the front-end map table.
The second technique is similar to the first,
but instead of waiting for the mispredicted
branch to reach the ROB’s head, the proces-
sor proactively walks the ROB from the head
toward the mispredicted branch, incorporat-
ing rename information at each ROB entry.
In the third technique, the processor walks the
ROB from its tail (the most recently allocated
instruction) toward the mispredicted branch,
undoing the changes to the rename map table

made by each incorrect path instruction. This
scheme requires each ROB entry to store the
rename map that its corresponding instruction
overwrote.

The processor delays renaming the front end
until it recovers the rename map table; this
delay varies, depending on the policy
employed. Handling interrupts and exceptions
also requires recovery of the rename map table,
and the processor can employ any of these
techniques.

Thus, the ROB is essential for the proces-
sor to implement mechanisms for instruction
retirement, physical-register reclamation, and
rename map table recovery. Although this
arrangement simplifies conceptual reasoning
about out-of-order processors, it significantly
limits scalability, as we discuss next.

Reorder buffer limitations
for large-instruction-window processors

An uncompleted instruction cannot release
its ROB entry. If such an instruction reaches
the ROB’s head, it blocks the ROB until it
completes and retires. To prevent pipeline
stalls because of the resulting lack of ROB
entries, the ROB must be sized in proportion
to the instruction window. Since the ROB is
a simple first-in, first-out structure, a large
ROB can be built. However, as the ROB size
increases, the mechanisms associated with the
ROB do not scale well.

With ROB-based map table recovery
schemes, the front end cannot start renaming
new correct-path instructions until either the
mispredicted branch reaches the ROB’s head,
or the processor finishes serially walking the
ROB to reconstruct the map table corre-
sponding to the mispredicted branch. This
delay in restarting the renaming becomes
longer for larger ROBs and limits performance.

The ROB-based physical-register reclama-
tion scheme causes the lifetime of a physical
register to far exceed the lifetime of the instruc-
tion to which it is allocated. Because most
instructions, except stores and branches,
require the allocation of a destination physi-
cal register, such a ROB-based physical-regis-
ter reclamation scheme forces the register file
size to be of the same order as the instruction
window size. Naively increasing the register
file size degrades performance by increasing
register access time. Sophisticated and large

register file organizations, such as hierarchical
register files, are complex and adversely impact
die size and power.

An alternative:
Checkpoint processing and recovery

We present a novel and efficient CPR
microarchitecture for building large-instruc-
tion-window processors. CPR decouples key
mechanisms from the ROB and provides a
scalable alternative to current ROB-based
processors. The key idea behind CPR involves
the notion that sometimes reconstructing
architectural state is more efficient than explic-
itly storing state, as long as sufficient infor-
mation is available for reconstruction. Thus,
unlike ROB-based approaches that record
state at every instruction, CPR records state
only at carefully selected points of an execu-
tion and will regenerate state for individual
instructions only if necessary. Such an
approach is inherently scalable and more effi-
cient than ROB-based approaches.

By means of such selective state tracking,
CPR efficiently handles the key processor
mechanisms of rename map table recovery,
instruction retirement, and physical-register
reclamation. Here, we briefly summarize how
CPR provides these mechanisms; our original
work includes additional details and studies.!

CPR rename map table recovery

The recovery mechanism for the rename
map table must be fast and have low overhead.
Previous work had proposed periodically cre-
ating checkpoints to recover processor state at
every branch.? However, for large instruction
windows, such periodic checkpoints incur high
storage overhead and are inherently not scal-
able. CPR recognizes the performance advan-
tage of checkpoints and significantly reduces
the overhead of periodic checkpoints by limit-
ing the number of such checkpoints to care-
fully selected points in the instruction window.

Because branch mispredicts are the most
frequent cause of rename map table recovery,
ideally, we would like to create checkpoints to
recover processor state exactly at mispredict-
ed branches. So CPR creates map table check-
points at branches with a high mispredict
probability, selecting these branches by using
a branch confidence estimator.*

Because CPR does not create checkpoints at

NOVEMBER—DECEMBER 2003] 3

MICRO TOP PICKS

[EEE MICRO

every branch, once the processor resolves a
non-checkpointed mispredicted branch, it
restarts execution from the checkpoint just
before the mispredicted branch. This can
cause reexecution of the nonspeculative
instructions between the checkpoint instruc-
tion and the mispredicted branch. The branch
confidence estimator works well in minimiz-
ing this checkpoint overhead. We also use the
same checkpoints created at low-confidence
branches to implement precise interrupts and
exceptions, and to deal with architecture-spe-
cific serializing instructions.

The selective placement of checkpoints
together with reexecution to restore architec-
tural state achieves an effective combination
of fast recovery time and scalability. Further,
the number of checkpoints does not limit the
instruction window size because each check-
point can correspond to many instructions,
and the number of instructions per checkpoint
can vary across checkpoints. These character-
istics let CPR support an adaptive instruction
window size that meets applications’ needs—
a small instruction window for applications
with frequent branch mispredicts and a large
instruction window for applications with infre-
quent branch mispredicts.

Mispredicting a non-checkpointed branch
will force a recovery to a prior checkpoint.
CPR prevents repeated misprediction of the
same branch by using the branch outcome
from the previously aborted execution itself
rather than a prediction. Furthermore, once
the processor resolves a mispredicted branch
and begins reexecuting from a prior check-
point (say, C1), CPR forces a new checkpoint
(say, C2) at the first branch, independent of
whether the branch is low-confidence or not.
This lets instructions between checkpoints C1
and C2 retire under all situations, including
any pathological cases where multiple branch-
es are alternatively mispredicted. A similar
mechanism that forces a checkpoint on the
instruction immediately after a prior check-
point, handles exceptions and memory con-
sistency events, such as snoop invalidations.

CPR instruction retirement

CPR allocates and reclaims checkpoints in
a first-in-first-out order, and a checkpoint
buffer keeps track of map table checkpoints.
Each checkpoint buffer entry has a counter to

determine if the processor can free the corre-
sponding checkpoint. The counter tracks the
completion of instructions associated with the
checkpoint; it increments when the processor
allocates an instruction and decrements when
the instruction completes execution. CPR
prevents counter overflow by forcing a new
checkpoint.

CPR allocates a checkpoint only if a free
checkpoint is available. If the processor fetch-
es a low-confidence branch and no check-
points are available, it ignores the
low-confidence prediction of the branch and
continues fetch, dispatch, and execution with-
out creating any additional checkpoints, as
long as the last checkpoint’s counter does not
overflow. Not stalling execution even if the
checkpoint buffer is full is important for high
performance. CPR reclaims the oldest check-
point when its associated counter has a value
of zero, and the next checkpoint has been allo-
cated. This means all the instructions associ-
ated with the oldest checkpoint have been
allocated and have completed execution.

Each instruction has an identifier associat-
ing it to a specific checkpoint. The processor
uses this identifier to access the appropriate
checkpoint buffer for incrementing and decre-
menting the counter, and for selecting instruc-
tions to squash or commit. When the last
instruction belonging to a checkpoint com-
pletes, the processor can instantly retire all the
instructions in that checkpoint and reclaim
the associated checkpoint. This enables CPR
to commit hundreds of instructions instant-
ly, thereby removing the serialized retirement
constraints enforced by a ROB.

CPR physical-register reclamation

Instead of waiting for the in-order instruc-
tion retirement of the ROB to determine reg-
ister reclamation, CPR employs an aggressive
register reclamation scheme. This scheme
reclaims a physical register as soon as all its
readers have completed their reads, a strategy
that becomes possible if the original register
state is recoverable when necessary. To ensure
recoverability of such state in CPR, physical
registers mapped to logical registers at the time
of checkpoint creation are not reclaimed until
CPR releases the corresponding checkpoint.
All other registers can be reclaimed as soon as
possible without waiting for instruction retire-

ment. This enables physical-register usage to
match the lifetimes of registers more closely
than ROB-based reclamation schemes. CPR
can thus achieve the performance of a large
register file without requiring one.

CPR’s register reclamation mechanism asso-
clates a use counter and an unmapped flag with
each physical register.” In the pipeline’s rename
stage, when the processor maps the input
operand of an instruction (the reader) to a
physical register, it increments the physical reg-
ister’s use counter. In the pipeline’s register read
stage, when the reader actually reads the phys-
ical register, it decrements the physical regis-
ter’s use counter. When the processor remaps
the logical register corresponding to the phys-
ical register, it sets the physical register’s
unmapped flag. Reclamation of a physical reg-
ister can occur when the register’s use counter
value is 0, and its unmapped flag is set.

To prevent the release of a checkpoint’s
physical register before the checkpoint’s release,
we increment the use counters for all physical
registers belonging to a checkpoint at the time
of checkpoint creation. Similarly, when the
processor releases a checkpoint, it decrements
the use counters of all physical registers belong-
ing to the checkpoint. Treating checkpoints as
readers guarantees that physical registers are
not reclaimed until after the release of all
checkpoints to which they belong.

The unmapped flags are part of the check-
point. Hence, even if a misspeculated instruc-
tion overwrites a logical register, checkpoint
recovery restores these flags to the correct val-
ues corresponding to the checkpoint. Fur-
thermore, all mispredicted instructions drain
out of the pipe, as typical in current proces-
sors, and decrement any counters they incre-
mented. Doing so allows a processor with
checkpoints to handle branch mispredicts,
interrupts, and exceptions.

Other limits to scalability

So far, we have discussed how CPR uses
selective checkpoints to address a ROB’s lim-
itations when the ROB is used to manage key
processor mechanisms of scalable map table
recovery, instruction retirement, and register
reclamation. However, checkpoints are only
astep in the direction of large instruction win-
dows; other issues unrelated to ROBs still
limit scalability. We now briefly discuss two

of these issues: the instruction scheduler and
the processor store queue.

Instruction scheduler

The scheduler holds renamed instructions
not yet issued for execution and examines
these instructions each cycle to find ready
instructions for issue. In out-of-order proces-
sors, a typical scheduler fills and blocks only
in the presence of long-latency operations,
such as loads that miss the cache and go to
main memory. The scheduler can continue to
issue independent instructions, and only
instructions that depend on a load missing the
cache will occupy scheduler entries for a long
time. Our experimental results show the set
of instructions dependent on loads that miss
the cache is small. Hence a relatively small
scheduler size is enough to support a large
instruction window: a 128- to 256-entry
scheduler is sufficient for a 2,048-entry
instruction window. Thus, the scheduler does
not have to scale with the instruction window,
hence we do not focus on schedulers. How-
ever, building a 128- to 256-entry scheduler
is not an easy task, and further reducing the
scheduler’s size is an important area for
research.

Store queue

A store instruction occupies a store queue
entry from the time it is renamed until it
retires. Traditionally, stores are retired in order
to satisfy branch misprediction, precise excep-
tion, and memory consistency requirements
and thus typically stay in the store queue for
long durations. Further, the store queue size is
directly proportional to the number of stores
in the instruction window. The large number
of stores in a large instruction window com-
bined with the fact that each store stays in the
store queue for a long duration requires large
store queues for large instruction windows.

Store queues serve three primary functions:
disambiguating memory addresses, buffering
stores (completed and otherwise) until retire-
ment, and forwarding data to dependent load
operations. The last operation, called store-
to-load forwarding, directly affects cycle time.
It will be difficult to increase conventional
store queue sizes (32 to 48 entries) without
making the forwarding circuit a critical path,
thus increasing cycle time.

NOVEMBER—DECEMBER 2003] 5

[EEE MICRO

MICRO TOP PICKS

Data
Load L1 STQ MTB L2 STQ cache
address ¥ ¥
Y
Miss Hit L
Data
cache
] L1 STQ
Hit Data

v v

|

l Data to register file

Figure 1. Hierarchical store queue.

To address the limitations of conventional
store queues, CPR uses a novel hierarchical
store-queue organization, consisting of a small
(32 to 48 entries) and fast (level-one data
cache latency) level-one store queue (L1
STQ), backed by a much larger (approxi-
mately 256 entries) and slower (level-two data
cache latency) level-two store queue (L2
STQ). Figure 1 shows the hierarchical two-
level store queue’s organization. The L1 STQ
holds the most recent stores while the L2 STQ
holds older stores displaced from the L1 STQ.
Because stores typically forward to nearby
loads, most store-to-load forwarding occurs
from the L1 STQ without affecting cycle
time. The L2 STQ provides the capacity to
store several stores and infrequently handles
store-to-load forwarding.

Store-to-load forwarding. If aload hits in the L1
STQ, it receives the data at the level-one data
cache latency. When a load misses in the L1
STQ, it could get its data either from the L2
STQ or from the memory hierarchy (caches
and main memory). Before accessing the mem-
ory hierarchy, we could wait for the full L2
STQ access latency to determine if the load hit
or miss in the L2 STQ. However, we would
then incur the L2 STQ access latency even if
the data misses in the L2 STQ and hits in the
level-one data cache. Because this is a common

case and the delay decreases performance, we
must quickly determine if a load is going to hit
or miss the L2 STQ. For this purpose, we use
a Membership Test Buffer (MTB).

The MTB is similar to a bloom filter ¢ and
has the property that if it indicates a load hit
in the L2 STQ, the load has a high chance of
hitting in the L2 STQ. On the other hand, if
the MTB indicates a load will miss in the L2
STQ, it will certainly miss in the L2 STQ.
The MTB is a direct-mapped, non-tagged
array of counters indexed by a part of a load
or store address. When a store is removed
from the L1 STQ and placed into the L2 STQ
it increments the corresponding untagged
MTB entry. When a store retires, updates the
data cache, and is removed from the L2 STQ,
it decrements the corresponding untagged
MTB entry. A nonzero count in the MTB
entry potentially indicates a matching store in
the L2 STQ. On the other hand, a zero count
in the MTB entry guarantees a matching store
does not exist in the L2 STQ.

When a load issues and reads the data
cache, the load also accesses the L1 STQ and
the MTB in parallel. If the load hits the L1
STQ, it forwards the store data to the load. If
the load misses the L1 STQ, and the MTB
indicates a L2 STQ miss, the data cache for-
wards the data to the load. If the load misses
the L1 STQ and the MTB indicates a poten-

tial hit in the L2 STQ, the load waits to allow
sufficient time to access the L2 STQ and
resolve the load-store dependence. If the load
hits the L2 STQ, it supplies the data to the
load. If the load misses the L2 STQ), the data
cache forwards the data to the load. Howev-
er, the load would have already suffered a delay
equivalent to an L2 STQ access latency. To
minimize spurious hits in the MTB from
address aliasing, the MTB should be as large
as possible, yet have an access time within

those of the L1 STQ and the data cache.

Store address unknowns and the load buffer.
With a large instruction window, there is a
high chance that when the processor issues
loads, the store queues will contain an
unknown store address. Although conven-
tional means can be used to detect the pres-
ence of unknown store addresses in the L1
STQ, for the L2 STQ, we use the MTB to
indicate whether it potentially has an
unknown store address. Stalling the issue of
a load in the presence of an unknown store
address has a significant negative impact on
performance. Store-load dependences are
highly predictable.” Hence, we use a memo-
ry dependence predictor and let a load pro-
ceed if the predictor indicates that the load
has no conflict with an unknown store
address. CPR detects memory dependence
violations by letting stores snoop a set-asso-
ciative load buffer. Because the load buffer
is not on the critical path and does not for-
ward any data, it is not a critical resource, so
we do not focus on load buffers. A memory
dependence violation incurs a penalty equiv-
alent to flushing the instruction window and
rolling back execution to a previous check-
point. Because the coverage of our memory
dependence predictor is high, CPR seldom

incurs this penalty for dependence violations.

Bulk commit/squash of stores. Since CPR
requires the capability to bulk commit/squash
all stores belonging to a checkpoint, CPR
associates each store’s checkpoint identifier
with its corresponding entry in the store
queue. This identifier is used to perform a
bulk commit/squash of stores in the hierar-
chical store queue.

Thus, CPR comprehensively addresses all
critical design aspects of large instruction win-

dows and provides a unified mechanism for
building large instruction window processors.

ROB versus CPR

Our original paper presents a comprehensive
set of results to measure the suitability of CPR
for building large instruction windows.! Here,
we compare the performance of CPR with that
of a ROB-based machine and show the ability

of CPR to support large instruction windows.

Equal critical-resource comparison

To determine the resource efficiency of CPR,
we compare the performance of a convention-
al ROB machine to a CPR machine that uses
equal critical resources for various processor
configurations. For each configuration, we keep
the critical resources—the register file and the
scheduling window—the same for CPR and
ROB machines. The timing-critical L1 STQ
size used in the CPR machine matches the store
queue size used in the ROB machine. The CPR
machine also uses a 256-entry L2 STQ that is
not on the cycle-critical path.

Figure 2 shows average results for
SPEC2000 integer (SINT2K), floating-point
(SFP2K), server, and workstation (WS)
benchmark suites; other benchmark suite
results are similar. The yaxis is the particular
configuration’s percentage speedup over the
performance of a 128-entry ROB baseline
(the smallest ROB configuration in the fig-
ure). The x axis indicates the various proces-
sor configurations. The first number for each
configuration is the ROB size and applies only
to the ROB machine. The CPR machine does
not use a ROB and instead uses eight map
table checkpoints to achieve an adaptive
instruction window. The second number is
the physical register file size, a value of p indi-
cates p integer and p floating-point registers.
The third set of numbers (#F) is the sched-
uler size, where 7 is the number of entries for
the integer instructions; f, for the floating-
point instructions; and 7, for the memory
instructions.

The results show that for equal buffer sizes
a CPR machine consistently and significantly
outperforms a ROB machine. More interest-
ingly, the 128/96/(32-32-16) CPR configura-
tion has only half the number of critical
resources as the 256/192/(64-64-32) ROB
configuration, yet outperforms the larger ROB

NOVEMBER—DECEMBER 2003]]

MICRO TOP PICKS

CPR speedup over ROB base approach
(percentage)

—
D
-~

CPR speedup over ROB base approach
(percentage)

(b)

40

35

30|

4 CPR-SFP2K

X CPR-SINT2K
O ROB-SFP2K
® ROB-SINT2K

128/96/(32-32-16)

192/144/(48-48-24) 256/192/(64-64-32)

ROB size/physical register size/scheduler size

40

35

30|"

¢ CPR-Workstation

X CPR-Server

O ROB-Workstation

® ROB-Server

128/96/(32-32-16)

192/144/(48-48-24)

256/192/(64-64-32)

ROB size/physical register size/scheduler size

Figure 2. Comparison of ROB and CPR machines having an equal number of
critical resources: Integer and floating-point (a); and workstation and server
(b) benchmarks. ROB size is in number of entries, and physical-register size
indicates the number of integer and floating-point registers. Scheduler size
has three numbers: the number of entries for the integer, floating-point, and
memory instructions.

[EEE MICRO

machine for all benchmarks. This highlights
the resource utilization efficiency of the CPR
machine.

Instruction window size comparison
Figure 3 shows the average instruction win-

dow size achieved by a 256-entry ROB
machine and a CPR machine with equal crit-
ical resources. The average instruction win-
dow size for a benchmark is the instruction
window size per cycle computed over the
entire run of the benchmark. As these results
show, the resource efficiency of the CPR
machine allows it to sustain average instruc-
tion window sizes two or four times larger
than a ROB-based machine with equal criti-
cal resources. Further, we find CPR sustains
thousands of instructions in the window for
significant periods of execution time. This
shows CPR can sustain large instruction win-
dows without requiring large cycle-critical
resources; hence, it is well suited to building
processors with large instruction windows.

Q chieving high performance requires large

instruction windows operating at high
frequencies. Although conventional proces-
sors designs rely on a centralized ROB, the
key mechanisms traditionally associated with
the ROB are either too slow or too costly to
support the large ROBs required for large
instruction windows. By decoupling key
mechanisms from the ROB, CPR opens up
new opportunities for processor optimiza-
tions. Schemes that might have been ineffec-
tive in the presence of a serializing structure
such as a ROB now might achieve their true
potential. Our novel CPR microarchitecture
offers a scalable and efficient alternative to
ROB-based processors and provides a promis-
ing microarchitecture for designing future

high-performance processors. RO

1. H. Akkary, R. Rajwar, and S.T. Srinivasan,
“Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window
Processors,” Proc. 36th Ann. Int’l Symp.
Microarchitecture, ACM Press, 2003, p. 423-
434.

2. J.E. Smith and A.R. Pleszkun, “Implemen-
tation of Precise Interrupts in Pipelined
Processors,” Proc. 12th Ann. Int’l Symp.
Computer Architecture, ACM Press, 1985,
pp. 36-44.

3. W.W.HwuandY.N. Patt, “Checkpoint Repair
For Out-Of-Order Execution Machines,” Proc.
14th Ann. Int’l Symp. Computer Architecture,

| Press, 1987, pp. 18-26.

4. E. Jacobson, E. Rotenberg, and J.E. Smith,
“Assigning Confidence to Conditional
Branch Predictions,” Proc. 29th Int’l Symp.
Microarchitecture, ACM Press, 1996, pp.
142-152.

5. M. Moudgill, K. Pingali, and S. Vassiliadis,
“Register Renaming and Dynamic Specula-
tion: an Alternative Approach,” Proc. 26th
Int’l Symp. Microarchitecture, ACM Press,
1993, pp. 202-213.

6. B. Bloom, “Space/Time Tradeoffs in Hash
Coding with Allowable Errors,” Comm.
ACM, vol. 13, no. 7, July 1970, pp. 422-426.

7. A. Moshovos and G. Sohi, “Streamlining
Inter-Operation Memory Communication via
Data Dependence Prediction,” Proc. 30th
Int’l Symp. Microarchitecture, ACM Press,
1997, pp. 235-245.

Haitham Akkary is an assistant professor in
the Electrical and Computer Engineering
Department at Portland State University. His
main research interest is microprocessor archi-
tecture. Akkary has a BS and MS in from
Louisiana State University, and a PhD from
Portland State University, all in electrical and
computer engineering. He is a member of the

IEEE and the ACM.

Ravi Rajwar is with the Intel Microarchitec-
ture Research Lab. His research interests
include the theoretical and practical aspects
of computer architecture. Rajwar received a
PhD degree in computer science from the
University of Wisconsin-Madison.

800

OROB |
700

|BmCPR |

600

500
400

300

(no. of instructions)

200 |-

Average instruction window size

100 |-

Figure 3. Comparison of average instruction window sizes for ROB and CPR

machines.

Srikanth T. Srinivasan is a senior researcher in
the Intel Microarchitecture Research Lab. His
current research focuses on scalable and effi-
cient microarchitectures. Srinivasan received
a BE in computer science from the Birla Insti-
tute of Technology and Science, Pilani, India;
and a PhD in computer science from Duke
University.

Direct questions and comments about this
article to Srikanth T. Srinivasan, Microarchi-
tecture Research Lab, Intel Corp., 2111 NE
25th Avenue, Hillsboro, OR 97124;

srikanth.t.srinivasan@intel.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

NOVEMBER—DECEMBER 2003] g

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

