An Architectural Evaluation of Java TPC-W

Harold W. Cain, Ravi Rajwar Morris Marden, Mikko H. Lipasti
Computer Sciences Department Dept. of Electrical and Computer Engineering
University of Wisconsin University of Wisconsin
Madison, WI 53706 Madison, WI 53706
{cain,rajwar}@cs.wisc.edu {marden,mikko}@ece.wisc.edu
Abstract ment time. On the hardware side, the overhead of such soft-

ware techniques and the unique demands created by the
menting server-side application logic is increasing in popu_conf!uer]ce of yveb connectivity, c.omplex. mujdleware and
larity, yet there is very little known about the architectural appllcqt!on logic, as well as the high ava'|lab|I|ty expected
requirements of this emerging commercial workload. We,?f traﬂltlon?rl] on-I;netFr?Pszlctlon tprolcl:esilng d"ﬁ]abgsﬁ sys-
present a detailed characterization of the Transaction Pro- e;n;rs] ave the po eg Iab 0 drama 'C? é’c a?r?e | € behavior
cessing Council's TPC-W web benchmark, implemented if' (N program code being executed on Ine large server
Java. The TPC-W benchmark is designed to exercise th pmputer systems that serve as the hardware platforms for
web server and transaction processing system of a typica ese we_b sites. . .

e-commerce web site. We have implemented TPC-W asgl Historically, the Transaction Processing Performance

0

collection of Java servlets, and present an architectural un(r::l (TPC),_fa go?so(;tlu(rjnbof si/]sten;( and da_‘;?)%asAe _\I_/gré

study detailing the memory system and branch predictogoﬁﬁcaésgi%'g _‘T’_sg gr TPeCn(I:? rr];lar S (?'g;[. tr; ’ i

behavior of the workload. We also evaluate the effective-’ e L oy -R) for evaluating the per-
ormance of both transaction processing and decision sup-

ness of a coarse-grained multithreaded processor a{
increasing system throughput using TPC-W and other comPOrt database systems [27]. These benchmarks have been

mercial workloads. We measure system throughpuye.ry /usefful for gat;glngbt.he dabi&ute /Eer:j(\),cnlance tarr;d
improvements from 8% to 41% for a two context processor‘fmce periormance of combined software/hardware Systems.

- . A significant body of prior work has studied the architec-
12% t % f f text - .
and 6 to 60% for a four context uniprocessor over a Sméyral requirements of such workloads [13,15,17,19,20, 22].

g!e-_threaded LnIprocessor, d_esplte decreased branch pr At the same time, the Systems Performance Evaluation
iction accuracy and cache hit rates. : 7 :

Cooperative (SPEC), a similar consortium, has developed
1. Introduction standard benchmarks for evgluating both static and

dynamic web content serving (SPECweb96 and
In the last few years, the world-wide web has evolvedSPECweb99, respectively) [26]. While useful in their own

from a global repository for static information into a right, none of these benchmarks reflect the demands placed
dynamic environment that provides mechanisms for conon systems that must perform all of these functions in con-
necting to and interacting with an ever-increasing numbegert. As a response to this shortcoming, the TPC has devel-
of on-line databases and other sources of dynamic contendped a new benchmark for e-commerce called TPC-W that
In the pursuit of global market share and mindshare, comis modeled after an on-line bookstore, and includes many of
panies ranging from traditional “brick-and-mortar” retailers the elements present in such a website, including complex
to online-only startup companies are implementing webapplication logic, a significant web serving component
sites that allow a high level of dynamic interaction with including both static and dynamic web pages, and direct
their inventory, purchasing, and order databases. This tranransaction processing and decision support connectivity to
sition to online electronic commerce is placing newan online relational database containing product inventory,
demands on both the software and hardware infrastructureustomer, and order tracking information. We have imple-
used to implement these complex systems. On the softwan@ented most of the requirements specified in the TPC-W
side, new implementation techniques like increasing layerspecification and have published some of our early findings
of middleware, business object frameworks, and new prof4]. An overview of the TPC-W specification is presented in
gramming languages such as Java are required to simplifgection 2, and the details of our implementation are
the task of the application programmer and reduce develop-

The use of the Java programming language for imple



described in Section 3. In Section 4 we present results2.1. TPC-W Overview
characterizing this benchmark natively on a six-processor
IBM RS/6000 S80 shared-memory multiprocessor system.

; . : : into three tiers: a set of emulated web browsers, a web
Meanwhile, as the proliferation of the world-wide web .
. . server, and a means of persistent storage. The emulated
has dramatically altered the landscape for commercial

. : browsers simulate the activities of multiple concurrent web
server software, architectural trends and new technlquesbrowSing users, each making autonomous requests to a

have continued to evolve. Some of these trends include: . ;
L : . web server for both web pages and images. Depending on
deeper pipelines that are increasingly dependent on accu;,

rate branch prediction, the increasing importance of a high-the web page requested, it may be necessary for the web

. ) . server to communicate with the persistent storage mecha-
performance memory subsystem, particularly in multipro-

cessor systems, and the need for architectural techniques o and dynamically generate a response page. The per-

. . Sistent storage mechanism records all of the data necessary
overcome or tolerate high memory and interprocessor com-

o . : . . for an online bookstore (e.g. inventory, customer records,
munication latencies. One particularly effective technique

L : : . _order records, etc.). Although the web server and storage
studied in the literature and subsequently implemented in

the IBM AS/400 line of computers is coarse-grained multi- bmeencchhagzrlw(‘l sa:aecifli(;glt(i::rl:):joS;sp?];?te?ecllTjtge t,:]vgr ?ﬁrtih;r?]e
threading (CGMT) [1,10,11,12,18]. In CGMT, multiple P b ging them.

. o . The TPC-W specification defines 14 web interactions,
thread contexts exist within each physical processor, and : . .
. T ; each different from one another in terms of the required
thread-switch logic is used to swap threads in and out

. mount of server-side processing. Some are relatively
whenever long-latency events such as cache misses staI ht-weiaht. requiring onlv web serving of static HTML
the execution of a particular thread. In Section 5, we char- 9 gnt, req g only 9

: pages and images. Others require a considerable amount of
acterize overall system performance as well as memory

. o server-side processing, involving one or more connections
subsystem and branch predictor behavior in the context of b 9 g

) : : . with a database in addition to dynamically generating
conventional and CGMT processors in uni- and multipro- o
: : ) HTML pages. A few characteristics related to the amount
cessor configurations running the TPC-W workload. As

has been shown in the past for other commercial work- of processing required by each web interaction are summa-

loads, we find that CGMT is an effective technique for rized n Table 1. Most .Of the we_b Interactions require
. . . dynamic HTML generation, including all of those which
increasing throughput of Java server workloads, despite an

. : . communicate with the database. The amount of work done
increase in cache misses and reduced accuracy of a shar . . .

L : y the database varies from one interaction to another, and
branch prediction mechanish.

while many of the interactions perform simple selects and
2. TPC-W Benchmark Specification upda_tes to the database_, others (e.g. Best Sgll(_ar and Admin
Confirm) perform complicated transactions similar to those
The TPC-W benchmark is a transactional web bench-found in decision support system workloads. Table 1 lists
mark which models an on-line bookstore. The benchmark the number of joins required for each interaction’s queries,
comprises a set of operations designed to exercise a welas an approximation of the query complexity. There is also
server/database system in a manner representative of a typa number of static images associated with each web inter-
ical internet commerce application environment. This envi- action, ranging in size from 5KB to 1MB. The last column
ronment is characterized by multiple concurrent on-line in this table shows the response time requirement for each
browser sessions, web serving of static and dynamically of the web interactions. At least 90% of each type of web
generated web pages, and a variety of access and updateteraction must complete within this maximum response
patterns to a database consisting of many tables with differ-time.
ent sizes, attributes and relationships. We begin this section A TPC-W benchmark run begins by starting a certain
with a general overview of the benchmark, followed by a number of emulated browsers, each of which begins a
detailed description of the web serving and database com-browsing session at the TPC-W bookstore home page.
ponents of the workload. These emulated browsers continue traversing the book-
store’s web pages, following different links and entering
user information with varying probabilities. The number of
1. We emphasize that our implementation does not fully con- emulated browsers used is variable, and determines the
form to the TPC-W specification, and hence none of the maximum reported throughput results. During an emulated
results pres_ented in this paper should be interpreted as accurate browser session, the browser may fill a shopping cart, per-
representations of the performance of the software or hardware form searches in the inventory database, fill out customer
systems described in this paper. Our results do not meet the . . S ”
strict reporting and auditing requirements specified by the information, perform bookstore administrative duties, buy

TPC, are in no sense official or comparable to any other TPC- the contents of the shopping cart, look at best sellers and
W results, and should not be considered as such.

The components of TPC-W can be logically divided




Name Dynamic | # Table # Max Response Web Interaction Browsing Shopping Ordering
HTML? Joins Images | Time(seconds) Mix (WIPSb) | Mix (WIPS) Mix (WIPSo)
Admin Confirm Yes 4 5 20 Browse 95% 80% 50%
Admin Request Yes 2 4 3 Best Sellers 11.009 5.00% 0.46%
Best Seller Yes 3 ¢ [s Home 29.00% 16.009 9.12%
Buy Confirm Yes 1 2 5 New Products 11.009 5.00% 0.46%
Buy Request Yes 1 3 k Product Detail 21.00% 17.00% 12.35%
Customer Registration] N N/A 4 Search Request 12.00%6 20.00% 14.54%
Home Yes 1 9 3 Search Results 11.00% 17.00pb 13.08%
New Product Yes 2 9 g Order 5% 20% 50%
Order Display Yes 1 2 3 Admin Confirm 0.09% 0.09% 0.119
Order Inquiry No N/A 3 3 Admin Request 0.10% 0.10% 0.12%
Product Detail Yes| 2 q 3 Buy Confirm 0.69% 1.20% 10.189
Search Request N N/A B Buy Request 0.75% 2.60% 12.73%
Search Result Yegq b D 1D Customer Registration 0.82% 3.00% 12.86%
Shopping Cart Yeqd 1 [« Order Display 0.25% 0.669 0.22%
Table 1: TPC-W Web Interaction Characteristics. Order Inquiry 0.30% 0.75% 0.25%
new products lists, and make inquiries about previous| Shopping Cart 2.00% 11.60% 13.53p6
orders. There is a random period of time spent sleeping Table 2: Web Interaction Frequencies for Each Mix

between subsequent individual browser requests, to simu-
late a user’s think time. The emulated browsers continue to2.2. Database Component
access the system under test for several minutes. Once the

The TPC-W specification defines the exact schema used
system reaches a steady state, performance measuremer}ts . . ; .
begin. or the database. This schema consists of eight tables: cus-

. . tomer, address, order, order line, credit card transaction,
The primary performance metric tested by the TPC-W item, author, and country. At a minimum, a TPC-W imple-

benchmark is throughput, measured as the number of web : : .
. . P . mentation must include a database whose tables contain
interactions per second (WIPS). The specification defines o o :
. ; . : . the exact organization specified by this schema. However,
three different mixes of web interactions, each varying the o )
) . . 2 additional fields and tables may be added. Most of the
ratio of inventory browsing related web pages visited to

. - - benchmark tables are modified over the course of an execu-
ordering related web pages visited. Depending on the par- ~
. . : . tion; only the author and country tables are read-only. The
ticular mix that is used, a remote browser emulator is more

or less likely to visit certain parts of the store-front web- ratio of read-only to read-write queries changes for each of

site. The primary mix used is the shopping mix (throughput fche different mixes. The queries associated with the brows-

is denoted as WIPS), which is intended to reflect an aver_mg-re_lated web Interactions are all re_ad-only, while the
. o . order-related web interactions contain many database

age shopping scenario, in which 80% of the pages a userupolates

visits are relate_d to browsing and 20% of the pages are The s.caling rules for the database are dependent on two

related to ordering. Because actual usage patterns may ValY ariables: the size of the bookstore inventory and the num-

for different web sites, the TPC-W specification defines : : .

two other web interaction mixes: a browsing mix (WIPSb) ber of emulated browsers that will be used to drive the sys-

. . : . - ” tem. The number of items in the item table is chosen from
in which very little (5%) ordering occurs, and an ordering . : .
. . ) . . .~ . one of five predetermined sizes. The number of emulated
mix (WIPSo0), in which the ratio of browsing to ordering is o
. . ; ._browsers may be scaled in increments of one. The database
even. The exact web interaction frequencies for each mix . . . :
. scaling rules are shown in Table 3, along with typical row
are shown in Table 2. Results are reported for each of the : .
. : . o lengths and table size estimates for 1,000 emulated brows-
three web interaction mixes, and the TPC specifies that all . o .
i ) ; . ers and 10,000 items In addition to storing these tables, the
hardware and software configuration must be identical for . .
. . : system under test must also store images and image thumb-
each of the interaction mixes. ; : . .
nails associated with each item.
The TPC-W specification defines a set of consistency
requirements which the system under test must pass prior



Table Name Cardinality Typical Row Typical images referenced in each of these documents. The storage

(in rows) Length (bytes) | Table Size requirements associated with these images amount to
(bytes) approximately 25 kilobytes per inventory item. The image
CUSTOMER 2880 * (number of EB) 76 21sssspk  flle set may either be stored in the database or on a standard
ADDRESS 2*CUSTOMER 154 887,040 file SyStem'

In order to provide secure on-line payment authoriza-

ORDERS 9 " CUSTOMER 224 570,240k tion, the web server must include support for secure sock-
ORDER_LINE | 3*ORDERS 132 1,026,432k ets layer (SSL) communications. The benchmark defines a
CC_XACTS 1*ORDERS 80 207,360 payment gateway emulator which authorizes the payment
p— 1K 10K, 100K, 1V 10M 50 207360 pf the purcha_smg transaction for the buy c_onflrm web

interaction. This payment gateway emulator is a program
AUTHOR .25*ITEM 630 1,575k

external to the system under test, with which the web
COUNTRY 92 70 6.44k server must communicate prior to completing the buy con-
firm interaction.

i blishi ficial s, F £ th . ; Similar to the database consistency requirements, the
0 publishing oflicial resulls. Four of these requirements ., server must also follow strict consistency require-

pe”?'” to database transactlo_nS and are ca_1||ed the ACIDments. These requirements affect the amount of allowable
requirements. The ACID requirements specify the neces

. - . : _ “web page caching, specifying that any update made to the
sary conditions of atomicity, consistency, isolation and bag g, specifying Y up

durability for th ¢ The atomicit ) " system must be reflected in pages returned by the web
urabiiity for the system. 1he atlomicily requirement guar- go o 4t most thirty seconds after the update. Prior to this
antees that for a given web interaction, either all databas

ethirty second limit, either all of the effects of the update
e . S ; ‘must be made visible or none. The search results page is
specifies that given an |n_|t|ally co_n_3|stent database, aNYine only web page which is exempt from this thirty second
TPC-W database transaction transitions the database fro"ﬁmit. Search results are minimally required to reflect the
State of the system after initial population. This relaxation
was introduced to the specification to permit the use of

. . . Eommerciall available web searching and indexing tools.
yield the same results as serialized transactions. The dura- y g g

bility requirement specifies that all database transaction53 A Java Implementation of TPC-W
must be durable, and the system will preserve the effects of
a committed database transaction after recovery from any The TPC-W specification dictates a set of requirements

Table 3: Database Scaling Rules and Example Table Sizes

specifies that all TPC-W interactions must be isolated from

single point of failure. which an implementation must meet, but it allows substan-
tial freedom for making various implementation decisions.
2.3. Web Server Component We have implemented all of the TPC-W application logic

) ) ) in Java using the Java Servlet API. Very little has been pub-

The web server software must include logic for tracking |isheqd concerning the behavior and architectural character-
user sessions. Each emulated browser session must bRyics of this new workload. In this section, we will discuss
tracked with a session identification number, meaning thatggme of the characteristics of our implementation and their
each request made by an emulated browser must includgy, jjications on performance. We also describe the areas in
this session identifier. Web servers and browsers typically yhich our implementation strays from the specification.
use one of two methods to maintain and communicate ses- o jmplementation’s most notable feature is the use of
sions. The first is through cookies, in which the web server 3o tor all bookstore application logic. We have imple-
responds to a browser’s initial request with a cookie, which menteq each of the 14 web interactions as a Java servlet
the browser includes with all subsequent requests. The seCygjng the Java Servlet API, an alternative to the traditional
ond means of maintaining sessions is through URL rewrit- .00 gateway interface (CGI) used by web servers for
ing, i_n whic_h t_he web server encodes a session ID as part Ofdynamic HTML generation and server-side application
the links within a HTML document. When a browser fol- - orqcessing. The serviet interface provides a standard, por-

lows one of these links, the session ID is communicated asi;|e programming environment for writing server-side
part of the requested URL. The disadvantage of using URL o jications. The servlet API provides Java libraries for

rewriting is that every web page must be dynamically gen- receiving and responding to HTTP requests and maintain-
erated in order to properly encode the session ID in all of g state for each user session. The portable nature of Java

the web page’s links. _ _ has enabled the use of these servlets on multiple platforms;
In addition to serving static and dynamically generated j, 5 previous study, we were able to do a preliminary char-
HTML documents, the web server must also serve the



acterization of this workload on two architectures with no 4. Native Execution Results
changes to the benchmark application [4]. For this study

we use the Zeus web server with the Apache Jserv Java In this section, we present the results of experiments
servlet engine. performed while executing the workload natively on a 6-

For the database component of this workload, we useProcessor IBM RS/6000 S80 SMP system running the AIX

the IBM DB2 relational database system. Database query?-3-3 OP€rating system. We find that most memory system

and update requests are made by our servlets using the Ja\%alls are due to L2 cache load misses, and that a large frac-

Database Connectivity (JDBC) API. As described in Sec- tion of L2 misses are serviced by c_ache—to-cach(_a transfers.
tion 2, the TPC-W specification organizes application data We also show the importance of using th(_a exclusive state in
into eight tables. In addition to the schema required by the ¢2che coherence protocols when executing TPC-W as well
specification, our implementation stores the user's shop-S Other commercial workloads.
ping cart in the database because the shopping cart must be
durable across any single point of failure for up to two 4.1. Workloads
hours. We added two tables to the database to fulfill this T4 petter understand how the behavior of TPC-W com-
durability requirement. One advantage to keeping this stateépares to other current server benchmarks, we also present
in the database is that it removes all state associated with gegyits for SPECweb99 and SPECjbb2000.
specific user session from the web server and Java servlet gpecweb99 is a web serving benchmark which tests
engine. The elimination of this state allows us to use multi- many of the requirements of modern web servers, such as
ple independent web servers and servlet engines for hangiatic and dynamic HTTP requests, keep alive and persis-
dling requests. If necessary, different requests for any usefent connections, and dynamic advertisement rotation
session may be routed to one of many servers, each comysing cookies. Our SPECweb99 results were collected
municating with the DB2 back-end. using the same Zeus web server used for the TPC-W exper-
Although the Servlet API provides library methods for jments.
tracking sessions using both cookies and URL rewriting, The SPEC Java Business Benchmark (SPECjbb) 2000
our implementation relies solely on URL rewriting. By s designed to test server-side Java performance. The
restricting ourselves to URL rewriting for session tracking, penchmark is written entirely in Java, and runs on a single
we avoid the complexity of managing cookies in our instance of a Java virtual machine. It emulates a three-tier
remote browser emulator. Unfortunately, this means that a"system similar to TPC-C in which a wholesale company
HTML documents must be dynamically generated in order ¢ontaining multiple warehouses services many concurrent
to encode a session identifier in each link. Eleven of the ,ggrs. System throughput scales with the number of ware-
fourteen web interactions require dynamically generatedhoyses used. We use six warehouses for these experiments,

HTML to display database query results, so there are only gnd the same JVM for running both SPECjbb2000 and the
three web interactions in which we pay a penalty for doing Tpc-w Java serviet engine.

URL rewriting. Consequently, we believe that our choice
of URL rewriting does not_substantially affect the perfor- 4.2. Methodology
mance of our implementation.

Our implementation of the TPC-W benchmark strays  The IBM RS/6000 S80 is a shared-memory symmetric
from the specification in the following ways: we do not use Multiprocessor based on the PowerPC RS64-III (Pulsar)
the secure sockets layer connection required for the buymicroprocessor [5, 25]. Pulsar is a four-issue in-order
confirm interaction, or do the credit card authorization superscalar processor with a five stage RISC pipeline. Pul-
associated with this web interaction. According to the sar tolerates memory latency with coarse-grained multi-
specification, the system under test must communicatethreading by switching to an alternate thread whenever the
credit card information to an external app“ca’[ion for pay- currently running thread encounters a cache miss. If there
ment authorization during the buy request web interaction, iS no other ready thread, the pipeline is stalled until the
and must also use the secure sockets layer for communicatMiss resolves. Unfortunately the multithreading feature on
ing credit card information. By neglecting to implement Pulsar is disabled in AIX 4.3.3. Despite the lack of multi-
this feature, the web server does less work for the buy con-threading in the S80, until recently (July 2000) this system
firm interaction than required by the specification. For the Was the non-clustered TPC-C performance leader [27]. We
browsing and shopping interaction mixes, this interaction Present simulation results evaluating coarse-grained multi-
accounts for less than two percent of all web interactions, threading in Section 5.
and ten percent for the ordering mix. Because of its relative ~ Considerable effort has been spent tuning this workload,
infrequency, we believe that the loss of this functionality and our system setup represents the state-of-the-art in hard-
does not seriously affect the behavior of the workload. ~ ware and software for running commercial server work-



Hardware 1r
Processors 6-way 450 MHZ RS-64 IIl (Pulsar) Bl Zeus
0.8r [ pB2
Memory 8 GB g Bl JServ
L2 Cache 8 MB unified cache per processor EO.G’
L1 Cache 128 KB I-Cache, 128 KB D-Caclye S
5041
Software o
®)
IBM JDK 1.1.8 with JITC, AIX 4.3.3 Apache Jserv 1.0 0.2
IBM DB2 6.1 Zeus Web Server 3.3.7
0
Database Size: 204 MB Image Set Size: 250 MB Browsing Shopping Ordering
Table 4: System Parameters Figure 1. CPU utilization divided among web server, database,

loads [14]. A few pertinent system parameters are @and servietengine
described in Table 4.

The smallest allowed item table size is 1,000 items; we
use a larger configuration with the scaling rules for 10,000
items and 50 emulated browsers. 2

The RS-64 11l processor includes a rich set of eight 64-
bit performance counters. In combination, these counters 15
can record over 275 unigue events ranging from memory g
system statistics such as cache misses, coherence protocol
transitions, and bus utilization, to microarchitectural issues
such as coarse grained multithreading events and branch
penalties. Using these counters, we have collected substan-
tially more data than have room to present here; a more
complete set of data can be found in an extended version of 0 B S O B S O B S O
the paper [6]. SPECjbb TPC-W JServ TPC-W DB2 TPC-W Zeus SPECweb

The software used for controlling these counters sup- Figure 2. CPI Breakdown - the TPC-W runs are broken into
ports counting on the granularity of a process tree, where a groups of three bars, where each group corresponds to a different
single set of virtual counters is shared by a parent process component of the workload, and B, S, O bars within a group corre-
and all of the its child processes. We use this process tree SPOd t browsing, shopping and ordering mix runs.
counting mode for all natively-collected results. Counting ing for less than 3% of the CPU in all mixes. We see some
is enabled for both user and system-level instructions. idle time during the update-intensive ordering mix because

While performing these experiments, the remote of synchronization within the servlet implementation
browser emulators are run on workstations external to thewhich prevents conflicting updates to the database.
system under test, with the browser think time set to zero
seconds in order to place a heavy load on the server whileg 4. Memory System Characterization
using fewer client CPU resources. A similar strategy was )
used in Baylor et al. [3]. For each workload, the measure- ~ Figure 2 shows the measured CPI for each of the work-
ments are performed during several runs consisting of a 15/0ads, with memory system stall ime broken into its com-

minute warm-up phase followed by a 60 minute measure- ponents. In the absence of cache misses, the processor runs
ment phase at a CPI near one in all cases. The memory system contri-

bution to the CPI varies considerably among workloads,
oAt with TPC-W Zeus and SPECweb99 most affected by mem-
4.3. CPU Utilization by Component ory system stalls, and the Jserv and SPECjbb Java applica-
Figure 1 shows the measured CPU utilization while run- tions least affected. Zeus is the only TPC-W component
ning TPC-W for each of the three web interaction mixes, which touches the static image file set, and DB2 has a large
breaking down the CPU utilization into parts for each of memory footprint, which account for increased memory
the three workload components. We see that the Java servsystem related stalls for the two applications. The TPC-W
let engine component dominates the CPU usage, accountservlet engine suffers relatively few memory system stall
ing for 80% of the CPU utilization in each of the web cycles; its primary function is formatting and forwarding
interaction mixes. The database accounts for the majorityrequests and responses between the database and emulated
of the remaining CPU time, with web server time account-
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browsers, so it does not touch the volumes of data managed 1o0- e —
by the database and web server, consequently resulting in  soj B Entering in E: EE>EJ§TBI;ﬁ;,S;“°i
fewer memory system stalls. In all cases, level two cache

misses account for the majority of memory related stall
cycles.

Figure 3 further breaks down the L2 stalls category into
L2 miss stalls caused by instructions, loads, stores, and
translations. L2 translation stalls occur when the PowerPC 20
hardware page fault handler loads page table entry groups
into the cache while traversing the page table. As one , B S © B s o B s o

) . SPECjbb TPC—-W JServ TPC—-W DB2 TPC—-W Zeus SPECweb
would expect, load misses dominate the number of L2 - e Exclus bars show th .
cache miss stall cycles, however DB2 also shows a consid- ~'9ure 5- Use of the Exclusive State - bars show the percentage o
| f . I ith h th all cache lines entering the L2 cache in the E state, and the percent-
erable number of L2 store miss stalls. Although the data- ages of those which make transitions to the M state.

base and web server applications are affected by L2

instruction misses, the servlet engine and SPECjbb2000cache-cache-transfers, between 40% and 60% are dirty
suffer almost no instruction related L2 stalls. misses in Zeus, DB2, and SPECjbb2000, while almost

none of the cache-to-cache transfers are dirty misses in the
Java servlet engine.

% L2 Cache Blocks
4]
[e]

4.5. Cache-to-Cache Transfers

Previous. studies of commgrc.iall workloads have demon-4 g Impact of the Exclusive State
strated the importance of optimizing cache-to-cache trans-
fers due to the high percentage of cache misses to lines Recent work CharaCteriZing commercial workloads has
resident in the caches of other processors [2,15,17,22]. weargued that the exclusive state in multiprocessor cache
present a breakdown of cache misses based on the locatiofoherence protocols is not useful since stores rarely (less
from where they are serviced in the S80 memory System_than 2%) find cache lines in the L2 cache in the exclusive
The S80 server implements a MOESI coherence protocolstate (E state) [7, 15]. We believe that the percentage of
where cache misses to blocks in another processor’s cach&tores hitting the L2 cache in the E state is not a good indi-
are serviced by that processor when a cache block is in thecator of the E state’s usefulness. Due to spatial locality,
Owned (O), Exclusive (E), or Modified (M) state.The Many stores may reference a cache line, yet only the first
results of these measurements are shown in Figure 4. Leve§t0re to the line will find it in the E state. This Single transi-
2 cache misses are broken down into those misses whicHion count is a processor-centric view of the E state;
are serviced from memory, and those misses which are serbecause most processor references are filtered by the L2
viced by other caches containing a copy of the line in the cache, this count does not reflect the demands placed on
M, O or E state. Our data confirms previous work for the the system-wide interconnect.
web Serving and database portions of the workload, and A better indicator of E state usefulness is the frequency
also shows that a substantial fraction of references are serWith which cache lines enter the cache in the E state and

viced by another cache in the dirty state in the Java servertransition to the M state. As shown in Figure 5, we see that
workloads as well. In generaL we see that at least 20% OfbetWeen 27% and 60% of all cache lines enter the L2 cache

all L2 cache misses are serviced by cache-to-cache transin the E state. Furthermore, between 26% and 71% of these

fers, with as many as 52% to 62% in SPECweb99 and thecache lines eventually make the transition to the M state.
web Serving Component of the TPC-W workload. Of these Because each transition from the E state to the M state



saves a single bus upgrade transaction, we find that an extra Our processor model approximates the behavior of the
bus transaction would be required for as many as 28% ofRS64-Ill (Pulsar) processors used in IBM RS/6000 S80

all L2 cache misses in a simple MSI protocol. For this rea- systems. We collect results for one thread per processor (no
son, we believe adding the E state to multiprocessor cacheCGMT), two threads per processor, and four threads per

coherence protocols is justified. processor configurations; Pulsar implements two threads
_ ) per processor. As shown in Section 4.4, Pulsar runs at
5. Simulation Results approximately 1.0 cycles per instruction in the absence of

cache misses; hence, we do not model the details of the
pipeline but instead charge one cycle for every instruction
that is executed and use an accurate memory subsystem
timing model that accounts for latencies and contention in
the memory hierarchy.

Our simulator models a simplified version of the Pulsar
thread switch state machine. There are four possible states
. . 'for a thread: running, ready, stalled, and swapped. Threads
results which could not have been collected using perfor- o Co

. : transition between states whenever a cache miss is initiated
mance counters. The use of multithreading affects many ) . .
; or, completed, and when the thread switch logic decides to
aspects of processor design, because the access of shared . L L
. : Switch to an alternate thread. The conditions for switching
resources by different threads may have an impact on eacr%
thread. In Section 5.2, we contrast the behavior of several
different branch predictor designs in the presence of multi-
threading. In Section 5.3, we examine the effects of multi-
threading on cache behavior and sharing. In Section 5.4,
we measure the performance impact of coarse-grained
multithreading on the TPC-W workload.

For the experiments presented in this section, we
include results for the SPECint_rate95 benchmark in addi-
tion to TPC-W, SPECjbb2000, and SPECweb99. instruction in the last 1000 cvcles
SPECint_rate95 consists of concurrently executing all of Y :

the SPEC95 integer benchmarks as a measure of system quward Progress 1s guarante(_ad l_)y preven_tmg a pre-
throughput. emptive thread switch from occurring if the running thread

has been active for less than 100 cycles. We assume a 3-
cycle thread switch penalty for draining the pipeline and
5.1. Methodology resuming instruction fetch from the new active thread; this
We use an augmented version of the SimOS-PPC [16]matches the Pulsar switch penalty.
full system simulator, which is a PowerPC port of the sim- ~ We model an aggressive 4-way snooping-bus shared
ulator originally developed at Stanford University [23]. memory multiprocessor. The snoop design is modeled after
SimOS-PPC runs a slightly modified version of AlX 4.3.1. the Sun Gigaplane [24], which uses a split-transaction,
Given the level of interaction between system code andpipelined address bus with support for 120 outstanding
user code and the amount of inter-process communicatiorfransactions and out-of-order responses. The bus imple-
in these workloads, the ability to simulate user and systemments an invalidation-based 3-state (Owned, Shared,
level code is essential. SImOS-PPC faithfully simulates all Invalid) snooping cache coherence protocol with no tran-
system devices in detail. sient states and the level two caches implement the MOESI
SimOS-PPC uses the same setup as the native executioprotocol. The data network is modeled after the Sun Giga-
runs in terms of disks, database setup, and applicationsplane-XB [8] and is a 64-bit wide point-to-point data cross-
Thus, all the software parameters for the workload carry bar. The latencies in the memory system are modeled in
over from the native runs. The slow speed of detailed pro- detail, as is contention at all levels of the memory hierar-
cessor and memory system simulation constrains thechy. Due to the differences between these parameters and
length of time the workload is actually studied. We use the the S80 memory system, and the difference of processor
high speed simulation mode of SimOS-PPC to warm up counts, the results presented in this section are not compa-
the workload. With the exception of SPECint_rate95, we rable with those presented in Section 4. All other memory
use a three second snapshot of steady-state behavior (aftetystem parameters match those in Table 4.
a warm-up period) for timing statistics. SPECint_rate95 is  For those workloads which use a driver program, we
run to completion using reduced input sets. bind the driver program to an extra processor on which we

Although much can be learned about the behavior of a
system using performance monitoring hardware, we are
restricted to studying existing systems. If one would like to
study the performance implications of new architectural
techniques without building hardware, simulation is neces-
sary. In this section, we present a study of the effects of
coarse-grained multithreading on system performance

0 an alternate thread are the following:

* A cache miss has occurred in the primary thread, and
there is another thread in the ready state.

* The primary thread has entered the idle loop or is spin-
ning on a lock, and there is a non-idle, non-spinning
thread in the ready state.

» An alternate thread has a pending interrupt or excep-
tion.

* An alternate ready, non-idle, thread has not retired an



do not collect statistics. For example, in the 4-way SMP fourth the size of the single threaded processor’s branch
TPC-W runs, the browser emulator is run on a fifth proces- predictor. Our results show that this is an effective method
sor for which no statistics are collected. for reducing the number of mispredictions caused by inter-

ference between threads. However, since each individual
5.2. Effect of Multithreading on Branch Prediction branch predictor is smaller in size than the single threaded
processor’s branch predictor, the individual branch predic-
tors still perform worse than the large uniprocessor branch
predictor.

A disadvantage of using separate branch predictors for
each thread is that this strategy cannot adapt to workloads
which require branch predictors of varying sizes. For
example, if one thread has a larger BHT than it needs, it

bravr:/ch?sa that when the thread h cannot share entries of its BHT with a second thread whose
€ find that when the threads on a processor share orking set does not fit in the BHT.

standard branch predictor, as shown in the shared BHR and" '~ y4ress this problem, we also simulate a branch pre-

BHT casein F|gu_re 6, the histories of th? branchesldestruc-dictor which has a separate branch history register (BHR)
tNelY interfere with one gnother, negat|ve|y. affecting the for each thread but shares the BHT between all threads.
predlctqr’s accuracy. To improve the pre-d|ctor’s perfor- Our results show that in all of the workloads except
{nance |fn tr)‘nulntrlreadzq tproces\:;‘or?, vtve smu]ate two netWSPECWGbQQ, this branch predictor performs better than
ypes of branch predictors. Ve Hirst examine separate eparate smaller branch predictors for each thread when
branch predictors for each thread, where the size of each OEsing small branch predictors. However, this branch pre-
tThﬁ prgdlrt;:]ors IS sce:cled (;jov:/rlhby tge dnumber of t?{\ea?s'dictor still performs significantly worse than the large pri-
us, In the case of a dual threaded processor, the WQ ;0 yranch predictor used in the uniprocessor run,

branch predictors f'ﬂe one-half t_he size Of_ the single indicating a substantial amount of conflict among threads
threaded processor’s branch predictor. Likewise, the pro-

cessor with four threads has four branch predictors one-

We simulate three different GShare branch predictor
[21] configurations with branch history tables (BHT) rang-
ing from 1K to 256K entries. Figure 6 shows the branch
misprediction rates of 1,2, and 4-way multithreaded uni-
processor systems for the six workloads. Note that our sim-
ulator ignores branches in idle loops and unconditional

12 12

-
Y

i
(=]

=
Q

[N
[N

% Mispredictions
(=2}

% Mispredictions
=
L

% Mispredictions

NS
B
b

o .
A AT =y 2
B iy
8 4K 16K 64K 256K 8 4K 16K 64K 256K 8k 4K 16K 64K 256K
# of BHT Entries # of BHT Entries # of BHT Entries
(a) TPC-W Browsing Mix (b) TPC-W Shopping Mix (c) TPC-W Ordering Mix
35 35 35
30 30 30

N

N
@

N
G oO, O

N
UL
'
'

N
AN
N
=N

=
o
=
3
=

% Mispredictions
% Mispredictions
% Mispredictions

[N

o
=
o
=
o

4]
4]

cj\.K 4K 16K 64K 256K (iK 4K 16K 64K 256K ?.K 4K 16K 64K 256K
# of BHT Entries # of BHT Entries # of BHT Entries
(d) SPECjbb2000 (€) SPECweb99 (f) SPECint_rate95
Figure 6. The Effects of Multithreading on Branch Predictor Performance - the dotted, [ =~ 1 1hr. priwate BHFRE ZBHT

. . . . . = B 1
dashed, and solid lines represent 1, 2, and 4-way multithreading, respectively. Result _ _ E::: :;:Eﬁ E”E i_?:_d RHT

using a branch history register shared among threads and a branch history table shared 2 ihi: private BHR & BHT
among threads are graphed using a square. Results for a private BHR and shared BHT 4 ihr: shawed BHA & BHT

. X . . d 1hr; private B, sheed RHT
are graphed using a circle, and results for a private BHR and BHT use a triangle. i thr: privade BER & BET

| A



0.7 0.7 = 0.7
0.6 0.6 0.6
0.5 0.5
0.4 0.4 _ =
0.3 0.3
0.2 0.2 i
0.1 0.1

Misses per 100 Instrs
OO OO OoOOoO
P NWksO
[ [
[ [
[
I |
I |
[ ]
Misses per 100 Instrs
o
[ [
|
Misses per 100 Instrs
o
[
|
[ 1
T 1

U I UL )

ANYAd AN Ad ANT Ao S8¥o9 S98¥S9d d8¥S4 S8¥o9 S98¥Sd d8¥S4
SS558F S558§F S55&9 S8558&§F S558§F 5538¢F S8558&§F S558§F 5538 ¢%
328 64B 1288 32B 64B 1288 32B 64B 1288
Cache line size Cache line size Cache line size
(a) TPC-W Browsing Mix (b) TPC-W Shopping Mix (c) TPC-W Ordering Mix
0.3 0.3 0.3
0 0.25 0 0.25 0 0.25
202 202 202
8 015 — 8 015 — 8 015 —
- - - ]
5 0.1 L 5 0.1 L 5 01 r=e=m
Q = Q = Q
» 0.05 <F7 » 0.05 <F7 » 0.05H ﬁﬁfﬂ:
g, g g mmmil
2 2 2
b= S8Fdd a8¥a99 d8Faa b= S8Fdd ad8¥a99 dA8Faa b= S8Fdd Ad8¥ad dA8Faa
QaoQQQ [eNfe o oN Qoo QQ QaoQQQ [eNfeNoN o oN Qoo QQ QaoQQQ [eNfeNoN o oN Qoo QQ
N AN N N AN N N A AN N
32B 64B 128B 32B 64B 128B 32B 64B 128B
Cache line size Cache line size Cache line size
(d) SPECjbb2000 (e) SPECweb99 (f) SPECint_rate95

Figure 7. Cache Misses of Each Workload Broken Down into Cold, True Sharing, False
Sharing, and Capacity/Conflict Misses - EachXpYt bar corresponds to a separate run | F -

. . . = Iza Sh
using X processors andY hardware threads per processor. Note the difference of y-axis ' = TlauTEh:l::rllEg
scale for the TPC-W results. | B Coild Missas

[ Capaciy and Ganlic] |

in the BHT. As the size of the branch predictor increases, number of threads, which is an artifact of our simulator
the performance of a private BHT/private BHR predictor- starting with unwarmed caches. As the number of threads
catches up with the shared BHT/private BHR predictor, increases per processor, so does the relative percentage of
because each private BHT becomes large enough to mini-our three second snapshot which is spent warming up the
mize conflicting updates to the BHT by different branches. caches. If there is any prefetching occurring among

threads, its gains are offset by the increased amount of time
5.3. Effects of Multithreading on Cache Behavior spent warming the cache.

Unlike the uniprocessor systems, we see the number of
Icapacity and conflict misses decrease with the number of
processors in multiprocessor configurations. Since each
processor has its own cache, the aggregate cache size for
the entire system is much larger. In all of the workloads,
there is a significant amount of true sharing, even for the
multiprocessor SPECint_rate95, due to effects of the oper-
rélting system.

To measure cache performance, we simulate single leve
unified four way set associative 8 MB caches with three
different line sizes. At the beginning of the simulations, the
caches are empty. Note that memory references from
instructions in idle loops are not included, since they will
usually hit in the cache and thus would artificially lower
the cache miss rates. We compute true and false sharing i
the caches using Du_bois’ <_jefinition of sha.ring. [9]. The TPC-W exhibits relatively few false sharing misses,
. OT . s_lmulat|ons are shown in Figure 7. Indespite its much larger number of misses per instruction. In
the m.uIt|threaded.unlp.rocess.or system§, the number Ofour implementation of TPC-W, there is no shared data
capacity and conflict misses increase with the number of

thread ; I of th Kload Ct among servlets running in the Java servlet engine; all shar-
reads per processor for all of the workioads excep Oring occurs in the database. DB2 is a mature application
SPECint_rate95. This is not surprising, since all of the

threads sh th he leavi h thread .twhich has been optimized to reduce false sharing. We
f;eat.s IS are T‘I samehcai:h € _ea\t/r|]ng eac ¢ rea V;” tBelieve SPECjbb2000 and Zeus are less mature applica-
efiectively a smailer cache than in the case ol a SING€ ;5 \which not been optimized to reduce false sharing,

thre.aded processor. In SPECint_rateds, the 8 MB C"’mhenence the relatively larger number of false sharing misses.
easily contains most of the memory footprint, even when

shared among four different threads.
In most cases the number of cold misses grows with the



5.4. Multithreading Performance

We collect overall cycles-per-instruction (CPI) perfor-
mance data from our detailed memory subsystem simula-

Benchmark 1p1t 1p2t Speedup 1p4t Speedup
SPECjbb2000 1.33 1.2 8% 1.144 17%6
TPC-W Browsing 1.58 1.42 119 1.2B 23%
TPC-W Shopping 2.07 1.4 41% 1.33 560
TPC-W Ordering 2.04 1.56 31% 1.28 60%
SPECweb99 1.29 1.14 13% 1.15 12p6
SPECint_rate95 1.1¢ 1.0 5% 1.05 5po

Table 5: Modeled Cycles Per Instruction (CPI) - this table shows the
modeled CPI for each benchmark in the 1,2, and 4-way CGMT
uniprocessor, and speedups relative to the 1plt case.

TPC-W. We also show that sharing of branch prediction

resources among contexts is detrimental to the perfor-
mance of the branch predictor due to negative interference
among threads. The addition of multiple threads to the pro-
cessor also increases conflict misses and contention in the
memory system. Despite these two penalties, the ability to
tolerate memory system latency by coarse-grained multi-
threading makes it an attractive choice for commercial
workloads.
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