
oft-
the
d
d
ys-
ior
ver
for

ce
n-
C-

r-
up-
een

nd
s.

-
2].
on
ed
nd
d
n
ced
n-
el-
at
of

lex
t
ct
to

ry,
e-
W
gs
n
re

An Architectural Evaluation of Java TPC-W

Harold W. Cain, Ravi Rajwar

Computer Sciences Department
University of Wisconsin

Madison, WI 53706
{cain,rajwar}@cs.wisc.edu

 Morris Marden, Mikko H. Lipasti

Dept. of Electrical and Computer Engineering
University of Wisconsin

Madison, WI 53706
{marden,mikko}@ece.wisc.edu
Abstract
The use of the Java programming language for imple-

menting server-side application logic is increasing in popu-
larity, yet there is very little known about the architectural
requirements of this emerging commercial workload. We
present a detailed characterization of the Transaction Pro-
cessing Council’s TPC-W web benchmark, implemented in
Java. The TPC-W benchmark is designed to exercise the
web server and transaction processing system of a typical
e-commerce web site. We have implemented TPC-W as a
collection of Java servlets, and present an architectural
study detailing the memory system and branch predictor
behavior of the workload. We also evaluate the effective-
ness of a coarse-grained multithreaded processor at
increasing system throughput using TPC-W and other com-
mercial workloads. We measure system throughput
improvements from 8% to 41% for a two context processor,
and 12% to 60% for a four context uniprocessor over a sin-
gle-threaded uniprocessor, despite decreased branch pre-
diction accuracy and cache hit rates.

1. Introduction

In the last few years, the world-wide web has evolved
from a global repository for static information into a
dynamic environment that provides mechanisms for con-
necting to and interacting with an ever-increasing number
of on-line databases and other sources of dynamic content.
In the pursuit of global market share and mindshare, com-
panies ranging from traditional “brick-and-mortar” retailers
to online-only startup companies are implementing web
sites that allow a high level of dynamic interaction with
their inventory, purchasing, and order databases. This tran-
sition to online electronic commerce is placing new
demands on both the software and hardware infrastructure
used to implement these complex systems. On the software
side, new implementation techniques like increasing layers
of middleware, business object frameworks, and new pro-
gramming languages such as Java are required to simplify
the task of the application programmer and reduce develop-

ment time. On the hardware side, the overhead of such s
ware techniques and the unique demands created by
confluence of web connectivity, complex middleware an
application logic, as well as the high availability expecte
of traditional on-line transaction processing database s
tems have the potential to dramatically change the behav
of the program code being executed on the large ser
computer systems that serve as the hardware platforms
these web sites.

Historically, the Transaction Processing Performan
Council (TPC), a consortium of system and database ve
dors, has specified standard benchmarks (e.g. TPC-A, TP
B, TPC-C, TPC-D, TPC-H, TPC-R) for evaluating the pe
formance of both transaction processing and decision s
port database systems [27]. These benchmarks have b
very useful for gauging the absolute performance a
price/performance of combined software/hardware system
A significant body of prior work has studied the architec
tural requirements of such workloads [13,15,17,19,20, 2
At the same time, the Systems Performance Evaluati
Cooperative (SPEC), a similar consortium, has develop
standard benchmarks for evaluating both static a
dynamic web content serving (SPECweb96 an
SPECweb99, respectively) [26]. While useful in their ow
right, none of these benchmarks reflect the demands pla
on systems that must perform all of these functions in co
cert. As a response to this shortcoming, the TPC has dev
oped a new benchmark for e-commerce called TPC-W th
is modeled after an on-line bookstore, and includes many
the elements present in such a website, including comp
application logic, a significant web serving componen
including both static and dynamic web pages, and dire
transaction processing and decision support connectivity
an online relational database containing product invento
customer, and order tracking information. We have impl
mented most of the requirements specified in the TPC-
specification and have published some of our early findin
[4]. An overview of the TPC-W specification is presented i
Section 2, and the details of our implementation a

d
eb
ted
b

o a
on
eb

ha-
er-

sary
s,
ge

he
.

s,
d
ly

t of
ns
g
nt
a-

e

ne
nd
d

min
e
ts
s,

so
er-

ch
b
e

in
a
e.

ok-
g
f
the
ed
er-
er
y
nd
described in Section 3. In Section 4 we present results
characterizing this benchmark natively on a six-processor
IBM RS/6000 S80 shared-memory multiprocessor system.

Meanwhile, as the proliferation of the world-wide web
has dramatically altered the landscape for commercial
server software, architectural trends and new techniques
have continued to evolve. Some of these trends include:
deeper pipelines that are increasingly dependent on accu-
rate branch prediction, the increasing importance of a high-
performance memory subsystem, particularly in multipro-
cessor systems, and the need for architectural techniques to
overcome or tolerate high memory and interprocessor com-
munication latencies. One particularly effective technique
studied in the literature and subsequently implemented in
the IBM AS/400 line of computers is coarse-grained multi-
threading (CGMT) [1,10,11,12,18]. In CGMT, multiple
thread contexts exist within each physical processor, and
thread-switch logic is used to swap threads in and out
whenever long-latency events such as cache misses stall
the execution of a particular thread. In Section 5, we char-
acterize overall system performance as well as memory
subsystem and branch predictor behavior in the context of
conventional and CGMT processors in uni- and multipro-
cessor configurations running the TPC-W workload. As
has been shown in the past for other commercial work-
loads, we find that CGMT is an effective technique for
increasing throughput of Java server workloads, despite an
increase in cache misses and reduced accuracy of a shared
branch prediction mechanism.1

2. TPC-W Benchmark Specification

The TPC-W benchmark is a transactional web bench-
mark which models an on-line bookstore. The benchmark
comprises a set of operations designed to exercise a web
server/database system in a manner representative of a typ-
ical internet commerce application environment. This envi-
ronment is characterized by multiple concurrent on-line
browser sessions, web serving of static and dynamically
generated web pages, and a variety of access and update
patterns to a database consisting of many tables with differ-
ent sizes, attributes and relationships. We begin this section
with a general overview of the benchmark, followed by a
detailed description of the web serving and database com-
ponents of the workload.

2.1. TPC-W Overview

The components of TPC-W can be logically divide
into three tiers: a set of emulated web browsers, a w
server, and a means of persistent storage. The emula
browsers simulate the activities of multiple concurrent we
browsing users, each making autonomous requests t
web server for both web pages and images. Depending
the web page requested, it may be necessary for the w
server to communicate with the persistent storage mec
nism and dynamically generate a response page. The p
sistent storage mechanism records all of the data neces
for an online bookstore (e.g. inventory, customer record
order records, etc.). Although the web server and stora
mechanism are logically separated into two parts, t
benchmark specification does not preclude merging them

The TPC-W specification defines 14 web interaction
each different from one another in terms of the require
amount of server-side processing. Some are relative
light-weight, requiring only web serving of static HTML
pages and images. Others require a considerable amoun
server-side processing, involving one or more connectio
with a database in addition to dynamically generatin
HTML pages. A few characteristics related to the amou
of processing required by each web interaction are summ
rized in Table 1. Most of the web interactions requir
dynamic HTML generation, including all of those which
communicate with the database. The amount of work do
by the database varies from one interaction to another, a
while many of the interactions perform simple selects an
updates to the database, others (e.g. Best Seller and Ad
Confirm) perform complicated transactions similar to thos
found in decision support system workloads. Table 1 lis
the number of joins required for each interaction’s querie
as an approximation of the query complexity. There is al
a number of static images associated with each web int
action, ranging in size from 5KB to 1MB. The last column
in this table shows the response time requirement for ea
of the web interactions. At least 90% of each type of we
interaction must complete within this maximum respons
time.

A TPC-W benchmark run begins by starting a certa
number of emulated browsers, each of which begins
browsing session at the TPC-W bookstore home pag
These emulated browsers continue traversing the bo
store’s web pages, following different links and enterin
user information with varying probabilities. The number o
emulated browsers used is variable, and determines
maximum reported throughput results. During an emulat
browser session, the browser may fill a shopping cart, p
form searches in the inventory database, fill out custom
information, perform bookstore administrative duties, bu
the contents of the shopping cart, look at best sellers a

1. We emphasize that our implementation does not fully con-
form to the TPC-W specification, and hence none of the
results presented in this paper should be interpreted as accurate
representations of the performance of the software or hardware
systems described in this paper. Our results do not meet the
strict reporting and auditing requirements specified by the
TPC, are in no sense official or comparable to any other TPC-
W results, and should not be considered as such.

ed
us-
n,
-
tain
er,
e

cu-
he
of
s-
e
se

two
m-
s-
m
ed
ase
w

s-
the
mb-

cy
rior
new products lists, and make inquiries about previous
orders. There is a random period of time spent sleeping
between subsequent individual browser requests, to simu-
late a user’s think time. The emulated browsers continue to
access the system under test for several minutes. Once the
system reaches a steady state, performance measurements
begin.

The primary performance metric tested by the TPC-W
benchmark is throughput, measured as the number of web
interactions per second (WIPS). The specification defines
three different mixes of web interactions, each varying the
ratio of inventory browsing related web pages visited to
ordering related web pages visited. Depending on the par-
ticular mix that is used, a remote browser emulator is more
or less likely to visit certain parts of the store-front web-
site. The primary mix used is the shopping mix (throughput
is denoted as WIPS), which is intended to reflect an aver-
age shopping scenario, in which 80% of the pages a user
visits are related to browsing and 20% of the pages are
related to ordering. Because actual usage patterns may vary
for different web sites, the TPC-W specification defines
two other web interaction mixes: a browsing mix (WIPSb)
in which very little (5%) ordering occurs, and an ordering
mix (WIPSo), in which the ratio of browsing to ordering is
even. The exact web interaction frequencies for each mix
are shown in Table 2. Results are reported for each of the
three web interaction mixes, and the TPC specifies that all
hardware and software configuration must be identical for
each of the interaction mixes.

2.2. Database Component

The TPC-W specification defines the exact schema us
for the database. This schema consists of eight tables: c
tomer, address, order, order line, credit card transactio
item, author, and country. At a minimum, a TPC-W imple
mentation must include a database whose tables con
the exact organization specified by this schema. Howev
additional fields and tables may be added. Most of th
benchmark tables are modified over the course of an exe
tion; only the author and country tables are read-only. T
ratio of read-only to read-write queries changes for each
the different mixes. The queries associated with the brow
ing-related web interactions are all read-only, while th
order-related web interactions contain many databa
updates.

The scaling rules for the database are dependent on
variables: the size of the bookstore inventory and the nu
ber of emulated browsers that will be used to drive the sy
tem. The number of items in the item table is chosen fro
one of five predetermined sizes. The number of emulat
browsers may be scaled in increments of one. The datab
scaling rules are shown in Table 3, along with typical ro
lengths and table size estimates for 1,000 emulated brow
ers and 10,000 items In addition to storing these tables,
system under test must also store images and image thu
nails associated with each item.

The TPC-W specification defines a set of consisten
requirements which the system under test must pass p

Name Dynamic
HTML?

Table
Joins

#
Images

Max Response
Time(seconds)

Admin Confirm Yes 4 5 20

Admin Request Yes 2 6 3

Best Seller Yes 3 9 5

Buy Confirm Yes 1 2 5

Buy Request Yes 1 3 3

Customer Registration No N/A 4 3

Home Yes 1 9 3

New Product Yes 2 9 5

Order Display Yes 1 2 3

Order Inquiry No N/A 3 3

Product Detail Yes 2 6 3

Search Request No N/A 9 3

Search Result Yes 2 9 10

Shopping Cart Yes 1 9 3

Table 1: TPC-W Web Interaction Characteristics.

Web Interaction Browsing
Mix (WIPSb)

Shopping
Mix (WIPS)

Ordering
Mix (WIPSo)

Browse 95% 80% 50%

Best Sellers 11.00% 5.00% 0.46%

Home 29.00% 16.00% 9.12%

New Products 11.00% 5.00% 0.46%

Product Detail 21.00% 17.00% 12.35%

Search Request 12.00% 20.00% 14.54%

Search Results 11.00% 17.00% 13.08%

Order 5% 20% 50%

Admin Confirm 0.09% 0.09% 0.11%

Admin Request 0.10% 0.10% 0.12%

Buy Confirm 0.69% 1.20% 10.18%

Buy Request 0.75% 2.60% 12.73%

Customer Registration 0.82% 3.00% 12.86%

Order Display 0.25% 0.66% 0.22%

Order Inquiry 0.30% 0.75% 0.25%

Shopping Cart 2.00% 11.60% 13.53%

Table 2: Web Interaction Frequencies for Each Mix

age
to

e
ard

a-
k-

s a
nt
b
m
b
n-

the
e-
ble
the
eb

his
e

is
d
e
n
of
.

ts
n-
s.
c
b-
er-
s
eir

in

of
-

vlet
al

for
n
or-
e
r

in-
ava
s;

r-
to publishing official results. Four of these requirements
pertain to database transactions and are called the ACID
requirements. The ACID requirements specify the neces-
sary conditions of atomicity, consistency, isolation and
durability for the system. The atomicity requirement guar-
antees that for a given web interaction, either all database
operations occur or none. The consistency requirement
specifies that given an initially consistent database, any
TPC-W database transaction transitions the database from
one consistent state to another. The isolation requirement
specifies that all TPC-W interactions must be isolated from
one another, meaning that concurrent transactions must
yield the same results as serialized transactions. The dura-
bility requirement specifies that all database transactions
must be durable, and the system will preserve the effects of
a committed database transaction after recovery from any
single point of failure.

2.3. Web Server Component

The web server software must include logic for tracking
user sessions. Each emulated browser session must be
tracked with a session identification number, meaning that
each request made by an emulated browser must include
this session identifier. Web servers and browsers typically
use one of two methods to maintain and communicate ses-
sions. The first is through cookies, in which the web server
responds to a browser’s initial request with a cookie, which
the browser includes with all subsequent requests. The sec-
ond means of maintaining sessions is through URL rewrit-
ing, in which the web server encodes a session ID as part of
the links within a HTML document. When a browser fol-
lows one of these links, the session ID is communicated as
part of the requested URL. The disadvantage of using URL
rewriting is that every web page must be dynamically gen-
erated in order to properly encode the session ID in all of
the web page’s links.

In addition to serving static and dynamically generated
HTML documents, the web server must also serve the

images referenced in each of these documents. The stor
requirements associated with these images amount
approximately 25 kilobytes per inventory item. The imag
file set may either be stored in the database or on a stand
file system.

In order to provide secure on-line payment authoriz
tion, the web server must include support for secure soc
ets layer (SSL) communications. The benchmark define
payment gateway emulator which authorizes the payme
of the purchasing transaction for the buy confirm we
interaction. This payment gateway emulator is a progra
external to the system under test, with which the we
server must communicate prior to completing the buy co
firm interaction.

Similar to the database consistency requirements,
web server must also follow strict consistency requir
ments. These requirements affect the amount of allowa
web page caching, specifying that any update made to
system must be reflected in pages returned by the w
server at most thirty seconds after the update. Prior to t
thirty second limit, either all of the effects of the updat
must be made visible or none. The search results page
the only web page which is exempt from this thirty secon
limit. Search results are minimally required to reflect th
state of the system after initial population. This relaxatio
was introduced to the specification to permit the use
commercially available web searching and indexing tools

3. A Java Implementation of TPC-W

The TPC-W specification dictates a set of requiremen
which an implementation must meet, but it allows substa
tial freedom for making various implementation decision
We have implemented all of the TPC-W application logi
in Java using the Java Servlet API. Very little has been pu
lished concerning the behavior and architectural charact
istics of this new workload. In this section, we will discus
some of the characteristics of our implementation and th
implications on performance. We also describe the areas
which our implementation strays from the specification.

Our implementation’s most notable feature is the use
Java for all bookstore application logic. We have imple
mented each of the 14 web interactions as a Java ser
using the Java Servlet API, an alternative to the tradition
common gateway interface (CGI) used by web servers
dynamic HTML generation and server-side applicatio
processing. The servlet interface provides a standard, p
table programming environment for writing server-sid
applications. The servlet API provides Java libraries fo
receiving and responding to HTTP requests and mainta
ing state for each user session. The portable nature of J
has enabled the use of these servlets on multiple platform
in a previous study, we were able to do a preliminary cha

Table Name Cardinality
(in rows)

Typical Row
Length (bytes)

Typical
Table Size

(bytes)

CUSTOMER 2880 * (number of EB) 760 2,188,888k

ADDRESS 2*CUSTOMER 154 887,040k

ORDERS .9 * CUSTOMER 220 570,240k

ORDER_LINE 3*ORDERS 132 1,026,432k

CC_XACTS 1*ORDERS 80 207,360k

ITEM 1k, 10k, 100k, 1M, 10M 80 207,360k

AUTHOR .25*ITEM 630 1,575k

COUNTRY 92 70 6.44k

Table 3: Database Scaling Rules and Example Table Sizes

ts
-
X
m
ac-
rs.
in
ell

-
ent

ts
as
is-

on
ed
er-

00
he
le
ier
y
nt

re-
nts,

he

ic
ar)
er
ul-
lti-
he
re
e
n

-
m

e
lti-

d,
ard-
k-
acterization of this workload on two architectures with no
changes to the benchmark application [4]. For this study
we use the Zeus web server with the Apache Jserv Java
servlet engine.

For the database component of this workload, we use
the IBM DB2 relational database system. Database query
and update requests are made by our servlets using the Java
Database Connectivity (JDBC) API. As described in Sec-
tion 2, the TPC-W specification organizes application data
into eight tables. In addition to the schema required by the
specification, our implementation stores the user’s shop-
ping cart in the database because the shopping cart must be
durable across any single point of failure for up to two
hours. We added two tables to the database to fulfill this
durability requirement. One advantage to keeping this state
in the database is that it removes all state associated with a
specific user session from the web server and Java servlet
engine. The elimination of this state allows us to use multi-
ple independent web servers and servlet engines for han-
dling requests. If necessary, different requests for any user
session may be routed to one of many servers, each com-
municating with the DB2 back-end.

Although the Servlet API provides library methods for
tracking sessions using both cookies and URL rewriting,
our implementation relies solely on URL rewriting. By
restricting ourselves to URL rewriting for session tracking,
we avoid the complexity of managing cookies in our
remote browser emulator. Unfortunately, this means that all
HTML documents must be dynamically generated in order
to encode a session identifier in each link. Eleven of the
fourteen web interactions require dynamically generated
HTML to display database query results, so there are only
three web interactions in which we pay a penalty for doing
URL rewriting. Consequently, we believe that our choice
of URL rewriting does not substantially affect the perfor-
mance of our implementation.

Our implementation of the TPC-W benchmark strays
from the specification in the following ways: we do not use
the secure sockets layer connection required for the buy
confirm interaction, or do the credit card authorization
associated with this web interaction. According to the
specification, the system under test must communicate
credit card information to an external application for pay-
ment authorization during the buy request web interaction,
and must also use the secure sockets layer for communicat-
ing credit card information. By neglecting to implement
this feature, the web server does less work for the buy con-
firm interaction than required by the specification. For the
browsing and shopping interaction mixes, this interaction
accounts for less than two percent of all web interactions,
and ten percent for the ordering mix. Because of its relative
infrequency, we believe that the loss of this functionality
does not seriously affect the behavior of the workload.

4. Native Execution Results

In this section, we present the results of experimen
performed while executing the workload natively on a 6
processor IBM RS/6000 S80 SMP system running the AI
4.3.3 operating system. We find that most memory syste
stalls are due to L2 cache load misses, and that a large fr
tion of L2 misses are serviced by cache-to-cache transfe
We also show the importance of using the exclusive state
cache coherence protocols when executing TPC-W as w
as other commercial workloads.

4.1. Workloads

To better understand how the behavior of TPC-W com
pares to other current server benchmarks, we also pres
results for SPECweb99 and SPECjbb2000.

SPECweb99 is a web serving benchmark which tes
many of the requirements of modern web servers, such
static and dynamic HTTP requests, keep alive and pers
tent connections, and dynamic advertisement rotati
using cookies. Our SPECweb99 results were collect
using the same Zeus web server used for the TPC-W exp
iments.

The SPEC Java Business Benchmark (SPECjbb) 20
is designed to test server-side Java performance. T
benchmark is written entirely in Java, and runs on a sing
instance of a Java virtual machine. It emulates a three-t
system similar to TPC-C in which a wholesale compan
containing multiple warehouses services many concurre
users. System throughput scales with the number of wa
houses used. We use six warehouses for these experime
and the same JVM for running both SPECjbb2000 and t
TPC-W Java servlet engine.

4.2. Methodology

The IBM RS/6000 S80 is a shared-memory symmetr
multiprocessor based on the PowerPC RS64-III (Puls
microprocessor [5, 25]. Pulsar is a four-issue in-ord
superscalar processor with a five stage RISC pipeline. P
sar tolerates memory latency with coarse-grained mu
threading by switching to an alternate thread whenever t
currently running thread encounters a cache miss. If the
is no other ready thread, the pipeline is stalled until th
miss resolves. Unfortunately the multithreading feature o
Pulsar is disabled in AIX 4.3.3. Despite the lack of multi
threading in the S80, until recently (July 2000) this syste
was the non-clustered TPC-C performance leader [27]. W
present simulation results evaluating coarse-grained mu
threading in Section 5.

Considerable effort has been spent tuning this workloa
and our system setup represents the state-of-the-art in h
ware and software for running commercial server wor

e
se
n

k-
-

runs
tri-
s,
m-
ica-
nt
rge
y
W
ll

lated
loads [14]. A few pertinent system parameters are
described in Table 4.

The smallest allowed item table size is 1,000 items; we
use a larger configuration with the scaling rules for 10,000
items and 50 emulated browsers.

The RS-64 III processor includes a rich set of eight 64-
bit performance counters. In combination, these counters
can record over 275 unique events ranging from memory
system statistics such as cache misses, coherence protocol
transitions, and bus utilization, to microarchitectural issues
such as coarse grained multithreading events and branch
penalties. Using these counters, we have collected substan-
tially more data than have room to present here; a more
complete set of data can be found in an extended version of
the paper [6].

The software used for controlling these counters sup-
ports counting on the granularity of a process tree, where a
single set of virtual counters is shared by a parent process
and all of the its child processes. We use this process tree
counting mode for all natively-collected results. Counting
is enabled for both user and system-level instructions.

While performing these experiments, the remote
browser emulators are run on workstations external to the
system under test, with the browser think time set to zero
seconds in order to place a heavy load on the server while
using fewer client CPU resources. A similar strategy was
used in Baylor et al. [3]. For each workload, the measure-
ments are performed during several runs consisting of a 15
minute warm-up phase followed by a 60 minute measure-
ment phase.

4.3. CPU Utilization by Component

Figure 1 shows the measured CPU utilization while run-
ning TPC-W for each of the three web interaction mixes,
breaking down the CPU utilization into parts for each of
the three workload components. We see that the Java serv-
let engine component dominates the CPU usage, account-
ing for 80% of the CPU utilization in each of the web
interaction mixes. The database accounts for the majority
of the remaining CPU time, with web server time account-

ing for less than 3% of the CPU in all mixes. We see som
idle time during the update-intensive ordering mix becau
of synchronization within the servlet implementatio
which prevents conflicting updates to the database.

4.4. Memory System Characterization

Figure 2 shows the measured CPI for each of the wor
loads, with memory system stall time broken into its com
ponents. In the absence of cache misses, the processor
at a CPI near one in all cases. The memory system con
bution to the CPI varies considerably among workload
with TPC-W Zeus and SPECweb99 most affected by me
ory system stalls, and the Jserv and SPECjbb Java appl
tions least affected. Zeus is the only TPC-W compone
which touches the static image file set, and DB2 has a la
memory footprint, which account for increased memor
system related stalls for the two applications. The TPC-
servlet engine suffers relatively few memory system sta
cycles; its primary function is formatting and forwarding
requests and responses between the database and emu

Hardware

Processors 6-way 450 MHZ RS-64 III (Pulsar)

Memory 8 GB

L2 Cache 8 MB unified cache per processor

L1 Cache 128 KB I-Cache, 128 KB D-Cache

Software

IBM JDK 1.1.8 with JITC, AIX 4.3.3 Apache Jserv 1.0

IBM DB2 6.1 Zeus Web Server 3.3.7

Database Size: 204 MB Image Set Size: 250 MB

Table 4: System Parameters Figure 1. CPU utilization divided among web server, database,
and servlet engine

Figure 2. CPI Breakdown - the TPC-W runs are broken into
groups of three bars, where each group corresponds to a different
component of the workload, and B, S, O bars within a group corre-
spond to browsing, shopping and ordering mix runs.

Browsing Shopping Ordering
0

0.2

0.4

0.6

0.8

1

C
P

U
 U

ti
liz

a
ti
o

n

Idle
Zeus
DB2
JServ

 B S O B S O B S O
0

0.5

1

1.5

2

2.5

C
P

I

SPECjbb TPC−W JServ TPC−W DB2 TPC−W Zeus SPECweb

Mem Barrier Stalls
TLB Miss Stalls
D Cache Miss Stalls
I Cache Miss Stalls
L2 Cache Miss Stalls
Infinite Cache CPI

irty
st
the

as
he
ss

ve
of

di-
ty,
rst
i-
e;
L2
on

cy
nd
at
he
se

te.
te
browsers, so it does not touch the volumes of data managed
by the database and web server, consequently resulting in
fewer memory system stalls. In all cases, level two cache
misses account for the majority of memory related stall
cycles.

Figure 3 further breaks down the L2 stalls category into
L2 miss stalls caused by instructions, loads, stores, and
translations. L2 translation stalls occur when the PowerPC
hardware page fault handler loads page table entry groups
into the cache while traversing the page table. As one
would expect, load misses dominate the number of L2
cache miss stall cycles, however DB2 also shows a consid-
erable number of L2 store miss stalls. Although the data-
base and web server applications are affected by L2
instruction misses, the servlet engine and SPECjbb2000
suffer almost no instruction related L2 stalls.

4.5. Cache-to-Cache Transfers

Previous studies of commercial workloads have demon-
strated the importance of optimizing cache-to-cache trans-
fers due to the high percentage of cache misses to lines
resident in the caches of other processors [2,15,17,22]. We
present a breakdown of cache misses based on the location
from where they are serviced in the S80 memory system.
The S80 server implements a MOESI coherence protocol
where cache misses to blocks in another processor’s cache
are serviced by that processor when a cache block is in the
Owned (O), Exclusive (E), or Modified (M) state.The
results of these measurements are shown in Figure 4. Level
2 cache misses are broken down into those misses which
are serviced from memory, and those misses which are ser-
viced by other caches containing a copy of the line in the
M, O or E state. Our data confirms previous work for the
web serving and database portions of the workload, and
also shows that a substantial fraction of references are ser-
viced by another cache in the dirty state in the Java server
workloads as well. In general, we see that at least 20% of
all L2 cache misses are serviced by cache-to-cache trans-
fers, with as many as 52% to 62% in SPECweb99 and the
web serving component of the TPC-W workload. Of these

cache-cache-transfers, between 40% and 60% are d
misses in Zeus, DB2, and SPECjbb2000, while almo
none of the cache-to-cache transfers are dirty misses in
Java servlet engine.

4.6. Impact of the Exclusive State

Recent work characterizing commercial workloads h
argued that the exclusive state in multiprocessor cac
coherence protocols is not useful since stores rarely (le
than 2%) find cache lines in the L2 cache in the exclusi
state (E state) [7, 15]. We believe that the percentage
stores hitting the L2 cache in the E state is not a good in
cator of the E state’s usefulness. Due to spatial locali
many stores may reference a cache line, yet only the fi
store to the line will find it in the E state. This single trans
tion count is a processor-centric view of the E stat
because most processor references are filtered by the
cache, this count does not reflect the demands placed
the system-wide interconnect.

A better indicator of E state usefulness is the frequen
with which cache lines enter the cache in the E state a
transition to the M state. As shown in Figure 5, we see th
between 27% and 60% of all cache lines enter the L2 cac
in the E state. Furthermore, between 26% and 71% of the
cache lines eventually make the transition to the M sta
Because each transition from the E state to the M sta

Figure 3. Breakdown of L2 Cache Miss Stall Cycles

 B S O B S O B S O
0

20

40

60

80

100

%
 L

2
M

is
s

S
ta

ll
C

yc
le

s

SPECjbb TPC−W JServ TPC−W DB2 TPC−W Zeus SPECweb

xlate miss
instr miss
store miss
load miss

Figure 4. Breakdown of Cache Line Residency forL2 Cache Misses

Figure 5. Use of the Exclusive State - bars show the percentage of
all cache lines entering the L2 cache in the E state, and the percent-
ages of those which make transitions to the M state.

 B S O B S O B S O
0

20

40

60

80

100

SPECjbb TPC−W JServ TPC−W DB2 TPC−W Zeus SPECweb

%
 L

2
C

ac
he

 M
is

se
s

Store Miss to M
Load Miss to M
Store Miss to O,E
Load Miss to O,E
Store Miss to Memory
Load Miss to Memory

 B S O B S O B S O
0

10

20

30

40

50

60

70

80

90

100

SPECjbb TPC−W JServ TPC−W DB2 TPC−W Zeus SPECweb

%
L2

 C
ac

he
 B

loc
ks

Entering in M,S, or O
Entering in E: No E−>M Transition
Entering in E: E−>M Transition

he
0

(no
er
ds
at
of
the
n

tem
in

r
tes
ds

ted
to
g

nd

n-
g

p-

an

re-
d

3-
d
is

ed
ter
n,

ng
le-

ed,
n-
SI
a-
-
in
r-
and
sor
pa-
ry

e
e

saves a single bus upgrade transaction, we find that an extra
bus transaction would be required for as many as 28% of
all L2 cache misses in a simple MSI protocol. For this rea-
son, we believe adding the E state to multiprocessor cache
coherence protocols is justified.

5. Simulation Results

Although much can be learned about the behavior of a
system using performance monitoring hardware, we are
restricted to studying existing systems. If one would like to
study the performance implications of new architectural
techniques without building hardware, simulation is neces-
sary. In this section, we present a study of the effects of
coarse-grained multithreading on system performance,
results which could not have been collected using perfor-
mance counters. The use of multithreading affects many
aspects of processor design, because the access of shared
resources by different threads may have an impact on each
thread. In Section 5.2, we contrast the behavior of several
different branch predictor designs in the presence of multi-
threading. In Section 5.3, we examine the effects of multi-
threading on cache behavior and sharing. In Section 5.4,
we measure the performance impact of coarse-grained
multithreading on the TPC-W workload.

For the experiments presented in this section, we
include results for the SPECint_rate95 benchmark in addi-
tion to TPC-W, SPECjbb2000, and SPECweb99.
SPECint_rate95 consists of concurrently executing all of
the SPEC95 integer benchmarks as a measure of system
throughput.

5.1. Methodology

We use an augmented version of the SimOS-PPC [16]
full system simulator, which is a PowerPC port of the sim-
ulator originally developed at Stanford University [23].
SimOS-PPC runs a slightly modified version of AIX 4.3.1.
Given the level of interaction between system code and
user code and the amount of inter-process communication
in these workloads, the ability to simulate user and system
level code is essential. SimOS-PPC faithfully simulates all
system devices in detail.

SimOS-PPC uses the same setup as the native execution
runs in terms of disks, database setup, and applications.
Thus, all the software parameters for the workload carry
over from the native runs. The slow speed of detailed pro-
cessor and memory system simulation constrains the
length of time the workload is actually studied. We use the
high speed simulation mode of SimOS-PPC to warm up
the workload. With the exception of SPECint_rate95, we
use a three second snapshot of steady-state behavior (after
a warm-up period) for timing statistics. SPECint_rate95 is
run to completion using reduced input sets.

Our processor model approximates the behavior of t
RS64-III (Pulsar) processors used in IBM RS/6000 S8
systems. We collect results for one thread per processor
CGMT), two threads per processor, and four threads p
processor configurations; Pulsar implements two threa
per processor. As shown in Section 4.4, Pulsar runs
approximately 1.0 cycles per instruction in the absence
cache misses; hence, we do not model the details of
pipeline but instead charge one cycle for every instructio
that is executed and use an accurate memory subsys
timing model that accounts for latencies and contention
the memory hierarchy.

Our simulator models a simplified version of the Pulsa
thread switch state machine. There are four possible sta
for a thread: running, ready, stalled, and swapped. Threa
transition between states whenever a cache miss is initia
or completed, and when the thread switch logic decides
switch to an alternate thread. The conditions for switchin
to an alternate thread are the following:

• A cache miss has occurred in the primary thread, a
there is another thread in the ready state.

• The primary thread has entered the idle loop or is spi
ning on a lock, and there is a non-idle, non-spinnin
thread in the ready state.

• An alternate thread has a pending interrupt or exce
tion.

• An alternate ready, non-idle, thread has not retired
instruction in the last 1000 cycles.

Forward progress is guaranteed by preventing a p
emptive thread switch from occurring if the running threa
has been active for less than 100 cycles. We assume a
cycle thread switch penalty for draining the pipeline an
resuming instruction fetch from the new active thread; th
matches the Pulsar switch penalty.

We model an aggressive 4-way snooping-bus shar
memory multiprocessor. The snoop design is modeled af
the Sun Gigaplane [24], which uses a split-transactio
pipelined address bus with support for 120 outstandi
transactions and out-of-order responses. The bus imp
ments an invalidation-based 3-state (Owned, Shar
Invalid) snooping cache coherence protocol with no tra
sient states and the level two caches implement the MOE
protocol. The data network is modeled after the Sun Gig
plane-XB [8] and is a 64-bit wide point-to-point data cross
bar. The latencies in the memory system are modeled
detail, as is contention at all levels of the memory hiera
chy. Due to the differences between these parameters
the S80 memory system, and the difference of proces
counts, the results presented in this section are not com
rable with those presented in Section 4. All other memo
system parameters match those in Table 4.

For those workloads which use a driver program, w
bind the driver program to an extra processor on which w

ch
d
r-

ual
ed
ic-
ch

for
ds
r
it

se

re-
R)
ds.
t

an
en
e-
i-
n,
ds
do not collect statistics. For example, in the 4-way SMP
TPC-W runs, the browser emulator is run on a fifth proces-
sor for which no statistics are collected.

5.2. Effect of Multithreading on Branch Prediction

We simulate three different GShare branch predictor
[21] configurations with branch history tables (BHT) rang-
ing from 1K to 256K entries. Figure 6 shows the branch
misprediction rates of 1,2, and 4-way multithreaded uni-
processor systems for the six workloads. Note that our sim-
ulator ignores branches in idle loops and unconditional
branches.

We find that when the threads on a processor share a
standard branch predictor, as shown in the shared BHR and
BHT case in Figure 6, the histories of the branches destruc-
tively interfere with one another, negatively affecting the
predictor’s accuracy. To improve the predictor’s perfor-
mance in multithreaded processors, we simulate two new
types of branch predictors. We first examine separate
branch predictors for each thread, where the size of each of
the predictors is scaled down by the number of threads.
Thus, in the case of a dual threaded processor, the two
branch predictors are one-half the size of the single
threaded processor’s branch predictor. Likewise, the pro-
cessor with four threads has four branch predictors one-

fourth the size of the single threaded processor’s bran
predictor. Our results show that this is an effective metho
for reducing the number of mispredictions caused by inte
ference between threads. However, since each individ
branch predictor is smaller in size than the single thread
processor’s branch predictor, the individual branch pred
tors still perform worse than the large uniprocessor bran
predictor.

A disadvantage of using separate branch predictors
each thread is that this strategy cannot adapt to workloa
which require branch predictors of varying sizes. Fo
example, if one thread has a larger BHT than it needs,
cannot share entries of its BHT with a second thread who
working set does not fit in the BHT.

To address this problem, we also simulate a branch p
dictor which has a separate branch history register (BH
for each thread but shares the BHT between all threa
Our results show that in all of the workloads excep
SPECweb99, this branch predictor performs better th
separate smaller branch predictors for each thread wh
using small branch predictors. However, this branch pr
dictor still performs significantly worse than the large pr
vate branch predictor used in the uniprocessor ru
indicating a substantial amount of conflict among threa

(a) TPC-W Browsing Mix (b) TPC-W Shopping Mix (c) TPC-W Ordering Mix

(d) SPECjbb2000 (e) SPECweb99 (f) SPECint_rate95

Figure 6. The Effects of Multithreading on Branch Predictor Performance - the dotted,
dashed, and solid lines represent 1, 2, and 4-way multithreading, respectively. Results
using a branch history register shared among threads and a branch history table shared
among threads are graphed using a square. Results for a private BHR and shared BHT
are graphed using a circle, and results for a private BHR and BHT use a triangle.

 1K 4K 16K 64K 256K
0

2

4

6

8

10

12

of BHT Entries

%
 M

is
pr

ed
ic

tio
ns

 1K 4K 16K 64K 256K
0

2

4

6

8

10

12

of BHT Entries

%
 M

is
pr

ed
ic

tio
ns

 1K 4K 16K 64K 256K
0

2

4

6

8

10

12

of BHT Entries

%
 M

is
pr

ed
ic

tio
ns

 1K 4K 16K 64K 256K
0

5

10

15

20

25

30

35

of BHT Entries

%
 M

is
pr

ed
ic

tio
ns

 1K 4K 16K 64K 256K
0

5

10

15

20

25

30

35

of BHT Entries

%
 M

is
pr

ed
ic

tio
ns

 1K 4K 16K 64K 256K
0

5

10

15

20

25

30

35

of BHT Entries

%
 M

is
pr

ed
ic

tio
ns

r
ds
e of
the
g

me

of
of
ch
for

s,
e

er-

,
In
ta
ar-
on

e
ca-
g,
s.
in the BHT. As the size of the branch predictor increases,
the performance of a private BHT/private BHR predictor-
catches up with the shared BHT/private BHR predictor,
because each private BHT becomes large enough to mini-
mize conflicting updates to the BHT by different branches.

5.3. Effects of Multithreading on Cache Behavior

To measure cache performance, we simulate single level
unified four way set associative 8 MB caches with three
different line sizes. At the beginning of the simulations, the
caches are empty. Note that memory references from
instructions in idle loops are not included, since they will
usually hit in the cache and thus would artificially lower
the cache miss rates. We compute true and false sharing in
the caches using Dubois’ definition of sharing [9]. The
results of the cache simulations are shown in Figure 7. In
the multithreaded uniprocessor systems, the number of
capacity and conflict misses increase with the number of
threads per processor for all of the workloads except for
SPECint_rate95. This is not surprising, since all of the
threads share the same cache, leaving each thread with
effectively a smaller cache than in the case of a single
threaded processor. In SPECint_rate95, the 8 MB cache
easily contains most of the memory footprint, even when
shared among four different threads.

In most cases the number of cold misses grows with the

number of threads, which is an artifact of our simulato
starting with unwarmed caches. As the number of threa
increases per processor, so does the relative percentag
our three second snapshot which is spent warming up
caches. If there is any prefetching occurring amon
threads, its gains are offset by the increased amount of ti
spent warming the cache.

Unlike the uniprocessor systems, we see the number
capacity and conflict misses decrease with the number
processors in multiprocessor configurations. Since ea
processor has its own cache, the aggregate cache size
the entire system is much larger. In all of the workload
there is a significant amount of true sharing, even for th
multiprocessor SPECint_rate95, due to effects of the op
ating system.

TPC-W exhibits relatively few false sharing misses
despite its much larger number of misses per instruction.
our implementation of TPC-W, there is no shared da
among servlets running in the Java servlet engine; all sh
ing occurs in the database. DB2 is a mature applicati
which has been optimized to reduce false sharing. W
believe SPECjbb2000 and Zeus are less mature appli
tions which not been optimized to reduce false sharin
hence the relatively larger number of false sharing misse

(a) TPC-W Browsing Mix (b) TPC-W Shopping Mix (c) TPC-W Ordering Mix

(d) SPECjbb2000 (e) SPECweb99 (f) SPECint_rate95

Figure 7. Cache Misses of Each Workload Broken Down into Cold, True Sharing, False
Sharing, and Capacity/Conflict Misses - EachXpYt bar corresponds to a separate run
using X processors andY hardware threads per processor. Note the difference of y-axis
scale for the TPC-W results.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

32B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

64B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

128B

M
is

se
s

p
e

r
1

0
0

 I
n

st
rs

Cache line size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1p
1t

1p
2t

1p
4t

2p
1t

4p
1t

32B

1p
1t

1p
2t

1p
4t

2p
1t

4p
1t

64B

1p
1t

1p
2t

1p
4t

2p
1t

4p
1t

128B

M
is

se
s

pe
r

10
0

In
st

rs

Cache line size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1p
1t

1p
2t

1p
4t

2p
1t

4p
1t

32B

1p
1t

1p
2t

1p
4t

2p
1t

4p
1t

64B

1p
1t

1p
2t

1p
4t

2p
1t

4p
1t

128B

M
is

se
s

pe
r

10
0

In
st

rs

Cache line size

0

0.05

0.1

0.15

0.2

0.25

0.3

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

32B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

64B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

128B

M
is

s
e

s
 p

e
r

1
0

0
 I

n
s
tr

s

Cache line size

0

0.05

0.1

0.15

0.2

0.25

0.3

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

32B
1

p
1

t
1

p
2

t
1

p
4

t
2

p
1

t
4

p
1

t

64B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

128B

M
is

s
e

s
 p

e
r

1
0

0
 I

n
s
tr

s

Cache line size

0

0.05

0.1

0.15

0.2

0.25

0.3

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

32B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

64B

1
p

1
t

1
p

2
t

1
p

4
t

2
p

1
t

4
p

1
t

128B

M
is

s
e

s
 p

e
r

1
0

0
 I

n
s
tr

s

Cache line size

n
or-
ce
o-
the
to
lti-
al

nd

lp
e
2
-

or

y
n
m

,
,
s.

-
-

it
n.

l-
ity

s,
a

-

.

n-

,
e-
5.4. Multithreading Performance

We collect overall cycles-per-instruction (CPI) perfor-
mance data from our detailed memory subsystem simula-

tor, which is presented in Table 5. These measurements do
not include instructions executed while in the idle loop, so
they are more precisely a measurement of cycles-per-use-
ful instruction.

We find that the use of coarse grained multithreading
offers significant speedups for all of the commercial appli-
cations, with SPECint_rate95 showing only small speed-
ups. The five commercial workloads show considerable
reductions in CPI in the 2-way multithreaded case, as much
as 41% for the TPC-W shopping mix, and more reductions
in the 4-way multithreaded case. However, the law of
diminishing returns is in effect, as those applications which
do not incur many memory system stalls gain little from
multithreading. The speedups found in those applications
which do suffer large memory system penalties, namely all
of the commercial workloads, are compelling evidence of
the efficacy of coarse-grained multithreading.

6. Conclusions

We show that level two cache misses caused by data ref-
erences are the primary contributor to memory system stall
cycles in Java commercial workloads, like other commer-
cial workoads. We find between 20% and 50% of these
misses are serviced by cache-to-cache transfers in a six-
processor SMP system using a MOESI coherence protocol.
We show that using the exclusive state eliminates an extra
bus upgrade transaction which would otherwise be neces-
sary for 8% to 28% of all level two cache misses.

We also present the first execution driven study of a
coarse-grained multithreaded processor using commercial
workloads. We believe that coarse-grained multithreading
is a viable means of increasing system throughput given
limited processor resources. We saw between 23% and
60% throughput improvements for the four context unipro-
cessor over a single-threaded uniprocessor when running

TPC-W. We also show that sharing of branch predictio
resources among contexts is detrimental to the perf
mance of the branch predictor due to negative interferen
among threads. The addition of multiple threads to the pr
cessor also increases conflict misses and contention in
memory system. Despite these two penalties, the ability
tolerate memory system latency by coarse-grained mu
threading makes it an attractive choice for commerci
workloads.

7. Acknowledgments

This work was supported in part by an IBM University
Partnership Award and NSF Grants CCR-0073440 a
CCR-0083126. We would like to thank IBM for donating
the equipment used in this work, and Steve Kunkel for he
with the Pulsar performance counters. We would also lik
to acknowledge the students of UW-Madison’s ECE 90
course during the Fall of 1999 who contributed to our TPC
W implementation, and Milo Martin for pointing out the E
state methodology problems in prior work [7,15].

References

[1] A. Agarwal, J. Kubiatowicz, D. Kranz, B. Lim, and
D. Yeung. Sparcle: an evolutionary processor design f
large-scale multiprocessors.IEEE Micro, pages 48–61,
June 1993.

[2] L. Barroso, K. Gharachorloo, and E. Bugnion. Memor
System Characterization of Commercial Workloads. I
Proceedings of the 26th Annual International Symposiu
on Computer Architecture, May 1999.

[3] S. Baylor, M. Devarakonda, S. Fink, E. Gluzberg
M. Kalantar, P. Muttineni, E. Barsness, R. Arora
R. Dimpsey, and S. Munroe. Java Server Benchmark
IBM Systems Journal, 39(1), 2000.

[4] T. Bezenek, H. Cain, R. Dickson, T. Heil, M. Martin,
C. McCurdy, R. Rajwar, E. Weglarz, C. Zilles, and
M. Lipasti. Characterizing a Java Implementation of TPC
W. Third Workshop On Computer Architecture Evalua
tion Using Commercial Workloads, January 2000.

[5] J. Borkenhagen and S. Storino. 5th Generation 64-b
PowerPC-Compatible Commercial Processor Desig
IBM Whitepaper, http://www.rs6000.ibm.com, 1999.

[6] H. Cain, R. Rajwar, M. Marden, and M. Lipasti. An archi-
tectural characterization of Java server workloads on mu
tithreaded processors. Technical Report 1421, Univers
of Wisconsin Department of Computer Sciences, 2000.

[7] Q. Cao, P. Trancoso, J.-L. Larriba-Pey, J. Torrella
R. Knighten, and Y. Won. Detailed characterization of
quad Pentium Pro server running TPC-D. InProceedings
of the Third International Symposium on High-Perfor
mance Computer Architecture, February 1997.

[8] A. Charlesworth, A. Phelps, R. Williams, and G. Gilbert
Gigaplane-XB: Extending the ultra enterprise family. In
Proceedings of the Symposium on High Performance I
terconnects V, August 1997.

[9] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy
and P. Stenström. The Detection and Elimination of Us

Benchmark 1p1t 1p2t Speedup 1p4t Speedup

SPECjbb2000 1.33 1.23 8% 1.14 17%

TPC-W Browsing 1.58 1.42 11% 1.28 23%

TPC-W Shopping 2.07 1.46 41% 1.33 56%

TPC-W Ordering 2.04 1.56 31% 1.28 60%

SPECweb99 1.29 1.14 13% 1.15 12%

SPECint_rate95 1.10 1.05 5% 1.05 5%

Table 5: Modeled Cycles Per Instruction (CPI) - this table shows the
modeled CPI for each benchmark in the 1,2, and 4-way CGMT
uniprocessor, and speedups relative to the 1p1t case.

,
r-

n

g
nd

l

d
n
In

r-
-

.
h.

,
,
r-

,
d
-

C

C

less Misses in Multiprocessors. InProceedings of the 20th
Annual International Symposium on Computer Architec-
ture, May 1993.

[10] R. Eickemeyer, R. Johnson, S. Kunkel, and J. Rose. An
Analysis of Multithreading in PowerPC Processors. Tech-
nical report, IBM, 1994.

[11] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, and B. H.
Lim. Evaluation of Multithreaded Processors and Thread-
Switch Policies.Lecture Notes in Computer Science,
1336, 1997.

[12] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu. Evaluation of Multithreaded Uni-
processors for Commercial Application Environments. In
Proceedings of the 23rd Annual International Symposium
on Computer Architecture, May 1996.

[13] M. T. Franklin, W. P. Alexander, R. Jauhari, A. M. G.
Maynard, and B. R. Olszewski. Commercial workload
performance in the IBM POWER2 RISC System/6000
processor.IBM Journal of Research and Development,
38(5):555–561, September 1994.

[14] IBM Corporation. The RS/6000 Enterprise Server Model
S80 Technology and Architecture. IBM Whitepaper avail-
able from http://www.rs6000.ibm.com.

[15] K. Keeton, D. Patterson, Y. He, R. Raphael, and
W. Baker. Performance Characterization of a Quad Pen-
tium Pro SMP using OLTP Workloads. InProceedings of
the 25th Annual International Symposium on Computer
Architecture, June 1998.

[16] T. Keller, A. Maynard, R. Simpson, and P. Bohrer. SI-
MOS-PPC Full System Simulator. http://www.cs.utex-
as.edu/users/cart/simOS.

[17] S. Kunkel, B. Armstrong, and P. Vitale. System Optimi-
zation for OLTP Workloads.IEEE Micro, May/June
1999.

[18] K. Kurihara, D. Chaiken, and A. Agarwal. Latency toler-
ance through multithreading in large-scale multiproces-
sors. InProceedings of the International Symposium on
Shared Memory Multiprocessing, April 1991.

[19] J. Lo, L.A. Barroso, S. Eggers, K. Gharachorloo, H. Levy
and S. Parekh. An Analysis of Database Workload Perfo
mance on Simultaneous Multithreaded Processors. InPro-
ceedings of the 25th Annual International Symposium o
Computer Architecture, June 1998.

[20] A. Maynard, C. Donnelly, and B. Olszewski. Contrastin
characteristics and cache performance of technical a
multi-user commercial workloads.ACM SIG-PLAN No-
tices, 29(11):145–156, November 1994.

[21] S. McFarling. Combining Branch Predictors. Technica
Report TN-36, Digital Equipment Corp, June 1993.

[22] P. Ranganathan, K. Gharachorloo, S. Adve, an
L. Barroso. Performance of database workloads o
shared-memory systems with out-of-order processors.
Proceedings of the Eigth International Conference on A
chitectural Support for Programming Languages and Op
erating Systems, October 1998.

[23] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta
Complete computer simulation: the SimOS approac
IEEE Parallel and Distributed Technology, 1995.

[24] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price
L. Yuan, C. Cheng, D. Doblar, S. Fosth, N. Agarwal
K. Harvey, and E. Hagersten. Gigaplane: A high perfo
mance bus for large SMPs. InProceedings of the Sympo-
sium on High Performance Interconnects IV, August
1996.

[25] S. Storino, A. Aipperspach, J. Borkenhagen
R. Eickemeyer, S. Kunkel, S. Levenstein, an
G. Uhlmann. A Commercial Multi-threaded RISC Proces
sor. In International Solid-State Circuits Conference,
1998.

[26] Systems Performance Evaluation Cooperative. SPE
Benchmarks. http://www.spec.org.

[27] Transaction Processing Performance Council. TP
Benchmarks. http://www.tpc.org.

	Morris Marden, Mikko H. Lipasti
	Dept. of Electrical and Computer Engineering
	University of Wisconsin
	Madison, WI 53706
	{marden,mikko}@ece.wisc.edu
	Abstract
	1 . Introduction
	2 . TPC-W Benchmark Specification
	2.1 . TPC-W Overview
	Table 1: TPC-W Web Interaction Characteristics.
	Table 2: Web Interaction Frequencies for Each Mix

	2.2 . Database Component
	Table 3: Database Scaling Rules and Example Table Sizes

	2.3 . Web Server Component

	3 . A Java Implementation of TPC-W
	4 . Native Execution Results
	4.1 . Workloads
	4.2 . Methodology
	Table 4: System Parameters

	4.3 . CPU Utilization by Component
	Figure 1. CPU utilization divided among web server, database, and servlet engine
	Figure 2. CPI Breakdown - the TPC-W runs are broken into groups of three bars, where each group c...

	4.4 . Memory System Characterization
	Figure 3. Breakdown of L2 Cache Miss Stall Cycles

	4.5 . Cache-to-Cache Transfers
	Figure 4. Breakdown of Cache Line Residency forL2 Cache Misses
	Figure 5. Use of the Exclusive State - bars show the percentage of all cache lines entering the L...

	4.6 . Impact of the Exclusive State

	5 . Simulation Results
	5.1 . Methodology
	5.2 . Effect of Multithreading on Branch Prediction
	Figure 6. The Effects of Multithreading on Branch Predictor Performance - the dotted, dashed, and...
	Figure 7. Cache Misses of Each Workload Broken Down into Cold, True Sharing, False Sharing, and C...

	5.3 . Effects of Multithreading on Cache Behavior
	5.4 . Multithreading Performance
	Table 5: Modeled Cycles Per Instruction (CPI) - this table shows the modeled CPI for each benchma...

	6 . Conclusions
	7 . Acknowledgments
	References

	An Architectural Evaluation of Java TPC-W
	Harold W. Cain, Ravi Rajwar
	Computer Sciences Department
	University of Wisconsin
	Madison, WI 53706
	{cain,rajwar}@cs.wisc.edu

