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Abstract

The increasing number of cores every generation poses
challenges for high-performance in-memory database systems.
While these systems use sophisticated high-level algorithms
to partition a query or run multiple queries in parallel, they
also utilize low-level synchronization mechanisms to synchro-
nize access to internal database data structures. Developers
often spend significant development and verification effort to
improve concurrency in the presence of such synchronization.

The Intel® Transactional Synchronization Extensions
(Intel® TSX) in the 4th Generation Core'" Processors enable
hardware to dynamically determine whether threads actually
need to synchronize even in the presence of conservatively
used synchronization. This paper evaluates the effectiveness
of such hardware support in a commercial database. We focus
on two index implementations: a B+Tree Index and the Delta
Storage Index used in the SAP HANA® database system. We
demonstrate that such support can improve performance of
database data structures such as index trees and presents a
compelling opportunity for the development of simpler, scal-
able, and easy-to-verify algorithms.

1. Introduction

The increasing number of cores every generation poses
new challenges for the implementation of modern high-
performance in-memory database systems. While these
database systems use sophisticated algorithms to partition
a query or run multiple queries across multiple cores, they
also utilize low-level synchronization mechanisms such as
latches and locks'to synchronize access from concurrently
executing threads to internal in-memory data structures, such
as indexes. Database developers often spend significant de-
velopment effort and resources to improve concurrency in the
presence of such synchronization. Numerous implementations
have been proposed over the years with the goal to improve

'We use the terms latches and locks interchangeably to represent low-level
synchronization mechanisms. Locks here do not refer to database locks used
to provide isolation between high-level database transactions.

scalability and concurrency, and systems today employ a wide
range of sophisticated implementations. Unfortunately, such
implementations end up being hard to verify and developers
must deal with numerous corner cases and deadlock scenar-
ios. As Graefe [10] has noted, “Perhaps the most urgently
needed future direction is simplification. Functionality and
code for concurrency control and recovery are too complex
to design, implement, test, debug, tune, explain, and main-
tain." The development of simple and scalable easy-to-verify
implementations remains challenging.

With the increasing dependence on parallelism to improve
performance, researchers have investigated methods to sim-
plify the development of highly-concurrent multi-threaded
algorithms. Transactional Memory, both hardware [13] and
software [23], aims to simplify lock-free implementations.
However, integrating it into complex software systems re-
mains a significant challenge [12]. Lock elision [19, 20] pro-
poses hardware mechanisms to improve the performance of
lock-based algorithms by transactionally executing them in
a lock-free manner when possible. In such an execution, the
lock is only read; it is not acquired nor written to, thus expos-
ing concurrency. The hardware buffers transactional updates
and checks for conflicts with other threads. If the execution is
successful, then the hardware makes all memory operations
performed within the region to appear to occur instantaneously.
The hardware can thus dynamically determine whether threads
need to synchronize and threads perform serialization only if
required for correct execution.

However, it has so far been an open question as to whether
modern databases can take advantage of such hardware sup-
port in the development of simple yet scalable concurrent
algorithms to manage internal database state [17, 14, 10].

This paper addresses that question and evaluates the effec-
tiveness of hardware supported lock elision to enable simple
yet scalable database index implementations. For this paper,
we use the Intel® Transactional Synchronization Extensions
(Intel® TSX) in the Intel 4th Generation Core' " Processors
but our findings are applicable to other implementations.



Paper Contributions. This paper presents the first exper-
imental analysis of the effectiveness of hardware supported
lock elision to enable the development of simple yet scal-
able index implementations in the context of a commercial
in-memory database system.

e Highlights the scalability issues that arise from con-
tended atomic read-modify-write operations in modern high-
performance systems.

o Applies Intel TSX-based lock elision to two index imple-
mentations, the common B+Tree index and a more complex
Delta Storage Index used in the SAP HANA® in-memory
database system and demonstrates how such hardware sup-
port can enable simple yet scalable algorithms.

e Shows how applying well-known transformations can help
overcome hardware limitations and increase the effective-
ness of such hardware support.

Section 2 analyzes the concurrency behavior of two in-
dex implementations: A common B+Tree index and a more
complex Delta Storage Index used in SAP HANA. The two
represent different examples of access patterns and foot prints
for index traversals. We find that even with a reader-writer
lock and read-only accesses, the communication overheads
associated with atomic read-modify-write operations on the
reader lock can limit scalability on modern systems. Further,
even a modest fraction of insert operations (5%) can degrade
performance. These results motivate the use of lock elision
to eliminate the cache-to-cache transfers of the reader-writer
lock, even with only readers.

Section 3 describes the Intel Transactional Synchronization
Extensions, its implementation and programming interface,
and provides key guidelines to effectively use Intel TSX.

Section 4 applies Intel TSX-based lock elision to the two
indexes. For this study, we use a mutual-exclusion spin lock
for the Intel TSX version and compare against a more complex
reader-writer lock. We find that a simple spin lock when elided
provides better scalability across a range of configurations.
The initial performance gains are significant for the B+Tree
index but more modest for the Delta Storage Index. We in-
vestigate this further and identify cases where lock elision
was unsuccessful. Section 5 presents simple transformations
to make the Delta Storage Index more elision friendly. With
these transformations, a spin lock with lock elision signifi-
cantly outperforms a reader-writer lock.

While we have focused on complex database data structures
such as index trees, the key concepts outlined in the paper are
applicable to other similar data structures that are accessed
concurrently by multiple threads but where the probability of
an actual data conflict is relatively low.

2. SAP HANA Delta Storage Index

The SAP HANA Database System is a read optimized column
store system. Each column consists of a Main Storage and
a Delta Storage as shown in Figure 1. The Main Storage is

Delta Storage A

i Index
write o Column read 3
Data Dictionary
(List of IDs)
Delta Merge
to new Main Storage
at certain point
(" Main Storage

Column read >
Data Dictionary

(List of IDs)

N
Figure 1: Delta and Main Storage in SAP HANA®

a read-only data structure and maintains highly compressed
permanent data optimized for querying. The Delta Storage
supports insert and read operations and tracks deletions using
visibility flags for each row. The Delta Storage tracks all
changes to a column and is optimized for writes. If the Delta
Storage exceeds a certain size, a merge operation joins the
Delta Storage with the actual column.

The Main Storage and the Delta Storage both maintain dic-
tionaries for compression. The database uses the dictionary
to replace the stored data with an identifier (ID) that points to
the dictionary entries. The Main Storage dictionary is sorted
to provide optimized search performance and high compres-
sion. The Delta Storage on the other hand is optimized for
efficient insert operations and thus maintains an unsorted dic-
tionary where new values can only be appended. It therefore
maintains a secondary index tree, the Delta Storage Index, for
fast searches on this unsorted dictionary. Figure 2 shows an
example organization. The column data on the left consists of
IDs that point to entries in the dictionary containing unsorted
distinct values and IDs. The Delta Storage Index on the right
contains IDs. The order of the IDs in the index depends on the
dictionary entries represented. Storing only the IDs of entries
ensures a fixed node size and constant cost for copying data.

A query always starts at the root node and looks up the
dictionary for every relevant ID in a node. For example, a
query for “Oakland” looks up ID 4 and 7 of the root node.
ID 4 represents “Fresno” and ID 7 represents “Palo Alto”. In
alphabetical order “Oakland” lies between the two. The search
continues to the second child node and looks up ID 4 and 8.
“Oakland” lies in the second position (ID 8). This is done for
every search or insert operation. If an entry being inserted
already exists in the index, the ID is added to the column data,
otherwise the entry is added to the dictionary and an ID is
assigned. This ID is also added to the index and column data
list. While the index supports efficient search and insert, it
can also be used to sort the dictionary if needed. Reading all
the IDs of all the leaf nodes in order (e.g., 0;5;4:8;7;6;1;3;2)
returns the IDs in alphabetical order of their entries.

2.1. Experimental Analysis

We first study the concurrency performance of the B+Tree and
Delta Storage Index.

2.1.1. Index Tree Synchronization Extensive work exists in
concurrency control for index trees [10]. These proposals vary
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Figure 2: Example of a delta storage, including column data, dictionary, and index.

widely in their concepts and implementation, often employing
various mechanisms to protect index data structures or taking
advantage of higher-level information and structure to ensure
content consistency of the indexes. Such scalable concurrency
control implementations are often complex and require signifi-
cant effort to verify, especially when integrating into existing
database systems. We discuss this further in Section 6.

In this paper, we are concerned with the challenge to de-
velop scalable yet easy-to-verify implementations. Keeping
that goal in mind, we adopt a simpler baseline concurrency
control implementation for index trees and investigate the
impact of using hardware support to improve its scalability.

The Delta Storage Index implementation in SAP HANA
uses a reader-writer lock to protect the index. A reader-writer
lock allows multiple readers to concurrently access the tree
but serializes access when a writer accesses the tree. The
choice of the synchronization mechanism (concurrent readers,
serial writers) in the SAP HANA index tree implementation
is driven by multiple factors, primary being the need for an
easy-to-verify implementation for integration into a complex
commercial database system with established interfaces.

The baseline synchronization implementation we use is a
reader-writer lock (referred to here as RW Lock). The RW
lock is from the Intel® Thread Building Blocks (Intel® TBB)
suite’>. The RW lock is a high-performance, spinning reader-
writer lock with backoff and writer-preference.

In addition, we also study the scalability of a conventional
mutual-exclusion spin lock (referred to here as Spin Lock)
that provides exclusive access to the tree. The spin-lock we
use is similar to the one from the Intel® TBB suite.

2.1.2. Experimental Setup We use a 2-socket (Intel®
Xeon® CPU E5-2680) server system running the Linux op-
erating system. Each test initializes the database index with
20 million even numbers starting from 0. This is a typical
size for the Delta Storage Index in real-world SAP HANA
configurations. The search and insert queries have a uniform
random key distribution between the minimum and maximum
tree limits. Search keys have even values to make every search
lookup successful. We insert only odd keys, such that the
queries will most likely result in a tree modification. With a
large key range of the index, a small probability exists that

2Source at http://www.threadingbuildingblocks.org/. Intel TBB libraries
are extensively used in numerous high-performance multi-threaded software.

random inserts attempt to add the same key several times.
However, duplicate inserts will not result in a write operation.
2.1.3. Index Tree Scaling We next study scaling on single
socket and dual socket configurations.

Single Socket. Figure 3a plots the relative performance
of a Delta Storage Index using the baseline RW lock for 0%,
5%, 20%, and 100% writes. Figure 4a plots the same for a
B+Tree. For the 0% (read-only) case, RW lock scales as ex-
pected because it allows concurrent readers without serializa-
tion. However, as the insert percentage increases, performance
degrades with additional threads. This is because, unlike for
readers, the writer lock provides only exclusive access to the
tree. As expected, Spin Lock does not scale since it serializes
all accesses. Figure 3b plots the Delta Storage Index relative
performance for different insert percentages on a single socket
8 thread configuration. Figure 4b plots the same for a B+Tree.
As we can see, with increasing insert percentage, the perfor-
mance of the RW lock drops to that of a spin lock. This is
also expected as increasing writers serialize and block readers
and synchronization communication overhead starts to play a
significant role.

Dual Socket. Figure 3c shows the performance of read-
only accesses with increasing threads on a multi-socket server
configuration. Figure 4c plots the same for a B+Tree. Inter-
estingly, even though the RW lock shows good scaling for
up to 8 threads in the Delta Storage Index, scaling drops as
we increase the number of threads to 16 due to the impact
of cross-socket communication on the shared RW lock. The
32 thread configuration supports simultaneous multithread-
ing through Intel® Hyper-Threading (HT) Technology where
each core can run two simultaneous threads. Scaling for the
RW lock from 16 to 32 slightly improves due to memory-level
parallelism introduced by HT.

2.1.4. Understanding Scalability The 100% read experi-
ments provide a good baseline to understand the impact of
communication in modern high-performance systems. For
these experiments, the only inter-thread communication is
the atomic operation on a shared location for the reader lock.
Since multiple readers can access the tree there are no retries to
acquire the reader lock and the operation itself is non-blocking.

For the 100% read experiment, we observe good scaling
for the Delta Storage Index (Figure3a) but lower scaling for
B+Tree (Figure 4a) for the 8T single socket and worse scaling
for the cross-socket configurations.
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Figure 3: Delta Storage Index Concurrency Performance

To better understand the drop in scaling even for the read-
only configuration, we experimented with an index implemen-
tation that does not implement any locks to protect the index.
This is shown with the No RW Lock label. Since the experi-
ment performs 100% reads, correctness is always maintained.
The difference between the No RW Lock line and the RW
lock lines shows the performance overhead of performing lock
operations across multiple threads. This is because even with
an RW lock, acquiring the reader lock requires an atomic read-
modify-write operation on the variable (implemented through
a LOCK prefixed instruction in the Intel® 64 Architecture [2]).
This requires hardware to request exclusive ownership of the
cache line containing the variable prior to the update. When
multiple threads acquire a reader lock and update the same
variable, it causes each processor to request exclusive owner-
ship for the line, resulting in the cache line with the variable
moving around the system from one processor to another.

This overhead manifests itself in the performance gap
shown in Figures 3c and 4c. While the overhead is not signif-
icant in the single socket case, the latencies due to crossing
multiple sockets result in a larger performance gap in the multi-
socket case. The B+Tree does not scale as well as the Delta
Storage Index in general because unlike the Delta Storage
Index, the B+Tree by itself is a simple and small critical sec-
tion putting more stress on the lock variable cache-to-cache
transfer overhead.

Further, modern high-performance processors execute such
critical sections with low latency which exposes the cache-to-
cache transfer latencies. These processors also execute the
single thread workload efficiently with low latency in the ab-
sence of cache-to-cache communication. As a result, observed
scaling behavior is a strong function of the performance of the
underlying processor, and the computational characteristics of
the synchronizing threads.

This data highlights an often overlooked aspect of atomic
read-modify-write operations. Even though a reader lock en-
ables concurrent accesses, with increasing cores the overhead
of the atomic read-modify-write operation itself can contribute
to scalability issues due to the inherent communication and

cache-to-cache transfers required. Proposals to improve per-
formance must minimize such cross-thread communication.

2.2. Concurrency Analysis

Insert operations require locks because they change the tree’s
internal node structures. However, the probability of an insert
conflicting with other operations should be low for large trees.
Eliding these locks can be quite effective to enable read and in-
sert operations to occur concurrently. To motivate lock elision
for index trees, we first calculate the conflict probability.

We define two probabilities, Psccgss and Ps for a tree where
leaf nodes are on L = 0 and root node is on L = (height — 1).

1 1 L

P - d Ps= ——
ACCESS No. Nodes on L an s 0.69b

For random accesses, Pyccess 1S the probability that two
operations access the same node at tree level L and Py is the
probability that an insert operation propagates to level L [8].
For example, if L = 1, then Ps is the probability that an insert
splits a leaf node and inserts an ID to the tree level above the
leaf nodes. Node splits cause inserts to the parent node, which
themselves can cause node splits and propagate further up the
tree. If no node splits occur, then a conflict can only occur at
the leaf node level. If a node split occurs, then a conflict can
occur at levels above the leaf nodes.

Consider an index tree with a maximal branching factor b =
31 and a height of 5, and two concurrent operations to the tree
where one is an insert and the other is a read. These parameters
represent a common Delta Storage Index configuration. Table
1 lists the computed probabilities and the average node count
for every level L. The highest Pyccgss is 1 for the root node
(L = 4) and the lowest for the leaf node level. In contrast, P
is 1 for leaf nodes and lower for the levels above.

The conflict probability, P, is computed for the case where
the insert operation propagates to a level L and the other op-
eration accesses this node at level L while traversing the tree.
Overall, the probability of a conflict for a tree of this size is
fairly low (maximum value of 6.39-1079).

We next discuss applying Intel TSX to index tree locks.

(8]
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Figure 4: B+Tree Concurrency Performance

L Avg No. Prob. Prob. Prob.
Nodes PACCESS PS PC

4 1 1 478-107% 4.78-10°°

3 16 6.25-1072 1.02-107* 6.39-10°°

2 496 2.72-1073  2.19-1073 5.94.10°°

1 15100 1.18-107* 4.68-107%2 5.52-107°

0 465000 5.14-10°° 1 5.14-107°

Table 1: Psccess, Ps, and Pc for an average tree of height 5.

3. Intel Transactional Synchronization Exten-
sions

Intel Transactional Synchronization Extensions (Intel TSX)
consist of hardware support to improve the performance of the
lock-based programming model. With these extensions, the
processor can dynamically determine whether threads need to
serialize the execution of lock-protected code regions, and to
perform serialization only when required, through a technique
known as lock elision.

With lock elision, the processor executes the programmer-
specified lock-protected code regions (also referred to as trans-
actional regions) transactionally. In such a transactional exe-
cution, the lock is only read; it is neither acquired nor written
to, thus exposing concurrency. With transactional execution,
the hardware buffers any transactional updates and checks for
conflicts with other threads.

On a successful transactional execution, the hardware per-
forms an atomic commit to ensure all memory operations
performed within the transactional region appear to have oc-
curred instantaneously when viewed from other processors.
Any updates performed within the transactional region are
made visible to other processors only on an atomic commit.
Since a successful transactional execution ensures an atomic
commit, the processor can execute the programmer-specified
code section optimistically without synchronizing through the
lock. If synchronization was unnecessary, the execution can
commit without any cross-thread serialization.

If the transactional execution is unsuccessful, the processor

performs a transactional abort since it cannot commit the
updates atomically. On a transactional abort, the processor
discards all updates performed in the region, restores archi-
tectural state to appear as if the optimistic execution never
occurred, and resumes execution non-transactionally. Depend-
ing on the policy in place, lock elision may be retried or the
lock may be explicitly acquired.

Transactional aborts can happen for numerous reasons. A
common cause is conflicting accesses between the transac-
tionally executing processor and another processor. Memory
addresses read within a transactional region form the read-set
of the transactional region and addresses written within the
transactional region form the write-set of the transactional
region. A conflicting data access occurs if another processor
either reads a location that is part of the transactional region’s
write-set or writes a location that is part of either the read- or
write-set of the transactional region. We refer to this as a data
conflict. Such conflicting accesses may prevent a successful
transactional execution. Since hardware detects data conflicts
at the granularity of a cache line, unrelated data locations
placed in the same cache line will be detected as conflicts.
Transactional aborts may also occur due to limited capacity.
For example, the amount of data accessed in the region may ex-
ceed an implementation-specific capacity. Additionally, some
instructions and system events may cause transactional aborts.

The Intel® 64 Architecture Software Developer Manual
has a detailed specification for Intel TSX and the Intel TSX
web resources site® presents additional information.

3.1. Programming Interface For Lock Elision

Intel TSX provides programmers two interfaces to implement
lock elision. Hardware Lock Elision (HLE) is a legacy com-
patible extension that uses the XACQUIRE and XRELEASE
prefixes. Restricted Transactional Memory (RTM) is a new
instruction set extension that uses the XBEGIN and XEND
instructions. Programmers who also want to run Intel TSX-
enabled software on legacy hardware would use the HLE

3http://www.intel.com/software/tsx



interface to implement lock elision. On the other hand, pro-
grammers who do not have legacy hardware requirements and
who deal with more complex locking primitives would use the
RTM interface to implement lock elision.

To use the HLE interface, programmers add prefixes to ex-
isting synchronization routines implementing the lock acquire
and release functions. To use the RTM interface, programmers
augment the routines to support an additional code path im-
plementing lock elision. In this path, instead of acquiring the
lock, the routine uses the XBEGIN instruction and provides
a fallback handler (the operand of the XBEGIN instruction)
to execute if a transactional abort occurs. In addition, the
lock being elided is tested inside the transactional region to
ensure it is free. This action also adds the lock address to the
read set, thus allowing for any conflicts on the lock variable
to be detected. If the lock was not free, then the RTM-based
execution must abort since some other thread has explicitly
acquired the lock. With both the HLE and RTM interfaces, the
changes to enable lock elision are localized to synchronization
routines; the application itself does not need to be changed.

3.2. Hardware Implementation

The first implementation of Intel TSX on the 4th Generation
Core ' Processor uses the first level 32-KB data cache (L1)
to track the transactional region’s read- and write-sets[18].
All address tracking and data conflict detection occurs at a
cache-line granularity, using physical addresses and the cache
coherence protocol. Evicting a transactionally written line
from the L1 cache causes an abort. Evicting a line that is only
read transactionally does not cause an abort; the line is tracked
in a secondary structure for conflict detection.

3.3. Handling Transactional Aborts

A successful transactional execution elides the lock and ex-
poses concurrency. However, when a transactional abort oc-
curs, an implementation policy determines whether the lock
elision is retried or the lock is acquired. Prior work has sug-
gested the benefit of retrying lock elision when aborts are
frequent, since many aborts can be transient [19, 20, 9]. This
retry may be implemented in hardware or in software.

In the first Intel TSX implementation, following a transac-
tional abort, an HLE-based execution restarts from the lock
instruction that initiated transactional execution and acquires
the lock. This minimizes wasted work and is effective when
aborts are infrequent. On the other hand, an RTM-based exe-
cution restarts at the fallback address provided with the XBE-
GIN instruction. This flexibility is possible because unlike
the legacy-compatible HLE interface, the RTM interface uses
new instructions. These new instructions provide an interface
for programmers to implement a flexible retry policy for lock
elision in the fallback handler.

Retrying lock elision instead of immediately acquiring the
lock can be beneficial, since if the lock is acquired, then all
other threads eliding that lock will also abort. As a result, the

executions will serialize on the lock, thus idling all contending
threads for the duration of that critical section.
3.3.1. Analyzing Transactional Aborts We use an extensive
performance monitoring infrastructure to understand and ana-
lyze transactional aborts. Detailed information can be found
in the Intel 64 Architecture Software Developer Manual and
the Chapter 12 of the Intel 64 Architecture Optimization Ref-
erence Manual [1]. For RTM-based implementations, the
fallback handler can also track retries. Computing effective
abort rates in the presence of retries requires care. For exam-
ple, the handler would acquire the lock only after a threshold
of retries. However, if the region commits successfully follow-
ing retries and before reaching the threshold, then that would
still be beneficial since the lock wasn’t acquired.
3.3.2. Fallback Handler Retry Policy How the fallback han-
dler implements a retry is critical. There is no benefit to
attempt lock elision if the lock is already held by another
thread. It can actually be counter-productive. Consider the
case where a transactional execution aborts sufficient number
of times such that the retry threshold is reached and the thread
acquires the lock. This causes other threads to also abort. If
the other threads immediately retry lock elision, they will find
the lock acquired and will abort. Subsequent continuous at-
tempts to immediately try lock elision will result in the threads
reaching their retry threshold without having had an opportu-
nity to transactionally execute with lock elision; they would
all have found the lock to be already held. As a result, all
threads will transition to an execution where they explicitly
acquire the lock sequentially and no longer try lock elision, a
phenomenon called the lemming effect. This may result in the
threads entering long periods of execution without attempting
lock elision. A simple but effective way to avoid this is to retry
lock elision only when the lock is free. Such a test prior to
acquiring the lock is already common practice in conventional
locking. This requires the fallback handler to simply test the
lock and wait until it is free before re-attempting lock elision.
With HLE, the insertion of a pause instruction in the path of
the spin loop, a common practice, avoids such pathologies.
3.3.3. Dealing with High Data Conflict Rates Data struc-
tures that do not encounter significant data conflicts are ex-
cellent candidates, whereas data structures that repeatedly
conflict do not see concurrency benefit. Performance under
data conflicts has been extensively studied [19, 20, 7] and
how hardware deals with data conflicts is implementation spe-
cific. Frequent data conflicts also often imply frequent lock
contention and serialization, and thus baseline performance
would also degrade. However, for hardware implementations
with simple hardware conflict resolution mechanisms, there
are cases where, under heavy data conflicts, retrying multiple
times before acquiring the lock can actually degrade perfor-
mance with respect to a baseline where the lock is immedi-
ately acquired. As we see later in Section 5, this may require
changes to the data structure.

Scenarios exist where conflicts may be a function of the



data itself. Section 2.2 computed the conflict probability for
random data accesses. Insertion of sorted data will result in
frequent data conflicts because the execution will insert into
the same or neighboring leaf node, and attempting lock elision
would not help. To deal with such situations, we introduce
adaptivity in the elision algorithm. A heuristic in the fall-
back path can address this issue. The fallback path maintains
statistics about transactional aborts. If aborts reach a certain
threshold, the fallback path disables subsequent lock elision
for a period of time; the synchronization routine simply avoids
the lock elision path and follows the conventional lock acquire
path. The condition is periodically re-evaluated to adapt to the
workload and lock elision is re-enabled in the synchronization
library. Adaptivity did not trigger in our experiments.

4. Eliding Index Locks

In this section, we use Intel TSX to elide the B+Tree and Delta
Storage Index locks. The hardware buffers memory updates
and tracks memory accesses during the tree operations (reads
and inserts) performed under lock elision.

4.1. Experimental Setup

We use an Intel® 4th generation CoreTMprocessor (Intel®
Core''i7-4770 (3.4 GHz). The processor supports simulta-
neous multithreading through Intel® Hyper-Threading (HT)
Technology. Each processor has 4 cores, with each core ca-
pable of running two simultaneous threads for a total of 8§
simultaneous threads per processor. Each core has a 32-KB
8-way set-associative L1 data cache. In the 4-thread configura-
tion, each thread is assigned to a separate core (HT disabled).
In the 8-thread configuration, two threads are assigned to each
core (HT enabled). In the latter configuration, the two threads
assigned to the same core share the same L1 data cache.

We use the same database setup as described in Section
2.1.3. All threads periodically access the tree for a large
number of iterations. Such concurrent access represents a
common index usage in real-world configurations.

As in Section 2.1.3, we consider the two lock implementa-
tions (discussed in Section 2.1.1) for the B+Tree and the Delta
Storage Index. We also compare against a version without any
concurrency control.

o RW Lock: This is the spinning reader-writer lock where
writers are preferred over readers.

e Spin Lock: This is the conventional spin lock that provides
exclusive access to the tree.

e No Concurrency Control: This version implements no con-
currency control. This is an unsafe execution and represents
an upper bound for the index tree. The reported data points
correspond to a correct execution.

We experiment with the two Intel TSX software interfaces
to implement lock elision.

e Spin Lock Elision w/ TSX-R: Uses the RTM interface to

implement lock elision for the conventional spin lock.

e Spin Lock Elision w/ TSX-H: Uses the HLE interface to
implement lock elision for the conventional spin lock.

For the experiments labeled TSX-R, the fallback handler
retries lock elision a certain number of times prior to explicitly
acquiring the spin lock. For the experiments labeled TSX-H,
the hardware immediately attempts to acquire the spin lock
on a transactional abort. A limitation of using a conventional
spin lock for lock elision is that on a transactional abort, the
fallback path uses the spin lock. Unlike the RW lock, the
spin lock does not provide reader concurrency. Thus, when
the lock is frequently acquired due to aborts in read-heavy
configurations, performance of a spin lock will be worse than
a RW lock. This effect is more pronounced with TSX-H
since on an abort, the hardware implementation immediately
tries to acquire the lock without a retry. More sophisticated
implementations for lock elision are possible [1].

We use both the 4-thread and 8-thread configurations to
study the effect of increased pressure on transactional capacity
due to the shared L1 data cache in HT enabled configurations.

4.2. Conventional B+Tree Results

Figure 5 shows the relative performance of the B+Tree index
with various lock implementations (See Section 4.1) for dif-
ferent percentages of insert operations. The performance is
normalized to the runtime of the spin lock with 0% insert oper-
ations. Figure 5a shows a 4-thread configuration (HT disabled)
and Figure 5b shows the 8-thread configuration (HT enabled).

As expected, the performance of the spin lock remains flat
because of serialization whereas the performance of the RW
lock is significantly better than that of a spin lock for low per-
centage of inserts. However, RW lock performance degrades
to that of the spin lock with increasing insert percentages.

Interestingly, the two lines labeled TSX-H and TSX-R show
good performance across the entire range of insert percent-
ages. This demonstrates the effectiveness of lock elision for a
B+Tree where a simple spin lock with elision can outperform
a more complex reader-writer lock. A Spin Lock with elision
provides reader-reader concurrency similar to a RW lock, but
it additionally also provides a high probability of reader-writer
and writer-writer concurrency.

The performance drop between 0% and 100% insert is ex-
pected because inserts involve writing data, moving keys, and
splitting nodes, and these operations have larger footprints
than read-only operations. With few aborts with 0% inserts,
the simple spin lock with elision is faster than the RW lock.

Further, the performance profile is quite similar to the upper-
bound version without any concurrency control, and the per-
formance gap is quite narrow across the entire range.

The performance difference between TSX-H and TSX-R
is noticeable for the 8-thread configuration. Again, this is
because on a transactional abort with TSX-H, the spin lock
is immediately acquired. However, with TSX-R, the fallback
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Figure 5: B+Tree Performance with Lock Elision

handler retries lock elision and avoids immediately transition-
ing to a serial spin lock execution on transient aborts.

However, even with these aborts, applying lock elision to
a simple spin lock provides good performance across a wide
range of insert percentages. Further, retrying on transactional
aborts is fairly effective, especially on conflicts.

4.3. Delta Storage Index Results

Figure 6 shows the relative performance of the Delta Storage
Index with various lock implementations (See Section 4.1) for
different percentages of inserts. The performance is normal-
ized to the runtime of the spin lock with 0% insert operations.
Figure 6a shows a 4-thread configuration (HT disabled) and
Figure 6b shows the 8-thread configuration (HT enabled).

Unlike with the B-Tree plots, the TSX-R and TSX-H execu-
tions for Delta Index encounter repeated capacity aborts. As a
result, they see a performance degradation with respect to the
RW Lock even with 0% inserts because the fall back spin lock
serializes execution even for readers. For example, for 0%
inserts in the 8-thread TSX-R plot, 2.5% of the traversals even-
tually resulted in a lock acquisition and thus serialization (for
TSX-R, the execution retries multiple times before acquiring
the lock). In contrast, the RW lock does not have to wait.

Additionally, these executions also see high conflict abort
rates. For example, for 100% inserts in the 8-thread TSX-R
case, nearly 75% of the traversals eventually resulted in a lock
acquisition, thus serializing execution. This was surprising
since the tree itself should not have such high conflicts. We
discuss this further in Section 5.2

The performance impact is much more pronounced in the
8-thread configuration and particularly for the TSX-H plot. To
understand this better, we add an additional plot, TSX-R-no-
retries. This is a variant of TSX-R but without retries; on a
transactional abort the thread immediately acquires the lock.
As expected, TSX-H and TSX-R-no-retries are very similar
in profile since they are frequently falling back to acquire
the spin lock. Interestingly, even with such high abort rates,
the TSX-R-no-retries and TSX-H still perform better than the

RW lock with increasing insert percentages. Aborts do not
always imply poor performance; a thread would have other-
wise simply been waiting to acquire a lock. TSX-R, which
retries lock elision following a transactional abort, achieves a
good speedup compared to the RW lock for most of the insert
percentages except for the 0% insert case and breaks even at
around the 2% insert case.

This demonstrates the importance of retries. Even though
the executions experience aborts due to capacity and conflict,
often these aborts are transient. Even capacity aborts can be
transient if the footprint is near the edge and the re-execution
may experience a slightly different cache miss pattern due to
simultaneous threads sharing the same core, or due to inter-
actions with the data cache’s replacement policies. Hence we
don’t automatically skip retry even when the retry bit is 0. On
the other hand, if retries on capacity aborts are not managed
effectively, they could result in an additional slow down. By
retrying, the threads avoid acquiring the spin lock and continue
to have lock elision opportunity. This is why TSX-R is able to
outperform the RW lock on most of the insert percentages.

However, the gap with the upper bound version without
concurrency control remains large, thus suggesting additional
optimization opportunities.

5. Reducing Transactional Aborts

In this section, we investigate the causes for high abort rates
with the Delta Storage Index and propose mitigations to make
it more elision friendly. Two primary causes were: the traver-
sal’s large data footprint and data conflict aborts even when
the data shouldn’t conflict.

5.1. Reducing Data Footprint

The L1 data cache is 32 KB in size and has 512 cache lines.
However, transactional aborts can occur with much smaller
data footprints, primarily due to limited L1 cache set associa-
tivity and other transient interactions. This is exacerbated for
the Delta Index. Even though the Delta Storage Index uses a
B+Tree, its implementation also includes a dictionary. There-
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Figure 6: Delta Storage Index Performance with Lock Elision

fore, the access operations are much more involved than for
the conventional B+Tree and have a significant data footprint.
Next, we analyze the probability of capacity aborts during the
Delta Storage Index traversal.

5.1.1. Footprint Analysis Assume a large tree with a height
h =6 and a branching factor » = 31. Such a tree can store up to
859 million IDs. For the Delta Storage Index, this translates to
internal nodes of Ni = 6 cache lines and leaf nodes of NI =3
cache lines. Each ID in the nodes results in a dictionary lookup.
For the worst case, when the tree is filled 100%, a tree search
traversal would read:

Nix(h—1)+NIl+h*(b—1)=6%5+346%30=213 cache lines

Despite the worst case of 213 cache lines, an empirical analy-
sis shows that a typical Delta Storage Index traversal accesses
an average of 93 cache lines. In contrast, the B+Tree traversal
typically accesses 20 cache lines. For an HT enabled configu-
ration, 213 cache lines in Delta Index access would result in
a worst case 426 cache lines being transactionally accessed
using the shared L1 data cache, with an average of around 186
cache lines. This is in contrast to the worst case of 40 cache
lines for the B+tree traversal.

Even though most memory accesses such as dictionary
lookups and node accesses are random, they are not perfectly
distributed. As a result, memory accesses map to some sets of
the cache more frequently. This increased pressure results in
increased transactional aborts.

This is similar to the bins and balls problem [3] where balls
are placed in random bins with a certain capacity. The first bin
overflow happens before all bins are filled equally. There are
always some bins that are used more often than others. We use
the same approach to model the pressure on the L1 data cache
to see the probability of evictions. We modeled two scenarios
— a 8-way set-associative cache and a 4-way set-associative
cache of half the size. The 4-way cache configuration is a good
representation of the behavior of a 8-way with HT enabled
assuming that all threads run the same type of queries. We
use discrete simulation with a random number generator to
determine which entry (bin) an access (ball) maps to.
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Figure 7: Capacity Probability Analysis

Figure 7 shows the analysis. For both configurations, the
overflow probability rises from near zero to 100% when more
random cache lines are buffered. For the 4-way cache, the
overflow probability starts rising with less cache lines than
for the 8-way cache, due to the smaller set-associativity and
cache size. The cache line accesses are illustrated with the
vertical dotted lines (average and worst case). With average
cache line accesses, the capacity overflow probability remains
small for the 8-way cache, but for the 4-way cache it is about
60%. The overflow probability for the worst case is significant
in both scenarios. Additionally, the target transactional abort
rate may not be 50%, but possibly in the 20% range. In such
cases, the effective capacity is around one-third of the best
case capacity. The effective abort rate cannot be derived easily
from the curves as we also need the distribution and pattern
of the working set. The simplest and quickest way is to run
the application on the target hardware and collect informa-
tion using the hardware performance monitoring support or
additional code in the fallback handler in the case of TSX-R.

This increased pressure on a few sets suggests hardware
improvements to handle such cases can mitigate this effect.

5.1.2. Reducing Dictionary Lookups Reducing data foot-
print through changes in the data structures layout is generally
a hard problem. With random queries it is difficult to control
the address access pattern itself. This suggests a higher level



transformation to reduce data footprints, specifically a change
to the traversal algorithm itself. Instead of the linear search
used by default, a binary search would reduce the accessed
cache lines to 47 for an average case, with a worst case of 53
cache lines; a significant reduction in the data footprint, all
without changing the data structure itself.

If nodes have a high branching factor, then a binary search
improves performance. However, for small nodes, a binary
search introduces branch operations and additional copy and
store operations. Such operations can be more expensive than
a simple loop employed by a linear search. The binary search
avoids a much larger number of dictionary lookups which tend
to be random accesses with poor cache locality. The negative
effects are more than compensated due to the significant reduc-
tion in cache footprint and the resulting overflow probabilities
(Iess than 10% for a 4-way cache).

5.2. Reducing Avoidable Data Conflicts

Our analysis pointed to another source of unexpected data
conflicts even though the tree accesses were not conflicting:
the dictionary and the memory allocator.

5.2.1. Dictionary Conflicts Even though the probability of
an insert conflict in the tree structure is low, conflicts on the
dictionary itself were causing excessive transactional aborts.
While the index tree is the primary data structure, an index
tree update also updates the dictionary. The dictionary is an
array of elements globally available to all threads. On insert, a
size variable is incremented and the value is written to the end
of the array. Writing the size variable and the array position
causes a data conflict when done simultaneously.

A simple transformation converts the global dictionary into
a per-core dictionary and ensures conflicts only when the same
tree node is being inserted to. Instead of maintaining one
dictionary for the whole tree, the tree keeps one dictionary
per core. The core affinity of a thread is used as distribution
function. This function assigns the dictionary where a thread
should insert a value.

Figure 8 shows the assignment for the four cores. Queries

run on Core 0 and Core 3. Read operations are free to read
from every dictionary depending on their tree path. Only
appending an ID is assigned to a core-local dictionary. To
identify the position of an entry, the ID is extended to en-
code the position in the dictionary and the dictionary number.
During a lookup, the ID is evaluated to find the appropriate
dictionary and the position of the entry within the dictionary.
A data conflict is triggered by hardware and the lock is only
acquired when the same tree node is being inserted to.
5.2.2. Memory Allocator Conflicts Insert operations can
cause node creation. When a node is split, the new node
allocation requires new memory. The allocator has either pre-
allocated memory in a memory pool or new memory has to be
retrieved from the system. Accessing pre-allocated memory
results in updates to size variables in the allocator, which can
cause transactional aborts if done simultaneously.
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Figure 8: A Per-Core Dictionary Example.

To address this, we use one memory allocator per core [6]
and avoid global memory variables. Each allocator has its own
memory pool. The core affinity of a running thread assigns an
allocator, similar to the dictionary per core approach.

5.3. Tuned Delta Storage Index Results

Figure 9 shows the relative performance of the Delta Storage
Index with various lock implementations (See Section 4.1) for
different insert percentages. The performance is normalized to
the runtime of the spin lock with 0% insert operations. Figure
9a shows a 4-thread configuration (HT disabled) and Figure
9b shows the 8-thread configuration (HT enabled). The plot
corresponding to the label “Spin Lock Elision w/ TSX-R and
w/ elision-friendly index” uses a Delta Storage Index imple-
mentation with the transformations described in Sections 5.1
and 5.2. The remaining plots continue to use the original Delta
Storage Index implementation without these transformations.
That configuration represents the best performance for the RW
Lock and Spin Lock for reasons discussed in Section 5.1.

In Figure 9a we can see that TSX-R with the elision-friendly
Delta Storage Index performs slightly better than the original
index version, especially in the 100% insert case. This is due
to a reduction in conflicts through changes in the dictionary
and memory allocation implementations. In the TSX-R config-
uration for an insert rate of 100%, the percentage of traversals
that eventually resulted in a lock acquire is now 1.7% as com-
pared to 3.6% prior to the transformations. Recall that TSX-R
on an abort retries elision multiple times prior to a threshold
after which it acquires the lock.

In Figure 9b we see a significant improvement to TSX-R
with an elision-friendly Delta Storage Index. The improve-
ment is similar for all percentages of insert operations, demon-
strating the effectiveness of the data footprint reduction. With
the elision-friendly index, we achieve significant performance
gains for all insert percentages. For an insert rate of 100%,
the elision-friendly Delta Storage Index achieves a speedup
of 4.6x compared to the best performing RW lock implemen-
tation. The relative gain from these improvements is higher
for the 100% insert than for the 0% insert, demonstrating the
benefit of conflict reductions from the insert operation. For
example, in the 100% insert case with TSX-R, the percentage
of traversals that eventually resulted in a lock acquire (and
hence serialization) is now only 1.3% as compared to nearly
75% prior to the transformations (Section 4.3).
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Figure 9: Elision-Friendly Delta Storage Index Performance

As can be seen, applying the transformations has brought
the TSX-R line close to the upper bound version without any
concurrency control. Even though the serialization rate due
to lock acquires has been significantly reduced, aborts still
occur. Further opportunities for reducing aborts and bridging
the remaining gap is future work.

Figure 10 shows scaling of TSX-R with increasing thread
count for an elision-friendly Delta Storage Index. We com-
pare TSX-R (using a spin lock) and a RW lock at two ends
of the insert spectrum: read-only (0% inserts) and write-only
(100% inserts). The relative performance is scaled over the
performance for the single thread RW lock. As we can see,
TSX-R performance is slightly lower than RW locks for the
read-only case (for reasons discussed in Section 4.3) but sig-
nificantly outperforms the RW lock for the write-only case. In
the 4-thread data point, each thread is assigned to a separate
core (HT disabled) whereas in the 8-thread data point, two
threads are assigned to each core (HT enabled). Even with 8
threads running with HT enabled, we see good scaling with
respect to 4 threads running with HT disabled.

The study above was for up to 8 threads as that was the
largest available configuration. The performance gap to the
RW Lock is expected to be even larger with increasing cores
and additional sockets, as is typical in server platforms. For
multi-socket systems we expect TSX-R to outperform the RW
lock in read-only scenarios as well, because TSX-R avoids
moving the cache line with the lock variable around in the
system and thus it will have a positive effect on system perfor-
mance (as shown in the Figures 3¢ and 4c).

6. Related Work

Database indexes [4] have been extensively studied and over
the years numerous concurrency control implementations for
these indexes have been proposed. These proposals, both re-
search and commercial, vary greatly in implementation. But
nearly all implementations rely on some form of locking or
latching protocols, whether to coordinate concurrent transac-
tions accessing a database or to coordinate concurrent threads
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Figure 10: Delta Storage Index Scaling with Intel TSX

accessing the underlying data structures. An index traversal
often requires following pointers or links, and the implementa-
tion must ensure such a pointer does not become inconsistent
in the middle of a traversal by one thread due to the actions of
another thread. If multiple locks are used to protect various
nodes, an implementation must follow proper rules for dead-
lock avoidance or support detection and recovery mechanisms.
Some operations on trees, such as inserts, can eventually result
in a change in the tree’s structure, and dealing with this in a
high concurrency environment is fairly subtle. Graefe [10]
provides an excellent survey of different approaches.

Index implementations that use simple concurrency control,
such as a reader-writer lock, while easier to verify, don’t per-
form well under heavy writes, since writers serialize accesses
to the index. Adding levels of granularity by employing multi-
ple locks helps improve concurrency but increases complexity.
Example of finer granularity implementations include Lock
Coupling [5] where a parent node must be kept locked un-
til a child node is locked, and Lock Splitting where a set of
locks protect different nodes of the index. Lock free imple-
mentations, while avoiding high-level transaction locks when
accessing indexes, often still rely on low level synchronization
operations and, as we saw earlier, such operations can also
hurt scalability in modern server systems. Other approaches,



instead of protecting the actual structure, focus on higher-level
mechanisms such as key range locking.

Alternative approaches include B-Link trees [16] where
the traversal algorithm for reads is made tolerant to changes
in the underlying links by any writers. This avoids synchro-
nization for readers at the cost of additional constraints on
the underlying data structure (e.g., the size of the data ele-
ment), and complexity in dealing with an optimistic traversal
in software. Numerous extensions to B-Link trees have also
been proposed [21, 11]. A versioning approach shows similar
properties as the B-Link tree [8]. PALM [22] relies on batch-
ing queries following a bulk synchronous parallel algorithm
approach. Kuszmaul et al. use a Software Transactional Mem-
ory (STM) implementation to allow concurrent accesses to a
cache-oblivious B-Tree [15]. Performance is limited through
the computational overhead of the STM system.

Herlihy and Moss [13] introduced Transactional Memory
and proposed hardware support to simplify the implementa-
tion of lock-free algorithms. Because Transactional memory
requires a new lock-free programming model and relies on
mechanisms other than locks to provide concurrency, integrat-
ing it into complex software systems remains a significant
challenge [12]. Rajwar and Goodman [19, 20] introduced lock
elision as a way to execute lock-based programs in a lock-free
manner. Similar hardware support has been investigated for
other domains and data structures [24, 9].

7. Concluding Remarks

In this paper we addressed the question of whether modern
database implementations can take advantage of hardware
support for lock elision. We evaluated the effectiveness of such
hardware support using the Intel TSX extensions available in
the Intel 4th Generation Core ' Processors. We focused on
database index implementations, a common B+Tree and the
SAP HANA Delta Storage Index.

We demonstrated that a simple spin lock with lock elision
can provide good scalability across a wide range of access
configurations. While the gains can be observed without any
changes to the index implementations, making elision friendly
changes can further improve performance. We give examples
of some of these transformations. The resulting index concur-
rency control implementation is simple and scalable with lock
elision, while performance is close to an index tree without
any concurrency control implemented.

The results are quite encouraging and suggest compelling
benefits to internal database data structures from Intel TSX-
based lock elision. Applying Intel TSX to other internal
database data structures is an area of future work.
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