
...

HASWELL: THE FOURTH-GENERATION
INTEL CORE PROCESSOR

...

HASWELL, THE FOURTH-GENERATION INTEL CORE PROCESSOR ARCHITECTURE, DELIVERS A

RANGE OF CLIENT PARTS, A CONVERGED CORE FOR THE CLIENT AND SERVER, AND

TECHNOLOGIES USED ACROSS MANY PRODUCTS. IT USES AN OPTIMIZED VERSION OF INTEL

22-NM PROCESS TECHNOLOGY. HASWELL PROVIDES ENHANCEMENTS IN POWER-

PERFORMANCE EFFICIENCY, POWER MANAGEMENT, FORM FACTOR AND COST, CORE AND

UNCORE MICROARCHITECTURE, AND THE CORE’S INSTRUCTION SET.

......Haswell, the fourth-generation
Intel Core Processor, delivers a family of pro-
cessors with new innovations.1,2 Haswell
delivers a range of client parts, a converged
microprocessor core for the client and server,
and technologies used across many products.

Many of Haswell’s innovations are in the
areas of improving power-performance effi-
ciency and power management. Power-
performance efficiency has been enhanced to
increase the processor’s operating range and
improve its inherent performance in power-
limited scenarios and its battery life.
Improvements in power management in-
clude additional idle states, specifically the
new active idle state S0ix, which enables 20�
reduction in idle power. One key enabler for
power-performance improvements is the
fully integrated voltage regulator (FIVR),
which also improves board space and cost.

Performance improvements in the core and
graphics come with corresponding improve-
ments in cache hierarchies; the first two cache
levels have twice the bandwidth. For the
top graphics configurations, Intel Iris Pro
Graphics, Haswell also introduces a new
fourth-level, 128-Mbyte on-package cache
that enables a new level of integrated graphics
performance.

Haswell is a “tock”—a significant micro-
architecture change over the previous-
generation Ivy Bridge. Haswell is built with
an SoC design approach that allows fast and
easy creation of derivatives and variations on
the baseline. Graphics and media come with
more scalability that lets designers build effi-
cient configurations from the lowest to highest
end. The core comes with power-performance
enhancements and a set of new instructions,
such as floating-point fused multiply-add
(FMA) and transactional synchronization
extensions (TSX).

Haswell uses an enhanced version of Intel’s
22-nm process technology, which has en-
hanced tri-gate transistors to reduce leakage
current by a factor of 2� to 3� with the same
frequency capability. Haswell’s version of the
22-nm process has 11 metal interconnect
layers, compared to nine for Ivy Bridge, to opti-
mize for better performance, area, and cost.

Power efficiency and management
Current processors operate in power-

constrained modes; they must maximize the
performance they deliver inside a fixed power
envelope. This power constraint is true for
both server and mobile applications. One of

Per Hammarlund

Alberto J. Martinez

Atiq A. Bajwa

David L. Hill

Erik Hallnor

Hong Jiang

Martin Dixon

Michael Derr

Mikal Hunsaker

Rajesh Kumar

Randy B. Osborne

Ravi Rajwar

Ronak Singhal

Reynold D’Sa

Robert Chappell

Shiv Kaushik

Srinivas Chennupaty

Stephan Jourdan

Steve Gunther

Tom Piazza

Ted Burton

Intel
...

6 Published by the IEEE Computer Society 0272-1732/14/$31.00�c 2014 IEEE

the most important goals of a new processor
generation is to dramatically improve power-
performance efficiency. In Figure 1, the basic
nonlinear relationship between power and
performance is shown in the solid line. To im-
prove power-performance efficiency across the
voltage-frequency scaling range, we must
achieve three goals, as shown in the dashed line:

� extending the operating range down-
ward to allow the processor to go into
smaller form factors that are even
more power constrained,

� improving the basic power-perform-
ance efficiency of the processor by
pushing each operating point to the
right and down, and

� extending the operating range upward
for more burst and Turbo headroom.

In Haswell, we employ multiple techniques
to improve power-performance efficiency. We
can describe them in three categories: low-level
implementation, high-level architecture, and
platform power management.

Examples of low-level implementation
improvements include the following:

� Optimized manufacturing, process tech-
nology, and circuits help achieve all
three goals just listed. These improve-
ments are enabled by Intel’s manu-
facturing capability and a deep
collaboration across the different Intel
teams.

� Optimized microarchitecture and
algorithms. In each generation, we
evaluate for sufficient power-
performance efficiency. Areas that fall
below our goals will be reimple-
mented in ways that improve the
power-performance efficiency.

� Optimization of design and imple-
mentation through continued focus
on gating unused logic and using
low-power modes.

An example of a high-level architecture
improvement in Haswell is extending the use
of independent voltage-frequency domains.
Figure 2 shows a conceptual block diagram of
the different voltage-frequency domains.
Cores, caches, graphics, and the system agent
are all running at dedicated, individually con-
trolled voltage-frequency points. A power con-
trol unit (PCU) dynamically allocates the
power budget among the domains to maxi-
mize performance. Prioritization based on

P
ow

er

Performance

Figure 1. Power and performance voltage-

frequency scaling improvements. The

baseline (solid line) is improved (dashed

line) by being lowered and by being

extended for better burst and Turbo

headroom.

DMI

System
agent

Core

Core

Core

Core LLC

LLC

LLC

LLC

Processor graphics

IMC
Display

PCI Express*

Figure 2. Conceptual block diagram of the

Haswell processor showing the different

independent voltage domains. The figure

also shows Haswell’s cache hierarchy and

memory controller, which features

bandwidth, load balancing, and DRAM

efficiency improvements.

...

MARCH/APRIL 2014 7

runtime characteristics select the domain with
the highest-performance return. For example,
for a graphics-focused workload, most of the
processor power is allocated to the graphics
domain. Sufficient power is allocated to the
rest of the blocks that the graphics domain
depends on for performance, such as the sys-
tem agent to provide memory bandwidth.

At a platform level, we improved battery
life to deliver “all-day experiences.” To achieve
this, we focused both on active workloads,
such as media playback, and on idle power.
Haswell achieves a 20� improvement in
idle power. Haswell has evolutionary power-
management improvements, such as improve-
ments in C-states (CPU idle states). Haswell
has both new, deeper C-states and improve-
ments in the entry-exit latencies to C-states.
These latency improvements let Haswell more
aggressively enter deep C-states.

Haswell also has revolutionary power-
management improvements—for example,
the introduction of a new active idle-power
state, S0ix. We leverage learnings from past
phone and tablet development to deliver 20�
improvements in idle power compared to the
prior generation. This improvement enables
significant improvements in realizable battery
life. S0ix appears to software as an active state,
while in actuality the hardware autonomously
enters and exits deep idle states with low
latency. The new power state is transparent to
well-written software. Power management of
platform components is continuous and fine
grained; everything that is not needed is indi-
vidually turned off.

Fully integrated voltage regulator
Power delivery to higher-performance

processors comes with many conflicting
requirements, such as the need for higher
power for extended burst capability, a greater
number of individually controlled voltage
rails, and the need for a physically smaller
footprint for new form factors. In response
to these requirements, Haswell processors
are powered by a 140-MHz, multiphase
FIVR.2-4 The industry’s first large-scale
deployment of high current switching regula-
tors integrated into a VLSI die and package.
FIVR is the enabling technology behind key
Haswell improvements, including a 2� to
3� increase in peak available power (which

converts into burst performance), a substan-
tial battery life increase, and a 70 to 80 per-
cent platform footprint reduction.

Figure 3 gives an overview of FIVR. A
first-stage voltage regulator (VR), which is on
the motherboard, converts from the power
supply or battery voltage (12 to 20 V) to
approximately 1.8 V, and the second conver-
sion stage is provided by parallel FIVRs (one
for each major architectural domain). As
illustrated, FIVR eliminates four VRs from
the prior platform. To support the new Intel
Iris Pro Graphics variants of Haswell, those
platform VRs would have grown in both size
and number. With FIVR, a platform-size
reduction opportunity was achieved instead
of what would have been a substantial
growth. That platform space can be used to
add platform features, increase the battery
size, and reduce the platform dimensions in
many Haswell mobile products.

At the onset of the Haswell design, FIVR’s
expected benefits fell into half a dozen
categories:

� Battery life increase. FIVR’s 140-MHz
switching frequency enables several
orders of magnitude less output decou-
pling and much lower input decoupling
than the prior generation’s voltage rails,
allowing input and output voltages to
be quickly reduced or powered off to
save power, and quickly ramped back
up for brief high-performance bursts.

� Increased available power for in-
creased burst performance, where
FIVR can direct the entire package
power to the unit that needs the most
power, compared to separate VRs for
separate units in the previous platform.

� Decreased power required for a given
level of performance or, almost
equivalently, increased performance
for a given power consumed.

� Decreased platform cost and size
from removal of components and
external power rails.

� Improved product flexibility and
scalability; for example, new units
can be added with little impact on
the platform power-delivery systems.

FIVR delivered benefits in every category,
some larger than expected.

..

HOT CHIPS

..

8 IEEE MICRO

Haswell Peripheral Controller Hub
Significant power reduction was achieved

by the power-management improvements in
the Peripheral Controller Hub (PCH).
The Haswell PCH is responsible for

providing I/O management, and its activity

depends on direct-memory-access traffic to

and from peripheral devices in the PCI,

USB, Serial ATA, Wi-Fi and audio-voice-

speech subsystems.

VRVR

VccInVccIn

DDRx

Vccin

3.5 to 1

surface area

Core VR
variable
voltage

PLL VR
1.8 V

0 V-1.2 V

Ivy Bridge
processor

Ivy Bridge platform

(a)

(b)

Graphics
VR
variable
voltage
0 V-1.2 V

System agent
VR

DDRx

DDRx

DDR
VR

Haswell platform

Haswell processor

FIVR VRs:
Vccsa
Vccio

0 V-1.8 V

Logic

Vccioa
VccCore 1
VccCore 2
VccCore 3

blocksVccCore 4
VccCache
Graphics0
Graphics1

DDRx

DDR

VccEDRAM
VccOPIO

Example voltage planes

input/output
VR 1.0 V

Figure 3. Example of possible platform improvements. Haswell’s fully integrated voltage

regulator (FIVR), shown at the bottom, enables substantial board space and cost savings

compared to the Ivy Bridge platform, shown at the top (a). Multiple voltage regulators (VRs) in

the previous platform are combined into one VR (b).

...

MARCH/APRIL 2014 9

A significant innovation is the introduc-
tion of exit latency timers that are pro-
grammed with the latency demands of devices
attached to the I/O links. The power manage-
ment controller (PMC) in the PCH uses these
latencies to calculate and gracefully adapt the
I/O subsystem from “high performance with
low latency” to “low power with higher
latency” by stopping clocks, shutting down
phase-locked loops and, finally, locally power-
gating the I/O control modules of each system
independently. These changes allowed for a
40� power reduction in the I/O subsystem
from the previous-generation PCH.

Haswell graphics and media
Haswell graphics and media are built to

scale across a wide range of processor config-
urations, from low to very high integrated
graphics and media performance. To achieve
this scale, Haswell graphics were built from
the start with scale in mind (see Figure 4).

Haswell graphics and media are roughly
split into six domains:

� Global assets, including geometry
front-end up to setup.

� Slice common—shared functions,
including a rasterizer, level-3 cache
(internal to graphics), and pixel back-
end.

� Subslice, including shaders (execu-
tion units [EUs]), instruction caches,
and texture samplers. These subslices
are scalable in number to achieve the
desired performance.

� Multiformat video codec engine.
� Video quality enhancement engine.
� Display pipelines.

EUs are general-purpose programmable
cores that support a rich instruction set that
has been optimized to support various 3D
API shader languages as well as media func-
tions (primarily video) processing.

Shared functions are hardware units that
provide specialized supplemental functional-
ity for the EUs. A shared function is imple-
mented where the demand for a given
specialized function is insufficient to justify
the costs on a per-EU basis. Instead, a single
instantiation of that specialized function is
implemented as a stand-alone entity outside
the EUs and shared among the EUs.

The graphics and media configurations
can vary by the number of subslices, video
decoders, and samplers to vary power and
performance profiles.

The generic and traditional rendering
pipeline—fetch!shade (vertex, hull, do-
main, geometry), rasterize, pixel shade—
maps onto the global assets. A global (across
graphics) cache provides storage and coher-
ence between shared elements and allows
specific cache configurations for GPGPU
(general-purpose computing on GPUs)
computing.

The media functions are woven into the
graphics architecture and provide a scalable
and programmable option for video encod-
ing, decoding, and postprocessing. The func-
tions include the following:

� fixed function, such as multiformat
video decoders sized for ultra high-
power efficiency;

� scalable assets, such as motion esti-
mation hardware; and

� programmable postprocessing filters.

Haswell graphics are designed to be
latency tolerant, because they share the mem-
ory subsystem with latency-sensitive CPU
cores. Graphics and media share last-level
cache in a programmable fashion with the
CPU, allowing for a software-tunable
cache-sharing policy for graphics and
CPU hardware for optimal performance.
This is further enhanced in the presence of
the larger embedded DRAM (eDRAM)
cache, which lets graphics access a high
bandwidth.

Cache hierarchy and the eDRAM cache
Haswell delivers substantial performance

improvements in cores, media, and graphics,
and needs a corresponding improvement in
memory bandwidth. In addition to the tradi-
tional double-data-rate (DDR) memory-
speed enhancements, Haswell has further
improvements in cache hierarchy pipelines,
single-thread streaming write bandwidth, load
balancing, and memory-scheduling efficiency.

We optimized all of the pipelines of the
cache and memory hierarchy for efficiency
improvements. Microarchitecture work im-
proved pipeline efficiency. For example,

..

HOT CHIPS

..

10 IEEE MICRO

optimizing the concurrency of requests—
that is, handling different kinds of requests in
separate pipelines—resulted in efficiency
improvement of up to 40 percent. Further-
more, the cache hierarchy exploits the weakly
ordered nature of write-combining stores to
increase the maximum number of concurrent
requests from a single Intel Architecture (IA)
core from 10 to 40þ. This change greatly
increased the streaming write bandwidth to
memory for single-thread workloads.

Load balancing between request agents
was improved. The credit-based bandwidth
management system was optimized to effi-
ciently share resources. The management

system achieves fairness between reliable
low-latency accesses to resources with the
possibility of high-bandwidth access for,
for example, the graphics engine.

Haswell also has improvements in the
memory schedulers for better write through-
put. The Haswell memory controllers have
deeper pending queues, more decoupling,
and better scheduling algorithms.

These cache hierarchy improvements are
good for most of the Haswell configurations.
For the Haswell top-end graphics configura-
tion, Intel Iris Pro Graphics, we needed even
more bandwidth and developed a dedicated
solution.

Command
streamer (CS)

Vertex
fetch (VF)

Vertex
shader (VS)

Video front
end (VFE) Video

quality
engine

Multi-
format

CODEC
Blitter Display

3D sampler
EU

EU

EU

EU

Media
sampler

Data port

Tex$

3D sampler
EU

EU

EU

EU

Media
sampler

Data port

Tex$

L1 IC$

L1 IC$

Rasterizer/
depth

L3$ Pixel
ops

Render$
depth$

Hull shader
(HS)

Tessellator

R
in

g
 b

us
/L

LC
/m

em
or

y

Domain
shader

(DS)

Geometry
shader
(GS)

Stream-
out (SOL)

Clip/setup

Th
re

ad
 d

is
p

at
ch

Figure 4. Haswell graphics block diagram. Haswell graphics and media are built with a modular approach, which enables scale

across a range of system configurations.

...

MARCH/APRIL 2014 11

eDRAM memory bandwidth solution
Meeting Intel Iris Pro Graphics perform-

ance targets required much more bandwidth
than the two channels of DDRx for clients.
Additional external memory channels would
have been very costly and had adverse effects
on the physical size in the platform. The
bandwidth solution we implemented is a
128-Mbyte L4 (fourth-level) cache providing
102 Gbytes/second peak bandwidth
(51 Gbytes/second read and simultaneously
up to 51 Gbytes/second write). The L4 cache
data store is a discrete die made using Intel
eDRAM process technology, providing both
high-density memory and high-speed logic
for high-bandwidth I/Os.5-7 The eDRAM

die is on-package to exploit close proximity
for low latency and low-power interconnect.

The L4 cache architecture with eDRAM
gives the following benefits compared to
other candidates:

� superior bandwidth per watt over
DDRx and GDDRx,

� a unified memory bandwidth solu-
tion for both IA and graphics,

� minimized motherboard real estate
for small form factors, and

� an in-package memory solution to
enable package-based performance
upgrade opportunities.

The Intel Iris Pro Graphics CPU and
eDRAM are in a multichip package (MCP)
connected using a full-duplex on-package
I/O (OPIO), as shown in Figure 5. The CPU
hosts the L4 cache controller, and the tags
and the enhancements needed in the power
control unit. A low-power, high-bandwidth
link connects the CPU to the L4 and
eDRAM cache die.

The eDRAM was architected to be inte-
grated with the existing cache hierarchy with
minimal impact. The eDRAM acts primarily
as a victim cache for the L3, being filled by
evictions. Unlike the on-die L3 cache, the
eDRAM is not inclusive of the core caches,
allowing graphics data to be read and written
directly without the need to fill into the on-
die L3, saving the L3 storage for more
latency-critical IA core accesses.

The eDRAM tags are stored in traditional
static RAM (SRAM) on the processor die. To
save power and area, each tag entry, called a
superline, represents a 1-Kbyte region made
up of sixteen 64-byte cache lines. All incom-
ing requests look up the on-die L3 and
eDRAM in parallel.

Intel Iris Pro Graphics adds several cache
controls that help graphics use the L3 and
eDRAM caches. Either cache can be parti-
tioned between IA or graphics traffic to pro-
vide quality of service. Graphics can prevent
surfaces from allocating in the caches if they
would not benefit from caching. Graphics is
also able to use the eDRAM to cache display-
able surfaces for the first time.

OPIO exploits the short trace lengths
within the MCP to simplify I/O and clock-
ing circuits to significantly reduce power,

CPU/eDRAM

Multichip package

(a)

(b)

OPIO
interface

R
x

T
x

CPU

C
o
n
t
r
o
l
l
e

C
L
K

R
E
Q

R
x

T
x

R
x

T
x

data

data

request

r

Side
band

R
x

T
x

R
x

T
x

eDRAM
C
L
K

R
E
Q

R
x

T
x

R
x

T
x

Side
band

R
x

T
x

Figure 5. Intel Iris Pro Graphics multichip package ball grid array: photo of

the package view (a) and block diagram (b).

..

HOT CHIPS

..

12 IEEE MICRO

area, and latency while providing high band-
width. OPIO uses only 1 W of total power to
deliver 102 Gbytes/second. This is 3� band-
width at 1/10 total power compared to the
32 Gbytes/second DDR3.

The Intel Iris Pro Graphics eDRAM die is
Intel’s first product instantiation of eDRAM
technology. The ability to combine dense
eDRAM memory technology and high-speed
logic gave the capability to have a single die
with both large capacity storage and high
bandwidth.

The eDRAM die is implemented in Intel
22-nm technology. The eDRAM array is a
total of 128 Mbytes and architected for high-
bandwidth efficiency (also called low-loaded
latency). There are 128 banks, each with a row
cycle time of 4 ns, minimizing both the proba-
bility of a bank conflict and the penalty when
it occurs. The array operates at 1.6 GHz, proc-
essing a command per clock. The entire data-
path to the array and within the array is full
duplex, enabling write data transfers simulta-
neous with read data transfers. Each data
transfer takes two clocks.

The Intel Iris Pro Graphics Power Control
Unit (PCU) dynamically manages the eDRAM
device state depending on runtime evaluation
of workload characteristics, performance goals,
and energy efficiency considerations. The PCU

maintains the eDRAM subsystem in one of
three states: on, off, or self-refresh. In the
“on” state, both eDRAM and OPIO are at
their active voltage, and the eDRAM control-
ler is sending refreshes to the eDRAM device
across the OPIO link. In the “off” state, both
eDRAM and OPIO clocks are stopped, and
voltage is reduced to 0 V. In “self-refresh,”
EDRAM is kept at its active voltage, but
clocks in the OPIO domain are stopped and
voltage is dropped to 0 V. While the pro-
cessor is active, the PCU can choose between
on and off depending on the workload and
power and performance goals. While the pro-
cessor is idle, the PCU can choose to turn
eDRAM off or put it into the self-refresh
state. The PCU periodically evaluates the
eDRAM’s potential performance benefits
and decides whether to power on the
eDRAM subsystem.

eDRAM performance
The Haswell graphics performance im-

provements are the main bandwidth driver
that motivates eDRAM. Figure 6 shows the
performance gain for 128-Mbyte eDRAM
over a baseline of two-channel DDR3-1600
only, for a broad set of graphics benchmarks
and game titles (including a beta version of

1.00

Dire
ctX

*1
1 C

ivi
liz

ati
on

5*

La
teV

iew
19

20
x1

20
0

Dire
ctX

*1
0 H

aw
x*

 19
20

x1
20

0

Dire
ctX

*1
0 F

ar
 C

ry
2*

 19
20

x1
20

0

Le
ft4

Dea
d2*

20
48

x1
53

6

Le
ft4

Dea
d2*

 19
20

x1
20

0

DOTA
2*

 19
20

x1
20

0

DOTA
2*

 20
48

x1
53

6

Dire
ctX

*1
0 R

es
iden

tE
vil

5*
 19

20
x1

20
0

3D
Mar

k0
6*

 sc
or

e

Dire
ctX

*1
1 A

lie
n v

s P
re

dato
r*

25
60

x1
60

0

Dire
ctX

*1
1 C

ivi
liz

ati
on

5*
 Le

ad
er

s 1
92

0x
12

00

Le
ft4

Dea
d2*

 19
20

x1
20

0 A
nti
‐A

lia
sin

g

Dire
ctX

*1
0 A

ss
as

sin
’s

Cre
ed

* 1
92

0x
12

00

Dire
ctX

*1
1 S

ton
e G

ian
t 1

92
0x

12
00

Dire
ctX

*1
1 S

ton
e G

ian
t 2

56
0x

16
00

PCMar
k V

an
tag

e*
 sc

or
e

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80
Speedup vs. no eDRAM

Figure 6. Performance for graphics workloads using the Intel Iris Pro Graphics eDRAM cache.

(See the disclaimer in the Acknowledgments section.)

...

MARCH/APRIL 2014 13

DOTA2). On average, eDRAM can increase
performance by 30 to 40 percent.

The 128M eDRAM cache is large enough
to exploit both inter- and intraframe data
reuse. It’s well known that graphics data, such
as textures, are reused multiple times inside
of a single frame. Extensive presilicon simula-
tion, confirmed by silicon measurements,
showed that data can also be reused between
frames.

In addition to providing high-bandwidth
power and energy efficiently to boost graphics
performance, eDRAM is also carefully de-
signed to minimize latency, as the outstand-
ingly small latency sensitivity with load
sustainable for random traffic shown in
Figure 7, which is especially important for
eDRAM to benefit not only graphics but also
general CPU workloads.

Haswell core
Haswell’s core is the next major evolution

in general-purpose out-of-order microarchi-
tecture, delivering both higher performance
and improved power efficiency across a broad
range of workloads and form factors.

Like its predecessor, Ivy Bridge, the
Haswell front-end pipeline supplies micro-

operations (lops) for execution from two pri-
mary sources. The first source, a traditional
instruction cache/decoder pipeline, supplies
lops by decoding up to 16 bytes per cycle of
complex instructions into up to four com-
pound lops. The second source, a lop cache,
stores decoded lops natively and supplies
them at a rate equivalent to 32 bytes per cycle.

Up to four compound lops per cycle allo-
cate resources for out-of-order execution and
are split into simple lops. Up to eight simple
lops per cycle can be executed by heteroge-
neous execution ports. Once complete, up to
four compound lops can be retired per cycle.
Each Haswell core shares its execution
resources between two threads of execution
via Intel Hyperthreading.

Haswell’s core contains several innova-
tions for performance and power, including
the following:

� Intelligent speculation. Haswell decou-
ples branch prediction, instruction
tag accesses, and instruction transla-
tion look-aside buffer (TLB) accesses
from the supply of lops to execution.
State-of-the-art advances in branch
prediction algorithms enable accurate
fetch requests to “run ahead” of lop

Iris pro (eDRAM) Iris (no eDRAM)

CRW loaded latency

105
110

85
90
95

100

70
75
80
85

55
60
65
70

La
te

nc
y

(n
s)

40
45
50
55

30
35

0 5 10 15 20 25 30 35 40 45 50

100% Rd BW (GBps)

Figure 7. Loaded latency of the Intel Iris Pro Graphics eDRAM cache. (See the disclaimer in

the Acknowledgments section.)

..

HOT CHIPS

..

14 IEEE MICRO

supply to hide instruction TLB and
cache misses. A new data TLB pre-
fetcher keeps page walk latency from
delaying many memory accesses.

� A large out-of-order window. Haswell
maintains 192 lops in flight in its
reorder buffer and the supporting
structures, such as load buffers (72),
store buffers (42), reservation stations
(60), and physical register files (168).
This is approximately a 15 percent
increase over Ivy Bridge to extract
more parallelism.

� Raw execution horsepower. Haswell
provides eight heterogeneous execu-
tion ports, an increase over the six in
Ivy Bridge. The two new ports and
additions to existing ports combine
to provide a fourth integer ALU, a
second branch unit, a second float-
ing-point multiplier, and a third store
address-generation unit. The addi-
tional resources provide higher peak
throughput and fewer false resource
conflicts. See Figure 8 for details.

� Aggressive clock and data gating, and
new dynamic power-saving modes. The
Haswell core achieves power efficiency
by aggressively gating idle logic. New
power-saving modes adapt to work-
load phases to save power without sac-
rificing performance.

With these improvements, the Haswell core
delivers improvements across a range of
workloads.

Instruction set enhancements
Haswell delivers performance improve-

ments on legacy and unchanged codes, and
also adds new instructions for even more per-
formance on suitable workloads.

Advanced Vector Extensions 2
With Advanced Vector Extensions 2

(AVX2), Haswell adds instructions for FMA,
256-bit integer vector computation, full-
width element permute, and vector gather to
benefit high-performance computing, audio
and video processing, and games.

Unified reservation station

P
ort 0

P
ort 1

P
ort 2

P
ort 3

P
ort 4

P
ort 5

P
ort 6

P
ort 7

Interger
ALU and shift

Interger
ALU and LEA

Load and
store address

Store
data

2xFMA
• Doubles peak flops
• Two FP multiples benefit
 legacy

• Great for integer workloads

• Reduces Port 0 conflicts

• 2nd EU for high branch code
• Leaves Ports 2 and 3 open
 for loads

New AGU for stores

Branch

Vector
logicals

Vector int
ALU

Vector
shuffle

Integer
ALU and LEA

Integer
ALU and shift

Store
address

• Frees Ports 0 and 1 for vector

New branch unit

4th ALU

FMA
FP multiply

FMA FP mult
FP add

Vector int
multiply

Vector int
ALU

Vector
logicals

Vector
logicals

Branch

Divide

Vector
shifts

Figure 8. Haswell’s execution ports and execution units. The figure shows which functional units are mapped onto which

port, and which new units and ports have been added. (LEA: load effective address.)

...

MARCH/APRIL 2014 15

Each Haswell core provides up to 32
single-precision or 16 double-precision float-
ing-point operations per cycle using AVX2’s
FMA instructions and Haswell’s two FMA
hardware units. FMA operations can be done
with the same latency as a floating-point
multiply (five cycles) and are fully pipelined.
This achieves a 1.6� latency reduction versus
the previous generation. Haswell’s FMA can
be used for both computational throughput
enhancement and for latency reductions.

The Haswell core complements the addi-
tion of AVX2 with doubled L1 and L2 cache
bandwidth. Each L1 data cache port, two
loads and one store, natively supports full-
width AVX2 operations at 32 bytes. The L2
cache can return a full cache line of data, 64
bytes, to the L1 data cache. Despite these
bandwidth increases, the L1 and L2 cache sizes
and latencies remain the same as Ivy Bridge.

New instructions for hashing and cryptography
Haswell provides several packages of new

instructions to benefit high-value workloads
that rely on bit-field manipulation and arbi-
trary precision arithmetic. These new instruc-
tions benefit many algorithms ranging from
fast indexing, to cyclical redundancy checking
(CRC), to widespread encryption algorithms.
Figure 9 summarizes the performance.

Intel Transactional Synchronization
Extensions

With Intel Transactional Synchronization
Extensions (Intel TSX), Haswell adds hard-
ware support to improve the performance of
lock-based synchronization commonly used
in multithreaded applications. These applica-
tions take advantage of the increasing
number of cores to improve performance.
However, when writing such applications,
programmers must use concurrency-control
protocols to ensure threads properly coordi-
nate access to shared data. Otherwise, threads
might observe unexpected data values, result-
ing in failures. These protocols ensure that
threads serialize access to shared data, often
by using a critical section. A software con-
struct, referred to as a lock, protects access to
the critical section.

Because serialized access to a critical sec-
tion limits parallelism, programmers try to
reduce the impact of critical sections, either
by minimizing synchronization or by using
fine-granularity locks, where multiple locks
protect different data. Unfortunately, this is a
difficult and error-prone process and a com-
mon source of bugs. Furthermore, pro-
grammers must use information available
only at the time of program development to
decide whether synchronization is required

2.4

SHA-256

SHA-256
MultiBuffer

RSA-2048

AES-GCM

2.2

2.0

1.8

1.6

1.4

1.2

1.0
Westmere Sandy Bridge Ivy Bridge Haswell

SHA-256:
RORX – Rotates, AVX2

RSA 2048:
MULX – Multiply

AES GSM:
AES-NI

PCLMULQDQ

SHA-256 MB
AVX2 – Wider

Figure 9. Examples of performance improvements with new instructions in the Haswell core.

(See the disclaimer in the Acknowledgments section.)

..

HOT CHIPS

..

16 IEEE MICRO

and when to serialize. This often leads pro-
grammers to use synchronization conserva-
tively, thus limiting parallelism.

To address this challenge, Intel TSX pro-
vides hardware support for the processor to
determine dynamically if it should serialize
critical section execution and expose any hid-
den concurrency.

Overview
With Intel TSX, the processor executes

critical sections, also referred to as transac-
tional regions, transactionally using a techni-
que known as lock elision. Such an execution
only reads the lock, and does not acquire it.
This makes the critical section available to
other threads executing at the same time.

However, because the lock no longer seri-
alizes access, hardware now ensures that
threads access shared data correctly by main-
taining the illusion of exclusive access to the
data. It does so by tracking memory addresses
accessed and by buffering any memory
updates performed within the transactional
execution. The processor also checks these
accesses against conflicting accesses from
other threads. A conflicting access occurs if
another thread reads a location that this
transactional thread wrote, or another thread
writes a location that was accessed (either
using a read or a write) by the transactional
thread. When such an access occurs, the
hardware alone cannot maintain the illusion
of exclusive access.

To commit a transactional execution, the
hardware ensures that all memory operations
performed during the execution appear to
occur instantaneously when viewed from
other threads. Furthermore, any memory
updates during execution become visible to
other threads only after a successful commit.

Not all transactional executions can be suc-
cessfully committed. For example, the execu-
tion could encounter conflicting data accesses
from other threads. In that event, the processor
performs a transactional abort. This process
discards all updates, memory, and registers
during the execution and makes it appear as if
the transactional execution never occurred.
The subsequent re-execution can retry lock eli-
sion or fall back to acquiring the lock.

Because a successful transactional execu-
tion ensures an atomic commit, the processor

can execute the programmer-specified code
section optimistically without synchronizing
through the lock. If synchronization was
unnecessary, the execution can commit with-
out any cross-thread serialization.

Programming interface
Intel TSX provides two programming

interfaces to specify transactional regions.
The first interface, called Hardware Lock Eli-
sion (HLE), is a pair of legacy-compatible
prefixes called XACQUIRE and XRELEASE.
These prefixes appear as NOPs to previous-
generation cores. The second interface, called
Restricted Transactional Memory (RTM), is
a pair of new instructions called XBEGIN
and XEND. Programmers who also want to
run Intel TSX-enabled software on hardware
without Intel TSX support would use the
HLE interface to implement lock elision.
Programmers who do not have legacy hard-
ware requirements and who deal with more
complex locking primitives would use the
RTM interface to implement lock elision.

Programmers can use the HLE interface
by adding prefixes to the instructions that
perform the lock acquire and release. Pro-
grammers can use the RTM interface by pro-
viding an additional code path to the existing
synchronization routines. In this path,
instead of acquiring the lock, the routine uses
the XBEGIN instruction and provides a fall-
back handler to execute if a transactional
abort occurs. The code also tests the lock var-
iable inside the transactional region to ensure
that it’s free and to enable the hardware to
look for subsequent conflicts. These changes
to enable lock elision are localized to syn-
chronization routines; the application itself
does not need to be changed. This substan-
tially eases enabling of applications to take
advantage of Intel TSX.

Intel TSX provides two additional in-
structions—XTEST and XABORT. The
XTEST instruction tests if a logical processor
is executing transactionally, whereas the XA-
BORT instruction can explicitly abort a
transactional region.

Implementation on Haswell
The first implementation of Intel TSX on

the fourth-generation core processor uses the
first-level 32-Kbyte data cache (L1) to track

...

MARCH/APRIL 2014 17

the memory addresses accessed (both read and
written) during a transactional execution and
to buffer any transactional updates performed
to memory. The implementation makes these
updates visible to other threads only on a suc-
cessful commit. The implementation uses the
cache coherence protocol to detect conflicting
accesses from other threads. Because hardware
is finite, transactional regions that access exces-
sive state can exceed hardware buffering. Evict-
ing a transactionally written line from the data
cache will cause a transactional abort. How-
ever, evicting a transactionally read line does
not immediately cause an abort. The hardware
moves the line to a secondary structure for
subsequent tracking.

The Intel 64 Architecture Software Devel-
oper Manual has a detailed specification for
Intel TSX,8 and the Intel 64 Architecture Opti-
mization Reference Manual provides detailed
guidelines for program optimization with
Intel TSX.9 The Intel TSX web resources site
(www.intel.com/software/tsx) presents informa-
tion on various tools and practical guidelines.

H aswell uses an optimized version of
Intel 22-nm process technology to

provide comprehensive enhancements in
power-performance efficiency, power man-
agement, form factor and cost, core and
uncore microarchitecture enhancements, and
new instructions in the core. For example,
the core delivers performance enhancements
for high-performance computing with the
new FMA instructions and for parallel work-
loads with the new Intel TSX synchroniza-
tion primitives.10,11

During Haswell’s design, we focused on
performance, power, and form factors to
ensure that Haswell delivers a compelling
user experience in new form factors. MICR O

Acknowledgments
We thank Kevin Zhang, Fatih Hamzaoglu,

Eric Wang, Ruth Brain and the Intel TMG
Organization, Dave Dimarco, Manoj Lal,
Steve Kulick, the Haswell architecture team,
and the entire Intel CCDO team, and Patty
Kummrow and the SDG Org for their signifi-
cant contributions to the success of eDRAM
and the Intel Iris Pro Graphics product.

Disclaimer for Figures 6, 7, and 9: Software
and workloads used in performance tests may

have been optimized for performance only on
Intel microprocessors. Performance tests, such
as SYSmark and MobileMark, are measured
using specific computer systems, components,
software, operations, and functions. Any
change to any of those factors may cause the
results to vary. You should consult other infor-
mation and performance tests to assist you in
fully evaluating your contemplated purchases,
including the performance of that product
when combined with other products. Results
have been simulated and are provided for
informational purposes only. Results were
derived using simulations run on an architec-
ture simulator or model. Any difference in
system hardware or software design or con-
figuration may affect actual performance.
Requires a system with Intel Turbo Boost
Technology. Intel Turbo Boost Technology and
Intel Turbo Boost Technology 2.0 are only
available on select Intel processors. Consult
your system manufacturer. Performance varies
depending on hardware, software, and system
configuration. For more information, visit
http://www.intel.com/go/turbo. Iris graphics is
available on select systems. Consult your system
manufacturer.

Optimization notice: Intel’s compilers
may or may not optimize to the same degree
for non-Intel microprocessors for optimiza-
tions that are not unique to Intel microproc-
essors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other
optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of
any optimization on microprocessors not
manufactured by Intel. Microprocessor-
dependent optimizations in this product are
intended for use with Intel microprocessors.
Certain optimizations not specific to Intel
microarchitecture are reserved for Intel
microprocessors. Please refer to the applica-
ble product User and Reference Guides for
more information regarding the specific
instruction sets covered by this notice.

..
References
1. P. Hammarlund, “Intel 4th Generation Core

Processor (Haswell),” Hot Chips 25, 2013.

2. N. Siddique et al., “Haswell: A Family of IA

22nm Processors,” to be published in Proc.

IEEE Int’l Solid-State Circuits Conf., 2014.

..

HOT CHIPS

..

18 IEEE MICRO

3. E. Burton et al., “FIVR—Fully Integrated Volt-

age Regulators on 4th Generation Intel Core

SoCs,” to be published in Proc. IEEE Applied

Power Electronics Conf. and Exposition, 2014.

4. D. Kanter, “Haswell’s FIVR Extends Battery

Life,” Microprocessor Report, 30 July 2013.

5. R. Brain et al., “eDRAM process in 22nm

Technology,” Proc. Symp. VLSI Circuits,

2013, pp. T16-T17.

6. Y. Wang et al., “Retention Time Optimiza-

tion for eDRAM in 22nm Tri-Gate CMOS

Technology,” Proc. IEEE Int’l Electron Devi-

ces Meeting, 2013, pp. 240-243.

7. F. Hamzaoglu et al., “A 1Gb 2GHz

Embedded DRAM in 22nm Tri-Gate CMOS

Technology,” to be published in Proc. IEEE

Int’l Solid-State Circuits Conf., 2014.

8. Intel 64 and IA-32 Architectures Software

Developer Manual, Intel, 2013.

9. Intel 64 and IA-32 Architectures Optimiza-

tion Reference Manual, Intel, 2013.

10. R. Yoo et al., “Performance Evaluation of Intel

Transactional Synchronization Extensions for

High Performance Computing,” Proc. Int’l

Conf. High Performance Computing, Net-

working, Storage and Analysis, 2013,

doi:10.1145/2503210.2503232.

11. T. Karnagel et al., “Improving In-Memory

Database Index Performance with Intel Trans-

actional Synchronization Extensions,” to be

published in Proc. 20th Int’l Symp. High-

Performance Computer Architecture, 2014.

Per Hammarlund is an Intel fellow. His
research interests include performance mod-
eling, microarchitecture, SMT, power-
performance efficiency and modeling, inte-
gration, and SoC design. Hammarlund has
a PhD in computer science from the Royal
Institute of Technology (KTH), Stockholm.

Alberto J. Martinez is a senior principal
engineer at Intel and the chief architect for
the Embedded Subsystems and IP Group.
His research focuses on embedded subsystems
software and hardware and PC I/O architec-
tures. Martinez has an MS in electrical engi-
neering from Sacramento State University.

Atiq A. Bajwa is the director of micro-
processor architecture at Intel. He is respon-

sible for the architectural definition and
development of microprocessors for Intel’s
mobile, desktop, workstation, and server
computing segments. Bajwa has an MS in
electrical engineering from Yale University.

David L. Hill is a senior principal engineer
at Intel. His research interests include mod-
ular high-performance caches, coherent
interconnects, and system memory technol-
ogies. His team was responsible for the
modular uncore architecture sections of the
Haswell and Broadwell product families.
Hill has a BS in electrical engineering from
the University of Minnesota.

Erik Hallnor is a cache and coherent fabric
architect, focusing on client and SoC prod-
ucts at Intel. He was the lead architect for
the Haswell coherent fabric, consisting of
the ring interconnect, LLC, and eDRAM
cache integration. Hallnor has a PhD in
computer science and engineering from the
University of Michigan.

Hong Jiang is an Intel Fellow, the chief media
architect for the Platform Engineering Group,
and the director of the Visual and Parallel
Computing Group’s Media Architecture
Team at Intel. He leads the media architecture
of processor graphics and its derivatives. Jiang
has a PhD in electrical engineering from the
University of Illinois at Urbana-Champaign.

Martin Dixon is a principal engineer in the
Intel Product Development Group, where he’s
working to develop and enhance the overall
instruction set and SoC architecture. Dixon
has a BS in electrical and computer engineer-
ing from Carnegie Mellon University.

Michael Derr is a principal engineer at
Intel. His work focuses on power managing
PC I/O architectures. Derr has an MS in
electrical engineering from the Georgia
Institute of Technology.

Mikal Hunsaker is a senior principal engi-
neer at Intel. His research interests focus on
chipset high-speed serial I/O design, includ-
ing PCI Express, SATA, and USB3. Hun-
saker has an MS in electrical engineering
from Utah State University.

...

MARCH/APRIL 2014 19

Rajesh Kumar is a senior fellow, director of
circuit and power technologies, and the lead
interface to process technology at Intel. For
Haswell, he guided the development of power
delivery integration (FIVR), on-package I/O,
and the novel process-technology needs. Kumar
has a master’s degree in electrical engineering
from the California Institute of Technology.

Randy B. Osborne is a principal engineer
working to improve performance of mem-
ory hierarchies at Intel. His research inter-
ests include memory controllers, memory
interconnects, memory devices, and large
caches, including the introduction of eDRAM
into Intel products. Osborne has a PhD in
electrical engineering from the Massachusetts
Institute of Technology.

Ravi Rajwar is a principal engineer in the
Intel Product Development Group, working
on various aspects of SoC architecture and
development. His research interests include
the IA synchronization architecture. Rajwar
has a PhD in computer science from the
University of Wisconsin–Madison.

Ronak Singhal is a senior principal engi-
neer at Intel. His research interests include
server architecture development, ISA devel-
opment, and performance analysis and mo-
deling. Singhal has an MS in electrical and
computer engineering from Carnegie Mel-
lon University.

Reynold D’Sa is vice president of the Plat-
form Engineering Group and general man-
ager of the Devices Development Group at
Intel. He leads the design engineering teams
responsible for designing and developing
SoC products for Intel’s next-generation cli-
ent and mobile platforms, including tablets
and smartphones. D’Sa has an MS in electri-
cal engineering from Cornell University.

Robert Chappell is a CPU architect at Intel,
where he works to define the performance,
power, reliability, and ISA features of the
CPU cores used in various products ranging
from phones to servers. He was the lead archi-
tect for the Haswell memory execution cluster,
the Haswell core in its later stages, and the
Haswell follow-on core (Broadwell). Chappell

has a PhD in computer science from the Uni-
versity of Michigan.

Shiv Kaushik is a fellow at Intel, where he
leads the Windows OS Division in Intel’s Soft-
ware and Services Group. His research interests
include the design of platform hardware and
firmware interfaces to operating systems and
virtualization software for power management,
scaling, performance, and reliability. Kaushik
has a PhD in computer science and engineering
from Ohio State University.

Srinivas Chennupaty is a CPU and SoC
architect at Intel. His research interests
include the Intel microprocessor architec-
ture and instruction set development. Chen-
nupaty has an MS in computer engineering
from the University of Texas at Austin.

Stephan Jourdan is a senior principal engi-
neer at Intel, where he leads the architecture
engineering teams responsible for defining
and developing SoCs for device products.
He was the chief architect on HSW ULT.
Jourdan has a PhD in computer science
from the University of Toulouse.

Steve Gunther is a senior principal engineer
and a lead power architect for Intel, where
he leads a team responsible for defining the
power management architecture for Intel’s
microprocessor product line. His research
interests include power analysis, power
management, and power reduction.
Gunther has a BS in electrical engineering
from Oregon State University.

Tom Piazza is a senior fellow and director
of graphics architecture at Intel. His research
interests include computer graphics. Piazza
has a BS in electrical engineering from the
Pratt Institute.

Ted Burton is a senior principal engineer
working on advanced technologies in the
Devices Development Group at Intel. His
research interests include power delivery.
Burton has a BS in physics from Brigham
Young University.

Direct questions and comments about
this article to Per Hammarlund, Intel, 2111
NE 25th Ave., Hillsboro, OR 97124; per.
hammarlund@intel.com.

..

HOT CHIPS

..

20 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

