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Communication latencies within critical sections constitute a major bottleneck
in some classes of emerging parallel workloads. In this paper, we argue for
the use of two mechanisms to reduce these communication latencies: Inferen-
tially Queued locks (IQLs) and Speculative Push (SP). With IQLs, the pro-
cessor infers the existence, and limits, of a critical section from the use of
synchronization instructions and joins a queue of lock requestors, reducing
synchronization delay. The SP mechanism extracts information about program
structure by observing IQLs. SP allows the cache controller, responding to a
request for a cache line that likely includes a lock variable, to predict the
data sets the requestor will modify within the associated critical section. The
controller then pushes these lines from its own cache to the target cache,
as well as writing them to memory. Overlapping the protected data transfer
with that of the lock can substantially reduce the communication latencies
within critical sections. By pushing data in exclusive state, the mechanism can
collapse a read-modify-write sequences within a critical section into a single
local cache access. The write-back to memory allows the receiving cache to
ignore the push. Neither mechanism requires any programmer or compiler
support nor any instruction set changes. Our experiments demonstrate that
IQLs and SP can improve performance of applications employing frequent
synchronization.
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1. INTRODUCTION

The shared-memory programming model is now widely established as a
leading paradigm for parallel computing. The shared-memory abstraction
is particularly attractive for irregular applications, where reasoning about
program behavior and predicting performance may be difficult. Under the
shared-memory model, in addition to holding values, memory also pro-
vides the means for synchronization and coordination of activities among
processors. When multiple processors attempt to access a set of variables
simultaneously and atleast one processor updates at least one of the vari-
ables, a data race may occur wherein the execution outcome depends on
the relative speed of the operations and the result of memory accesses
becomes unpredictable. The most common method used to resolve data
races and to enforce mutually exclusive accesses to regions of code, known
as critical sections, is through the use of a lock. A lock is simply a shared-
memory location accessed using a software convention for implementing
mutual exclusion.

Optimizing lock accesses associated with an actively shared critical
section is both crucial and subtle: crucial because nave locking algorithms
can lead to disastrous performance,(1–4) and subtle because multiple pro-
cessors may access the lock even while that lock guarantees exclusive
access to the data it protects. Since the protected data is often modi-
fied, efficient lock handling often exposes subsequent delays in accessing
protected data. Numerous synchronization mechanisms have been pro-
posed,(2,5–9) and while no common mechanism is available in all architec-
tures, virtually all architectures provide a hardware means for acquiring
a lock atomically. To date, very few implemented multiprocessor systems
have incorporated hardware mechanisms for efficient locking.

A common argument against specialized hardware support claims
that re-structuring of software may be an easier solution. This statement
may indeed be true for many structured parallel scientific applications
where critical sections can often be restructured to minimize synchroniza-
tion since these applications are computationally intensive, highly regular,
and display easily exploitable parallelism. However, emerging classes of
parallel programs, such as online transaction processing workloads, dis-
play radically different behavior from traditional scientific applications:
they are characterized by high communication miss rates.(10–12) A study
of such workloads showed that a large fraction of misses are generated
within critical sections; for a 4-way system running the Oracle database
engine, 20% of execution time was consumed on critical section data mod-
ified in remote caches. Most of these misses targeted only a small fraction
of the total number of cache lines experiencing misses.(12) A commercial
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server study also noted a large portion of execution latencies spent in
critical sections.(13) These emerging workloads are characterized by fine-
grain updates of control data and frequent synchronization protecting
such data. The protected data sets migrate among processors with the
passing of the lock and contribute to a large portion of the access laten-
cies to dirty data in remote caches.

With larger numbers of processors, faster processor speeds, and rela-
tively increasing remote access latencies, processor stalls induced by com-
munication misses within critical sections will only increase and processors
will be unable to generate misses early enough so as to hide memory
access latencies to actively shared data.

In this article, we address the problems outlined above by targeting
lock operations in conjunction with data accesses protected by these locks.
Thus, in addition to optimizing lock accesses, our proposal also optimizes
data transfer associated with these locks. Two mechanisms discussed in
this paper are Inferentially Queued Locks (IQL) and Speculative Push
(SP).(14,15) Neither mechanism requires any programmer or compiler sup-
port nor any instruction set changes.

1. Inferentially Queued Locks By devoting hardware to build an
orderly queue of lock contenders, IQLs can transfer a contended
lock in a single transaction, sending the cache line containing the
lock (i.e., the lock line) from the processor currently holding the
lock directly to the processor requesting the lock without involv-
ing any other processors. IQLs aim to increase system throughput
and reduce interprocessor communication traffic by using hardware
and the cache coherence protocol to delay transfer of the lock line
until after the lock is released. Such a delay allows the processor
holding the lock to complete its critical section and without losing
exclusive ownership of the lock line until the processor explicitly
releases the lock. The selective use of delays in processing incoming
coherence requests helps in automatically constructing a queue of
waiting processors, each waiting its turn to acquire exclusive access
to the lock. The queue is speculative because the processor infers
the existence, and limits, of a critical section from the use of syn-
chronization instructions. We believe IQLs are the first proposal to
convert, automatically and transparently, software-based spin locks
into hardware-based queued locks without requiring software or
programmer support.

2. Speculative Push Speculative Push works in conjunction with IQLs
to reduce the miss latency associated with data accesses within crit-
ical sections; such latency gets exposed once the locking mechanism



228 Rajwar, Kägi, and Goodman

is optimized. SP allows the cache controller of a processor cur-
rently holding a lock not only to defer momentarily its response
to a request for the lock line, but also provide additional modified
cache lines by anticipating misses likely to occur immediately after
the requestor has acquired the lock. Overlapping the protected data
transfer with the lock transfer reduces the communication latency
experienced within a critical section. To our knowledge, SP is the
first hardware technique to convert data misses in a critical section
resolved through multi-hop transactions into local accesses.

In Section 2 we discuss IQLs, their intuition, and show how IQLs
can be efficiently supported naturally in modern systems by using exist-
ing cache coherence protocols. We then extend the coherence protocols to
incorporate mechanisms for SP in Section 3. Section 4 discusses applying
the IQL notion of delays to atomic read-modify-write operations in addi-
tion to locks. Results are presented in Sections 5 and 6. Related work is
discussed in Section 7, while Section 8 summarizes the paper.

2. INFERENTIALLY QUEUED LOCKS

In this section, we introduce and discuss IQLs. We start by provid-
ing an intuition motivating IQLs in Section 2.1. The core mechanisms
involved in IQLs are discussed in Section 2.2. In Sections 2.3 and 2.4, we
discuss the implementation of IQLs for snoop- and directory-based proto-
cols respectively.

2.1. Intuition and Motivation

Two observations about performance loss due to lock interference
motivate IQLs.

1. A processor requesting a lock for purposes of acquiring the lock
will likely spin-wait upon discovering that the lock is already held.
The spinning action polls the lock location repeatedly waiting for
the lock to be released. Briefly delaying a response to the ini-
tial request for the lock only increases the probability of finding
the lock free rather than spin-waiting, thereby likely reducing total
communication. The latency to acquire a held lock is optimal if
such a request is serviced immediately after the lock is released.

2. Immediately servicing a lock request while the lock is held, delays
the release of the lock because the processor releasing the lock must
re-acquire the cache line with the lock in a writable state. This
process may generate additional communication among processors
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adding to the total delay. Again, delaying a response to the initial
request until after the lock is released is likely to improve per-
formance, not only by reducing total communication, but also by
avoiding a delay in releasing the lock.

Modern processors with non-blocking caches support multiple out-
standing requests to the memory system. Such processors use special
buffers such as miss status holding registers (MSHRs) (16) to track pend-
ing memory requests. Multiprocessor systems also use such structures to
buffer requests from other processors to caches lines that are in a pending
state.

IQLs extend the notion of buffering external requests by applying it
to cache lines inferred to contain a synchronization variable. By delaying
the service for a small and bounded period, and servicing the deferred
request as soon as the lock is inferred to be released, many critical sections
can be fully executed and the lock released without interference from other
processors. In addition, the transfer of the lock occurs directly between
the two nodes involved without the coherence network being in the crit-
ical path. With frequent synchronization and migratory locks, optimizing
lock accesses reduces network contention, thus having a positive effect on
memory system performance.

In contrast, a conventional system without IQLs may require many
additional network transactions to transfer a lock: a directory-based sys-
tem may not be able to transfer the lock directly from producer to
consumer without passing through an intermediate node (home), a lock
release may require upgrade permissions from the directory, or a snoop-
based system may see repeated lock requests. This additional traffic may
artificially dilate the time a lock is held, increasing the critical path of the
overall computation.

The IQL method is speculative and inferential because hardware lacks
sufficient information to know how a variable that might be a lock is
being employed by the software. This information is inferred from pro-
gram behavior, and IQLs specifically infer acquire and release points
delimiting a critical section. Since certain coherence requests are merely
delayed, but eventually serviced, correct behavior can be guaranteed, and
the only possible penalty for an incorrect inference is in performance.

2.2. Basic Mechanism

We begin by specifying terminology. A processor can have a lock in two
different ways: (1) a process running on the processor has acquired a logical
entity, a lock, and (2) the processor’s cache has a shared or exclusive copy
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Fig. 1. IQL organization. Lock Predictor Table (LPT) and Lock State Table (LST) are the
two new structures.

of a cache line containing the lock. In the first case we refer to a lock as
being acquired, held, or released. In the second case we refer to a lock-line or
lock variable as being present, requested, sent, or received. A requestor is a
processor that has requested a lock-line with an inferred attempt to acquire
the lock. A responder is a processor holding a writable copy of a lock-line
sought by a requestor. Predicting synchronization events, and distinguish-
ing between simple atomic read-modify-write operations and acquisition of
a lock have been studied elsewhere.(14) We assume the processor, using a
Lock Predictor Table (LPT) and based on previous executions of the code
sequence, has predicted the event to be a lock acquire.

Figure 1 outlines the basic mechanisms of IQLs. Events involving
cache lines predicted to contain lock variables invoke the IQL protocol. In
addition to tracking the presence of a lock-line in its cache, the local pro-
cessor must also track when it acquires and releases an inferred lock and
initiate any actions triggered by these events.

A Lock State Table (LST) is used to track local information regarding
inferred locks. The LST is indexed by the PC address of the synchronizing
instruction identifying the critical section (Alternatively, the lock address
may also be used to perform a lookup). All inferred locks known to the
cache controller through the LST are in one of four states: (1) INVALID:
the lock-line is not present in the cache and the local processor (probably)
does not hold the lock, (2) PRESENT: the lock-line is present in the local
cache but the lock is not held by the local processor, (3) HELD: the local
processor holds the lock, and (4) REQUESTED: the local processor has
requested the lock but does not have the lock.

To differentiate between deferrable and normal requests, a read-
exclusive-ownership request (rd X) that is deferrable is annotated as lower
priority (rd X lp). The deferrable rd X lp request is used for inferred
locks and ensures that the IQL protocol is invoked only for inferred
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Fig. 2. LST state transition diagram. Only a subset of the transitions is shown. Arcs
between states represent transitions labeled with event/action pairs. A horizontal line sepa-
rates event (above) and action (below). If there is no action, the line is omitted.

synchronization operations. The rd X lp request can be deferred for a
brief but bounded time. Otherwise it is identical to rd X.

Figure 2 shows a simplified state transition diagram for the LST.
When a processor predicts a lock-acquire, a lock-line already present in
the local cache is marked HELD in the LST; otherwise space is allo-
cated in the cache, a rd X lp is issued, and the corresponding LST entry
is marked REQUESTED. When the request is eventually serviced, the
LST entry transitions to HELD. A subsequent write to the byte address
inferred to be a lock (and thus predicted to be a lock release) results in
the LST entry being set to PRESENT. A lock-line’s eviction or invalida-
tion from the cache results in its corresponding LST entry being marked
INVALID. The LST is consulted on any incoming rd X lp request. If the
LST entry for the requested cache line is in state PRESENT, the request
is handled as any other read-for-exclusive (rd X) request. If the cache line
is in state HELD or REQUESTED, the line is marked for special action
upon the release of the inferred lock, and the request is buffered in an
MSHR. A subsequent inferred release of the lock triggers the servicing of
the buffered rd X lp.

2.2.1. Queue Formation

Since cache coherence protocols already serialize rd X requests on
a per-block basis, a queue of requesting processors is easily constructed
with minor support from the coherence protocol. The first rd X lp request
transfers the apparent owner of the lock-line to the requestor, thus mak-
ing it the recipient of any subsequent request. By this means, a queue of
requesting processors is formed, with each processor receiving the lock-line
sequentially in the order of original requests.
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2.2.2. Queue Breakdown

Regular priority reads, whether for exclusive or shared, are handled
separately. Interactions between regular- and low-priority requests only
occur in rare cases where the lock protocol is being violated, or due
to false sharing, or where the hardware has otherwise misspeculated. A
regular request may be serviced by a cache line owner with little delay.
Depending upon the cache coherence protocol, such a request may result
in squashing other outstanding rd X lp requests thus breaking the queue
down. Such a breakdown can be prevented if the coherence protocol
allows a requestor to insert itself at the head of the queue without break-
ing the queue down. When this occurs, the head of the queue sends data
along with a special marker indicating that the requesting processor is
temporarily at the head of the queue and the requestor must transfer own-
ership back immediately once the write completes. Such an action also
allows for a regular read request to be serviced by temporarily making
the reader the head of the queue and then immediately revoking permis-
sions from the reader once the read is completed. The idea of temporar-
ily providing data to a requestor with the understanding the data will be
discarded after one use is referred to as providing a tear-off copy of the
data.(17) Not all coherence protocols may support such actions. We do
not believe such interactions between regular and deferrable requests to
be common. Further, the unavoidable breakdowns may result in additional
traffic but most probably much less than a baseline scheme without such
implicit queue formation support.

2.2.3. Time-Outs

A time-out at the head of the queue forwards the line to the next pro-
cessor in the queue. In the event that the owner of the line evicts the lock
line, the ownership along with the data is transferred to the next requestor.
An eviction is treated as a time-out. While the notion of time-outs is not
attractive, the time-out mechanism is fairly simple and easy to apply. The
processor which has deferred a request longer than the time-out value, will
simply service the request, and this time-out helps in bounding any delays
and ensuring processors do not wait too long.

While multiple critical sections can be tracked, applying deferrals to
more than one cache line need not be supported. Our proposal is aimed
at the lowest-level critical section. Thus, if a second nested critical section
is encountered, the first can generally be discarded with respect to spec-
ulation. Thus, only a single time-out needs to be maintained. Of course,
multiple line deferrals may be supported if necessary.
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2.3. IQLs and Snoop-Based Systems

Traditional snoop-based systems use a logical serialization point for all
coherence requests, and all processors are assumed to observe the requests
in the same order. The logical serialization point is a bus. While traditional
snoop systems have implemented buses by simply using physically shared
wires, modern systems emulate the logical property of a bus but use more
complex scalable interconnects that are not physically a bus. For our dis-
cussion, we assume a snoop design similar to the Sun Gigaplane.(18,19)

The protocol uses a split-transaction, pipelined address bus with sup-
port for a large number of outstanding transactions and out-of-order
responses. The bus implements an invalidation-based three-state (Owned,
Shared, Invalid) snooping cache coherence protocol and the caches imple-
ment a MOESI protocol. The cache with the requested line in Owned
state (as seen by the bus) will respond to the next request for that line.
IQLs can be supported naturally with the above protocol as the protocol
already has an implicit notion of queues. Any processor placing a rd X lp
on the bus will respond to the next processor which places a rd X lp for
the same cache line on the bus. With IQLs, the request is not serviced
until a lock release. By placing a rd X lp on the bus, the processor joins
the queue of lock requestors at the tail and is serviced when the preceding
requestor releases the lock.

2.4. IQLs and Directory-Based Systems

Directory protocols allow cache coherence to scale to many proces-
sors. Directory protocols store a directory state for each memory block
currently cached in any node. Commonly, directory protocols implement
an invalidation-based scheme. With directory protocols, state information
for a line is obtained from a directory through network transactions, and
communication with various cached copies is performed by explicit mes-
sages using an arbitrary network. Typically, information for a line can be
found in a fixed directory location known at the time of the request.

Two popular approaches distribute directories either with memory
or with caches. Memory-based schemes store directory information for a
cache line at the home node of the lines.(13,20,21) In cache-based schemes,
the sharing information is distributed among the various copies (rather
than at the home node). Each cache line contains a pointer to the node
with the next cached copy of the line in a distributed linked-list organi-
zation.(22–24) For cache-based directories, IQLs can be supported relatively
easily since there already exists a notion of queues for cache lines. We
focus our discussion on memory-based directories.
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We use the SGI Origin-2000 coherence protocol (20) to discuss our
IQL implementation. The protocol supports the MESI (Modified, Exclu-
sive, Shared, Invalid) states and is non-blocking: memory does not buffer
requests while waiting for other messages to arrive. The protocol also sup-
ports request forwarding for three party transactions and silent evictions
of clean-exclusive lines. The protocol does not rely on an ordered network.
Two virtual channels are provided and deadlock in the request network
(due to request forwarding) is broken using back-off messages. Memory
is the owner for all clean lines in the system; thus memory services any
request for clean data immediately. In addition, rd X requests cause trans-
fer of exclusive ownership to the requestor and sending of invalidations to
other holders of cached copies. The holders of cached copies subsequently
send invalidation acknowledgments to the requestor. Requests to lines not
owned by memory are forwarded (as an intervention) to the owner (and
in the case of a rd X request, the requestor becomes the owner). The
directory enters a transitional Busy state for the particular memory block
until it receives a revision message from the previous owner. All requests
received by the directory for a memory block in Busy state receive a Nack
suggesting they retry later. A sharing bit-vector associated with each cache
line identifies the processors holding shared copies of the line.

Under the base protocol, the directory enters a transitional Busy state
while tracking down an exclusive copy in the system. For IQLs, the direc-
tory, instead of sending a Nack to a new request while in Busy state,
forwards the request to the previous requestor. If the previous reques-
tor’s request is still pending, the intervention is buffered. Forwarding a
request to the last requestor guarantees a processor receives at most one
intervention for a given memory block. An additional bit, synch bit, is
used per directory entry to determine whether the IQL protocol should be
invoked. The owner pointer is overloaded to store the last requestor when
the synch bit is set. The sharing bit-vector is also used to track members
of the inferred lock requestor queue. Alternate ways to capture such infor-
mation include using unused state bits in the encoding.

To understand how queues are created we step through a simple
example in Section 2.4.1 and then discuss how the directory detects and
handles queue breakdowns in the case of write-backs in Section 2.4.2.

2.4.1. Constructing Queues

Consider three processors, P1, P2, and P3 attempting to enter a criti-
cal section. P1 issues a rd X lp to the directory. Since the directory exclu-
sively owns the line, it responds to the request with data and enters an
Exclusive state. P1 is now the owner of the line. Subsequently, P2 issues a
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Fig. 3. Protocol transitions for IQLs in a directory-based system. Only a subset of the tran-
sitions is shown, this subset focuses on the process of forming a queue. Arcs between states
represent transitions labeled with event/action pairs. A horizontal line separates event (above)
and action (below). The queue-breakdown sequence is shown when a write-back occurs.

rd X lp request to the directory. The directory forwards P2’s request to P1,
marks P2 as the last requestor, and enters the Busy state. The bit vector
now has 2 bits set: P1 and P2. In addition, synch bit is also set. Now, P3
sends a rd X lp request to the directory. The directory state is Busy. How-
ever, since synch bit is set, instead of sending a Nack to the new requestor,
the directory forwards it to the last requestor, P2. Also, P3’s bit is set in
the bit vector. Thus, we have P3 waiting for P2’s response, which is wait-
ing for P1’s response. A processor buffers an intervention until the lock
is released. At the time when the intervention is serviced, a revision mes-
sage, which is already part of the base protocol, is sent to the directory.
On receiving the revision message, the directory unsets the processor’s bit
in the bit vector. If only one bit is set in the vector, the last requestor
automatically becomes the owner. Under this situation, the directory un-
sets the synch bit and leaves the Busy state, entering the Exclusive state.
A revision message exists for every rd X lp request serviced, thus ensur-
ing the directory will eventually transition into an Exclusive or any other
stable state. A simplified state transition diagram for the IQL protocol is
shown in Fig. 3.

2.4.2. Handling Queue Breakdown Due to Coherence Protocol
Events

The directory does not track the order in which requests are received
but only marks who has requested a cache line. The actual order of the
queue is maintained in a distributed manner among the various caches
involved. The distributed nature of the IQL queue may cause the queue to



236 Rajwar, Kägi, and Goodman

break-down due to write-backs. For the example in the previous section,
suppose P1 is writing back the line to memory. Under the base protocol,
P1 can ignore P2’s intervention since the directory can recognize this race
condition and detect P2 will not be serviced by P1. The directory does
this as it keeps track of the owner P2. However, under IQL, if there are
multiple bits set in the bit-vector (the synch bit is set and a queue exists),
the directory cannot determine the identity of the processor which will not
receive a response from P1; the directory does not remember it forwarded
P2’s request to P1. While this race condition is indeed rare, it must be han-
dled correctly, if not efficiently.

We adopt a simple approach to handle queue breakdowns. On receiv-
ing a write-back to a line with synch bit set and more than two bits set in
the bit-vector (if only two bits are set, the directory can uniquely deter-
mine the processor that will not receive a response), the directory unsets
synch bit—the directory is breaking down the queue. Doing so, the pro-
tocol behaves like the base protocol with an additional side effect: Nac-
ks are sent to all processors in the bit-vector. When the processors retry
on receiving the Nack, the directory can detect this by a bit in the retried
message. At that point, the directory unsets the bit in the bit-vector corre-
sponding to the requestor. When the bit-vector has no more bits set, the
directory entry enters an Unowned state. Such a mechanism guarantees a
directory will eventually transition into an Unowned state.

With conceptually simple changes to the way the directory protocol
works for certain types of requests, and some additional bits in the direc-
tory entry, IQLs can be efficiently supported in an SGI Origin 2000-style
protocol.

3. SPECULATIVE PUSH

This section discusses SP. Section 3.1 presents the intuition behind
SP and Section 3.2 outlines the three basic mechanisms for SP: predict-
ing lock and data pairings, assigning confidence to this prediction, and the
actual SP protocol. These mechanisms are then discussed in Sections 3.3,
3.4, and 3.5 respectively.

3.1. Intuition and Motivation

The performance of any scheme optimizing data transfer within crit-
ical sections depends on the accuracy of correctly predicting which pro-
cessor will acquire the lock and use the data. IQLs have the advantage
of early, accurate knowledge of the next owner of a lock. Since IQLs
allow inference of the presence and extent of critical sections in programs,
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the data set information associated with these critical sections can be
tracked. Using this information, SP forwards the actively shared data to
the requesting processor, along with the lock. On subsequently acquiring
the lock, the requestor finds in its cache the data it was unable to prefetch.
SP forwards data in an exclusive state, thus allowing the processor to mod-
ify the cache line without experiencing a further delay it would otherwise
suffer if it had initially retrieved the line for reading.

For critical section accesses, SP has inherent advantages over more
traditional approaches for latency reduction such as prefetching and com-
piler-assisted data forwarding. In situations of contended locks, prefetch-
ing is not sufficient as the processor would spin-waiting for the lock and
would generate data requests only once the lock has been acquired. SP
transfers data as soon as the data is ready to be forwarded and does not
interfere with the execution of the processor performing the push. The
speculative mechanism can also adapt to run-time behavior. SP provides
additional performance gain for data that is read before being written to:
its initial access is overlapped with the lock transfer, and it does not have
to be upgraded for writing.

We restrict SP to modified lines because, while some shared lines
may also result in misses, such shared lines likely would already be pres-
ent in the requestor’s cache—data in cache lines previously read but not
modified by the requestor in a previous execution of the same critical
section would probably still be in the cache. Indeed, our experiments sug-
gest that much of the observed benefit is derived simply from pushing
cache lines into caches where they were present and modified in an ear-
lier execution.

3.2. Basic Mechanisms

Speculative Push (SP) aims at constructing a link between critical sec-
tions and the data they protect. Once the link is established, whenever a
request for a lock-line is received, SP also forwards any predicted data
to the requesting processor along with the lock-line. This allows the lock
requestor to find both the lock and any protected data in writable state in
its local cache upon entering the critical section. The requestor experiences
minimal delay in executing its critical section, virtually eliminating latency
associated with access to data protected by migratory locks.

SP may initiate data transfer of predicted critical section data even
before the requestor has acquired the lock, and the data is forwarded in
Exclusive (as opposed to Modified) state. The pushed data is also written
back to memory, providing two key benefits: (1) if the target node does
not reference the pushed data, the data can be silently evicted, thus doing
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no harm, and (2) the target of the push now has the important option of
ignoring the push if no local buffer space is available.

In our experiments, we were conservative in accepting the push—a
pushed cache line never evicted a valid cache line, that is, a push was
accepted only if an invalid line was available. This approach is surprisingly
effective, in part because migratory lines that are frequently written are
frequently invalidated, leaving available invalid lines in the corresponding
cache sets. Even if the push is rejected, benefits accrue for some systems,
particularly directory-based ones. Specifically, when the rejected cache line
is subsequently accessed, it can be supplied from the directory, avoiding
the three-hop latency that would have occurred without the attempted
push.

As shown earlier in Fig. 1, IQL has two structures: the LPT to infer
critical sections, and the LST to invoke the IQL protocol partly based on
information received from the LPT. Figure 4 shows the SP hardware. SP
extends the LST by recording data accesses while the inferred critical sec-
tion is executed and by deciding if predicted data is to be forwarded along
with a released lock.

The basic steps of SP are:

1. Establish and record the association between critical section data
and a lock.

2. Enable (or disable) the optimization by assigning a confidence level
to pairings determined in Step 1.

3. Perform the Speculative Push.

The following three subsections discuss the above steps in detail.

Fig. 4. SP hardware organization.
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Fig. 5. LST entry extended for SP.

3.3. Prediction Lock and Data Association

When IQL infers a critical section, the SP hardware starts recording
addresses of accesses performed while the processor holds the lock. These
addresses become candidates for forwarding and are stored in an extended
LST entry shown in Fig. 5. Besides the lock address, each extended LST
entry stores a valid bit, a saturating counter to establish a confidence level,
and data addresses with associated access bits (A).

The LST stores cache-aligned addresses to match SP with existing con-
trollers and existing hardware manipulates data at the granularity of a
cache line. All data in a cache line are assumed to be either related or
unused since false sharing with critical data is considered poor program-
ming practice. SP may record either individual addresses or address ranges.
In our experiments at most two cache lines generally caused a write-miss
during the execution of a critical section. Therefore, our LST stores indi-
vidual addresses.

When an access results in a write fault, the SP hardware allocates
a new entry for the address. If no free entry is available, the entry with
the lowest confidence is evicted (discussed in Section 3.4). Ties are broken
arbitrarily. When a lock request is received, if the lock is predicted to be
currently held by the local processor, the push occurs when the processor
releases the lock, else if the lock is predicted to be present in the cache
but not held, the push occurs immediately.

Two actions identify candidates for future pushes: lines that caused
write misses during a critical section and lines accessed during the criti-
cal section that have previously been pushed into the cache (and therefore
do not cause write misses). While not all data written in a critical section
is migratory, write misses capture data written within the critical section
and obtained from the memory system. If such misses occur repeatedly,
one can speculate the data is migratory. Local private data may also cause
a write miss but is more likely to remain in the cache, since it will not be
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invalidated by another processor. Of course, various critical sections may
touch many or few cache lines, but the first lines touched after acquisition
of the lock seem especially important.

3.4. Prediction Confidence

A saturating counter is added to each LST entry data address to
assign confidence in the data for forwarding. Also associated with each
candidate address is an access bit (A) that is set each time the critical
section accesses this address and cleared each time after the execution of
a presumed critical section ends. Before the access bits are cleared, SP
inspects them and increases the counter for each set bit or decreases it for
each cleared bit. A counter reaching the maximum value enables SP for
the data address. This scheme avoids a cache line being repeatedly pushed
but never written to.

Repeated evictions of a candidate address also causes the counter to
decrement. Repeated evictions is a sign that the addresses accessed inside
a critical section vary from one execution to the next, preventing effective
data forwarding. A counter reaching the minimum value disables the opti-
mization.

More sophisticated predictors, for example using information about
remote requests for modified data in the local cache, or combining col-
lective information from multiple nodes about migratory patterns, may
improve the effectiveness of SP.

3.5. Speculative Push Protocol

Once the data association has been identified, the SP protocol is initi-
ated. The SP sequence involves two separate actions to maintain memory
ordering requirements and achieve high performance:

1. Determine the forwarding data path for the push.
2. Insert the Speculative Push in the global memory order, thereby

granting coherence permissions to the target.

We discuss these two actions in Sections 3.5.1 and 3.5.2. In Section
3.5.3 we discuss an interesting approach to match up speculatively pushed
data messages with their appropriate coherence permission messages cor-
rectly. The issue arises because no ordering guarantees are assumed from
the network or coherence protocol and we demonstrate a simple solution
to handle the absence of any ordering guarantees.
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3.5.1. Determining the Forwarding Data Path

The predicted data, present in the local cache in modified state, can
be pushed by the initiating processor either directly to the target proces-
sor (with a write back also sent to memory) or pushed via memory (the
data is written back to the directory which will forward the data to the
target node). If the data is pushed via memory, the initiating processor
sends address hints to the target node informing the target to expect unre-
quested data. The target processor in this case pre-allocates data buffers
in anticipation of the pushed data. Doing so prevents the target processor
from generating unnecessary requests for data addresses which are going
to be pushed along with the lock. If data is pushed directly to the target
processor, the target processor receives the actual data rather than hints
and allocates cache lines to sink the data, if possible.

When data is directly pushed to the target node, the recipient can-
not commit the use of the data until the push has been ordered because
the SP is initiated on a network separate from the one used for enforcing
serialization (at the snoop network or directory). Early access may still be
beneficial, for example, if data value speculation is being performed in the
critical section—data is present in the cache and most probably will be a
valid copy.

The choice of the forwarding data path implementation depends,
among others, on the coherence protocol. For example, for snoop-based
systems, pushing data directly to the requestor (instead of via memory)
may be beneficial. Modern systems are designed to make snoop band-
width the performance limiter rather than the data network. Thus, the
data network can be utilized to overlap the data transfer with the latency
of ordering the SP. On the other hand, for directory systems, address hints
may be sufficient since the data has to first go to the directory for order-
ing.

For our experiments, the data is sent directly to the target node for
the snoop-based protocol, while it arrives along with the coherence per-
mission in the directory-based scheme (with hints being sent when the lock
request is received).

3.5.2. Ordering the Speculative Push

The precise implementation for correctly ordering (i.e., inserting into
the global memory order for correct memory consistency and coherence)
the SP depends upon the base coherence protocol. We discuss two coher-
ence protocol classes here and show how a Speculative Push is ordered.
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Snoop-based systems. For a typical bus-based protocol, the pushed data
could be broadcast once on the bus, with a special annotation allowing the
target node to capture the data as it was being written back to memory. In
our example bus system, since data is transmitted point-to-point, a write-
back operation requires some care to ensure that the data is received, and
ordered correctly, at the target node.

The data would normally be pushed immediately after the response
providing the lock. To serialize the push, an annotated write-back (the
annotation identifying the target of the Speculative Push) is sent to
memory and serialized in the global memory order. When the annotated
write-back appears on the bus the target receives coherence permissions
implicitly. The data may or may not have reached the target node at this
point. Since the bus provides an implicit ordering, in many cases, the
latency can be overlapped to a larger extent than in a directory system.
Directory-based system. Since the data is also being written to memory (to
allow the receiving node to ignore the push if necessary), this 3-way com-
munication presents ordering challenges in a directory-based system. In a
directory-based protocol, the directory node must be involved if, as usual,
it is the point of serialization for operations. Responding to the annotated
write-back, the directory node communicates with the target node, grant-
ing exclusive coherence permission or sending a Nack to the target node
if necessary.

While the directory node must be involved in all data forwarding to
guarantee proper memory semantic, this perceived disadvantage has the
benefit of solving all the race conditions that might occur. In effect, hav-
ing to include the directory node in all transactions has the property of
not adding any new race condition that the directory-based protocol must
not already handle. Thus, receiving an annotated write-back is really no
different than receiving data evicted from a node’s cache. The only differ-
ence is that SP requests the directory to forward a copy of the data to the
target, an action that the directory can decline to do if necessary.

For directory systems, latency is not completely overlapped since the
coherence permissions need to come via the directory. However, the write-
back to the directory is overlapped with the lock transfer to the target
node. In addition, we are sending address hints to the target node. Doing
so allows the target node to pre-allocate local buffer space for sinking
the push. The only exposed latency left is the directory lookup and trans-
fer of coherence permissions to the requestor. In our experiments, while a
three-hop read took about 360 ns, with the Speculative Push, the latency
observed by the target node substantially reduces to about 60 ns. In addi-
tion, the upgrade traffic that follows after the read of the data is also elim-
inated since the data is being sent to the target in exclusive state.
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3.5.3. Automatically Matching Multiply Pushed Data
with Coherence Permissions

The two actions of speculatively pushing data, and ordering the spec-
ulative push in the global memory order can occur in any order and dif-
ferent networks may be used for them. In addition, multiple pushes of a
cache line to a given processor may occur since no ordering guarantees
are assumed from the network. To handle such situations, we treat the
two actions symmetrically. If a push is rejected, the corresponding coher-
ence permission must also be rejected and viceversa. Bookkeeping is nec-
essary to track multiple cache lines to ensure consistent responses to both
actions. For generality and without assumptions about the network, we
require a requestor to include in a rd X lp request an indication of the
number of lines it can track (but not necessarily sink) at any given time.
This number could be quite small.

The push/coherence permission information is stored in a small table
at the cache controller. Both messages in the pair will occur exactly once,
so every push (irrespective of address) received is tracked until its cor-
responding coherence permission is received, and vice versa. An entry is
removed when the pair is matched up. Any push reject can be matched
with any coherence reject and so on. As the mechanism is speculative,
the push and coherence permissions may arrive as a result of two dif-
ferent attempted pushes. Nevertheless, it is not difficult to guarantee that
the processor will have the latest data if the two actions are matched cor-
rectly.

A third processor may attempt to read data in a cache line while
the line is being pushed, either due to data races or due to misspeculat-
ed pushes. The situation is handled efficiently by providing the third pro-
cessor with the data and conservatively cancelling the push to the target
node (which, for directory systems, may require an additional message to
be sent to the target node).

4. IQLs AND ATOMIC READ-MODIFY-WRITE OPERATIONS

IQL discussion so far has focused on lock-based synchronization
mechanisms. Another class of synchronization primitives commonly used
include atomic read-modify-write operations such as Fetch & �. These
primitives provide the ability to perform a simple operation—usually an
arithmetic addition or an increment to a variable in a memory. This
provides valuable opportunities for parallel execution if the � opera-
tion satisfies certain properties because multiple operations can be exe-
cuted concurrently through a procedure known as combining.(25) While
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most modern processors do not support combining, many contempo-
rary processors provide instructions to perform atomic read-modify-write
operations to cached memory locations. These instructions include load-
linked/store-conditional, compare&swap. Such instructions are also useful
for enqueues, dequeues, software barriers, and ticket lock implementations
in addition to providing efficient ways to implement software barriers. This
section demonstrates the application of inferential delays to atomic read-
modify-write operations using the load-linked/store-conditional (LL/SC)
primitives.(14)

4.1. Load-Linked/Store-Conditional Instructions

The LL/SC instructions were originally proposed by Jensen, Hagen-
sen, and Broughton.(26) These instructions expose the steps involved in
performing the atomic read-modify-write operation to the programmer
and rely on the cache coherence protocol to ensure correctness. The LL
instruction loads the value from a memory location into a processor reg-
ister. This instruction is followed by an arbitrary sequence of operations
involving the register. The SC then attempts to write to the same mem-
ory location as the previous LL operation. The SC succeeds only if the
hardware can guarantee that no other processor has successfully written to
the memory location since the most recent LL instruction was executed.
Thus, a successful SC operation implies that a read-modify-write opera-
tion occurred atomically, completing at the time of the SC. In case of fail-
ure, the entire sequence may be retried.

The LL instruction itself may read data for exclusive ownership. How-
ever, we are unaware of any implementations that do this. A problem with
this approach is the difficulty in guaranteeing that any processor will ever
succeed. For example, consider the sequence of two processors P1 and P2
attempting to perform an atomic operation on the same variable. Assume
that both processors successfully complete the LL instruction in short suc-
cession (say P1 succeeds first). If the LL operation obtains a writable copy,
P2’s LL operation may invalidate P1’s copy (thus forcing P1’s SC to fail)
before P1 is able to complete the SC instruction. In turn, P1, on a retry,
may destroy P2’s copy before P2 has performed its SC. Thus, the two pro-
cessors may enter a live-lock situation.

4.2. Optimizing LL/SC Sequences by Using Inferentially Delayed

Responses

In a given case of contention, which processor successfully completes
an SC instruction does not matter, except that the system should not be
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so biased as to permit the same processor to succeed repeatedly. In gen-
eral, it is sufficient if some processor can be guaranteed to succeed at a
non-zero rate (though this guarantee does not by itself ensure that other
processors will not starve).

This observation can be exploited to enhance the performance of syn-
chronization. If processor P1 is permitted to acquire a writable copy of
the lock on a LL instruction, and another processor P2 generates a sim-
ilar request before P1 executes the SC instruction, the maximum system
throughput can be reached by allowing P1 to complete its SC instruction
before giving up the line to P2. This behavior may appear unfair from the
standpoint of the cache coherence protocol, since P2 broadcasts its request
for ownership before P1 decides to write. However, if it can be ascertained
with a high probability that P1 will soon write the variable, allowing it
to hold on to the data long enough to complete the SC operation suc-
cessfully, the number of external requests generated is reduced since other-
wise P1 will have to acquire the cache line again in order to complete the
sequence.

A convenient way of visualizing this operation is through the use
of relativity arguments: unless P2 can somehow observe the timing of
P1’s SC request, it has no way of knowing whether the request occurred
before or after it made its own conflicting request for the cache line. Effec-
tively, P2’s LL request can be said to have occurred after P1’s SC request,
even though in fact the LL request was received before the SC request.
Of course, a strict limit must be maintained regarding the amount of
time-warping permitted. P1’s cache cannot be allowed to wait indefinitely
while delaying P2’s request for the cache line. Such delay may also intro-
duce concerns about memory ordering. However, we observe that, while
sequential consistency constraints require a global ordering of events, that
order need not be the same as the order of requests observed on the
bus.

The concept of a delayed response becomes more interesting in the
presence of multiple requests. If processor P3 also issues an LL instruc-
tion, P1 cannot send writable copies to both P2 and P3. Here, the
notion of time-warping can be extended to reason about multiple requests.
Assuming that P2’s request is observed before P3’s, P2 can expect to
receive the cache line before P3, and can in fact be made responsible for
passing the data on to P3, perhaps after a small additional delay to allow
P2 to complete its LL/SC sequence. In this way a queue of outstand-
ing requests is built up, even if every processor concurrently attempts to
acquire exclusive access to the cache line, and the line will be passed in
a writable state from one processor to the next, in precisely the order in
which the original requests occurred.
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An extension thus involves requesting data exclusively upon executing
an LL instruction but also to delay processing a request for a copy that a
cache controller believes is about to be written. To guarantee correctness,
however, this delay must be finite and the cache controller should process
other cache requests with circumspection in order not to violate the con-
straints of memory consistency. If an SC instruction does not occur within
a certain time, a time-out mechanism guarantees that the cache control-
ler will eventually forward the cache line to the requesting node. The suc-
cess of this scheme relies on the timer to trigger infrequently. We believe
that time-outs will indeed be infrequent because architectural specifications
typically insist on a very limited amount of instructions between pairs
of LL and SC instructions. This scheme allows a processor to perform
an atomic memory operation in a single network transaction most of the
time.

The above should provide an intuition as to why the principle
of delayed responses can also be applied to atomic read-modify-write
sequences, similar to the applications discussed earlier for lock operations.
Further details of the treatment of atomic read-modify-write operations,
and implementation details can be found elsewhere.(14) Importantly, a dis-
tinction between LL/SC use for implementing locks, and LL/SC use for
implementing only atomic read-modify-write operations must be made and
we discuss the issues arising from such distinction and potential solutions
elsewhere.(14)

5. EXPERIMENTAL METHODOLOGY

We use an execution-driven simulator to perform cycle-by-cycle sim-
ulation of an out-of-order processor and a detailed event driven simula-
tion of the memory hierarchy. The simulator models all data movements
accurately (in the pipeline as well as in the memory hierarchy) and mod-
els port contention at all levels. The processor implements a release con-
sistency memory model (27) similar to the Compaq Alpha 21264.(28) The
processor retires stores to a coalescing write buffer.

Not all benchmarks display the behavior of high communication miss
rates we are targeting. We specifically select four benchmarks (Table I)
that frequently experience communication misses within critical sections.
A locking version of mp3d is used to demonstrate the effectiveness
for applications with frequent synchronization. The test&test&set syn-
chronization primitive is used and is implemented with LL/SC instruc-
tions.(25)
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Table I. Benchmarks

Applications Application type Input Procs

Cholesky (Splash) Sparse matrix factorization tk14.0 16
MP3D (Splash) Rarefied fluid flow simulation 24,000 mols, 25 iter. 4
Raytrace (Splash-2) 3-D rendering teapot 8
Water-Nsq (Splash-2) N-body molecular dynamics 512 mols, 3 iter. 16

5.1. Target Systems

We simulate two systems: a snoop-based symmetric multiprocessor
(SMP) and a directory-based distributed shared-memory (DSM) systems.
The SMP system is modeled after the Sun Gigaplane:(18) coherence and
data traffic is split onto two separate networks. Address requests and asso-
ciated coherence operations take place on a high bandwidth snoop bus;
while a high-speed point-to-point crossbar transfers data among the nodes.
The SMP employs a coherence protocol similar to the one used in the Sun
Enterprise 10,000 system.(19) The DSM implements a MESI cache coher-
ence protocol similar to the SGI Origin 2000 system.(20) We assume a fully
connected, point-to-point network in which the messages take a constant
latency to traverse one hop. However, port contention is accurately mod-
eled. Table II list the parameters of the integrated processor and cache

Table II. Integrated Processor and Cache Subsystem

Processor
Processor speed 1GHz (1 ns clock)
Reorder buffer 64 entry with a 32 entry load/store queue
Issue mechanism out-of-order issue/commit of 4 ops/cycle, 64 entry

return address stack, aggressively issue load (∼MIPS
R10,000)

Branch predictor 8-K entry combining predictor, 8K entry, 4-way BTB

Cache
L1 instruction cache 64-KByte, 2-way associative, 1-cycle access, 8 outstand-

ing misses
L1 data cache 128-KByte, 2-way associative, write-back, 2 ports, 1-

cycle access, 8 outstanding misses
L2 unified cache 2-MByte, 4-way associative, write-back, 10-cycle access,

16 outstanding misses
L1/L2 bus Runs at processor clock
Line size 64 bytes
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Table III. External Network and Memory Configuration

DRAM memory module 8-byte wide, ∼70 ns access time for 64-byte line

Snoop-based configuration OSI protocol on address bus modeled after the
Sun Enterprise 10000, MOESI at snoop cache

Address bus split-transaction, out-of-order responses, 120 out-
standing requests, 22 ns snoop cycle (including 2
ns arbitration)

Data network pipelined, point-to-point crossbar, 64-bit wide, 80
ns transfer latency

Some uncontended latencies (pin to pin) read miss to memory: ∼172 ns, read
miss to another cache: ∼125 ns

Directory-based configuration SGI Origin-2000 based MESI protocol
Directory access 70 ns (overlapped with memory access)
Processor and local directory 30 ns (directory is integrated with memory and

network controllers, point to point)
Directory and remote router 50 ns (point to point)
Some uncontended latencies (pin to pin) read miss to local memory: ∼130

ns read miss to remote memory: ∼230 ns, read
miss to remote dirty cache: ∼360 ns

Network configuration (DSM only) pipelined point-to-point network
Network width 64 bits
Read latency from network to cache 1 ns per word
Setup latency for header packet 5 ns
Setup latency for data packet 5 ns + 1 ns per word

subsystem used in both SMP and DSM systems and Table III lists the
parameters for the SMP and DSM memory systems.

5.2. Explanation of Metrics

Speedup is measured as the ratio of the parallel execution time of
the base case to the execution time of the optimized case. Therefore, a
speedup greater than one implies a performance gain. Attributing stall
cycles to specific components is a complex task for multiprocessor sys-
tems with out-of-order processors where many events occur concurrently.
We use an approximate approach. For every cycle, we compute the ratio
of instructions committed that cycle to the maximum commit rate. This
fraction of cycle time is attributed to the busy time for the processor. The
remaining fraction is attributed as stall time to the first instruction that
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could not be committed that cycle. The fractions of stall cycles are nor-
malized to the running time of IQL-only case. The stall categories are:

• WMB: stall at write-memory barrier
• MB: stall at memory barrier
• C SECTION: stall associated with data accesses within a critical

section
• MEM ACC: stall associated with shared-memory accesses outside

critical sections
• CPU: the remainder of useful cycles while the processor is busy

computing

The shared-memory accesses do not include lock variable accesses.
This is done specifically to avoid any bias in latency accounting due to
differences in synchronization primitives.

6. RESULTS

Section 6.1 presents performance of IQLs and SP. Section 6.2 presents
stall characteristics of SP and Section 6.3 provides statistics regarding
push behavior. We compare SP to another technique for reducing commu-
nication latencies—flushing data to memory—in Section 6.4.

6.1. Performance

Table IV presents the main results. The numbers in parentheses show
the running time in millions of processor cycles. All the other numbers in
the table represent speedups. SP does not hurt performance for most of
our benchmarks. The exception is for cholesky running on a DSM sys-
tem where its performance drops by only 1%. SP helps mp3d and ray-
trace substantially compared to the IQL-only case, speeding up their
performance by a factor of up to 1.51. The results for the SMP system
show the same trends but have different magnitudes. In particular, SP
speeds up mp3d by 21%, but slows down cholesky by 2%. The excep-
tion is raytrace, which displays an improvement of only 3%. The laten-
cies in the SMP system are such that the locking behavior of raytrace
does not affect its performance much. Water-nsq communicates compar-
atively far more infrequently than the other benchmarks do (see Figs. 6
and 7), but nevertheless still suffers some migratory data-related stalls and
benefits, if little, from SP.

Table IV also compares the performance of one system implementing
IQL only and the other one without it (i.e., programs use test&test&set
built with load-linked and store-conditional instructions but otherwise run
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Table IV. IQL and SP Performance for a DSM System

Cholesky MP3D Raytrace Water-Nsq

Without IQL (base) (11) (373) (121) (18)
IQL 1.13 1.21 2.75 1.04
IQL+SP 1.12 1.60 4.15 1.11

Fig. 6. SMP stall contributions. Normalized stall contributions are expressed as percentage
of the IQL running time for the specific contribution.

without hardware support). The results are impressive: IQL improves the
performance of all our benchmarks and, in particular, reduces the running
time of raytrace by more than half. These results follow a trend similar
to numbers published elsewhere using Queue-On-Lock-Bit as the primitive
and SCI as the coherence protocol.(3)

6.2. Speculative Push Stall Cycles Breakdown

Figures 6 and 7 shows how the stall cycles are attributed to the dif-
ferent components of the system. These figures show that most of the
performance gains stem from the reduction of the following two com-
ponents: C SECTION and WMB. SP is able to eliminate nearly all
latencies associated with loading shared-memory locations. This observed
behavior reduces the stall cycles associated with critical section execution
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Fig. 7. DSM stall contributions. Normalized stall contributions are expressed as percentage
of the IQL running time for the specific contribution.

(C SECTION). SP is also able to reduce considerably the wait time at
write memory barriers (WMB) located at the end of each critical section.
In our experiments, write memory barriers are almost always strictly con-
fined to the end of a critical section and are there to ensure all the mem-
ory operations effected inside the critical section have performed globally
before releasing the lock.

6.3. Speculative Push Characteristics

Table V breakdown Speculative Pushes into four categories: (1)
Used: the pushed data was accessed, (2) Evicted: the pushed data was
evicted before being used, (3) Rejected: the pushed data was rejected,
and (4) Invalidated: the pushed data was invalidated by another proces-
sor before being used. For the most part SP performs well: more than
70% of all pushes are useful for the execution of mp3d, raytrace, and
water-nsq. The exception to this trend being cholesky. Cholesky
is the control benchmark and its critical section behavior does not lend
itself to the type of optimization we are studying in this paper. Indeed,
cholesky rarely suffers write-faults on the same address on successive
executions of the same critical section. For this benchmark, little correla-
tion exists between a lock address and data addresses accessed while the
lock is held, resulting in little benefit for this benchmark (Table IV) and
many evicted pushes (Table V). Our predictor detects this patterns and
turns off the SP optimization, minimizing the degradation.
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Table V. Breakdown of Push Characteristics (Shown as Percentage of Pushes)

Used Evicted Rejected Invalidated

SMP DSM SMP DSM SMP DSM SMP DSM

Cholesky 8.00% 12.02% 92.00% 88.98% 0.00% 0.00% 0.00% 0.00%
MP3D 99.46% 99.56% 0.43% 0.40% 0.09% 0.04% 0.02% 0.00%
Raytrace 80.80% 71.64% 16.55% 28.33% 2.64% 0.00% 0.01% 0.03%
Water 93.80% 99.61% 6.20% 0.08% 0.00% 0.31% 0.00% 0.00%

We also varied the number of cache lines the SP mechanism could
forward with a lock. For our benchmarks, we found most of the bene-
fits could be had with a single cache line. Adding a second cache line
improved the performance of SP by no more than 2% and more than two
cache lines lead to insignificant improvements. Obviously, this observation
might vary significantly for other benchmarks.

6.4. Speculative Push Vs. Flush

We compare the performance of SP against a technique that consists
of flushing data back to memory at the end of a critical section. The basic
idea is to avoid the penalty of accessing remote dirty data and instead
to attempt finding the desired data at memory directly. To implement the
flushing mechanism, we rely again on our predictors to identify critical
section boundaries and the data set associated with a lock. Upon receiving
a lock request, we write the data back to memory only unless the lock is
still held. If the lock is still held, we wait until the lock is released to write
the data back to memory.

We ran experiments both with the SMP and DSM configurations. We
found the flush technique to be highly ineffective in our simulated SMP
system (and do not show the numbers) because our assumptions are such
that the transfer latency to and from memory is much larger than the
transfer latency between two caches. Thus flush techniques and self-inval-
idation techniques will degrade performance of SMP systems.

Table VI contrasts the performance of our two DSM variants: flush
to memory and SP. We observe that, for our set of benchmarks, flush
achieves a smaller speedup compared to SP. These results also show that
flush is able to achieve performance gains over the IQL-only case. How-
ever, flush either requires special instructions and recompilation or requires
a predictor, a unit that it shares with the SP mechanism.
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Table VI. SP and Flush Performance for DSM

Cholesky MP3D Raytrace Water-Nsq

IQL+Flush 1.00 1.13 1.28 1.04
IQL+SP 0.99 1.32 1.51 1.07

7. RELATED WORK

A software technique for eliminating latencies associated with criti-
cal data accesses involves collocating lock and data in the same cache
line. However, since locks may be read even within critical sections, it
is not generally recommended that locks be allocated in the same line
as data they are protecting. If a mechanism is provided to eliminate or
defer accesses to the lock until the end of a critical section, then data
can be collocated with a lock profitably, allowing the data to be implic-
itly transferred along with the lock when it is acquired. Bitar and Des-
pain first proposed collocation.(29) Goodman, et al.(6) made collocation
more attractive by establishing the ability to defer access to the lock by
an acquiring processor until the lock had been released. This method,
Queue-On-Lock-Bit (QOLB) was a synchronizing prefetch operation in
the sense that it provided for lock and data to be forwarded “as soon as
possible, but no sooner.” Using instruction set and programmer support,
QOLB maintained a queue of lock requestors in hardware. Kägi, et al.(3)

demonstrated that collocation captured consistent and substantial gains
in performance for a set of benchmarks on a distributed shared-memory
system. Collocation however requires substantial programmer involvement
and at times, major restructuring of the application data structures. In
addition, coupling the lock and data in the same cache line limits the size
of the collocated data. QOLB led to other proposals for queued locks,
notably MCS(8) and for the DASH multiprocessor.(21)

DASH provided a concept of queued locks in hardware for memory-
based directories. However, the directory was always in the critical path on
a lock release, the lock was sent to the directory which in turn picked a
random waiter and serviced it. With IQLs, once a request has been for-
warded, the directory is no longer in the critical path.

We have previously proposed Implicit-QOLB,(14) an early version of
the IQL mechanism, which works by speculating about a program’s access
patterns—specifically of synchronization operations—and uses the notion
of delayed responses to improve the throughput of synchronization. This
work focused only on bus-based systems and did not address communication
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latencies within critical sections. In recent work,(15) of which a preliminary
version appeared elsewhere,(30) we demonstrate that the method is even more
effective on a directory-based protocol, and that the SP mechanism can lever-
age the notion of IQL to achieve still larger performance gains.

Stenström et al.(31) and Cox and Fowler(32) independently proposed
cache coherence protocol optimizations for migratory sharing patterns.
Such behavior is exhibited primarily by data protected by locks or mon-
itors. Both approaches succeed by merging an invalidation request for the
migratory cache line with the preceding read-miss request. These mecha-
nisms do not reduce the critical miss latency experienced on the first read
miss, though reduced contention may have the indirect effect of reducing
read miss latencies.

Mowry and Gupta(33) proposed a compiler prefetch heuristic for tol-
erating latency in shared-memory multiprocessors. The compiler interpreted
explicit synchronization operations as a hint that data communication may
be taking place. The approach was quite successful for programs with reg-
ular access patterns and structures. They mention that it is potentially easy
for a programmer to use semantic information about an application and
identify critical data structures in small applications but state, “[s]uch focus-
ing in on critical data structures will be much harder for compilers.” An
additional issue with software prefetching for critical section data is the lack
of knowledge regarding the migratory patterns of data: determining which
processor should be prefetching data is nearly impossible statically because
it depends on the (dynamic) selection of a winner among competitors to
acquire the lock. By the time this decision has been made, it is already
too late to avoid delay by prefetching needed data. Trancoso and Torrel-
las (34) attempted to reduce latencies within critical sections through the use
of prefetching and data forwarding. They inserted prefetch and forwarding
instructions by hand. Their techniques suffer from many of the same limi-
tations of software approaches, specifically, the need for hardware and com-
piler support for new instructions and the inability to evaluate and exploit
run-time behavior. Their results were pessimistic, concluding that complex,
forwarding-based optimizations could not be justified.

Abdel-Shafi et al.(35) evaluated producer-initiated communication and
proposed remote writes for data accesses associated with synchronization
operations. The combination of software prefetching and remote writes
provided good performance gains for a set of benchmarks. The mecha-
nisms however, required software and programmer support to identify can-
didates for remote writes.

Similar data forwarding mechanisms have been proposed in the liter-
ature: the forwarding write,(36) and the DASH deliver.(21) DASH also had
a producer-prefetch mechanism for pushing data to a set of consumers in
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shared state. Kaxiras and Goodman(37) proposed speculative pre-send as
an approach for data forwarding.

Ranganathan et al.(12) proposed the use of flush primitives to write
back dirty data modified in critical sections to memory. They also added
prefetches at the beginning of critical sections. Their mechanisms relied on
compiler and programmer support to identify critical data to be flushed.
However they state that late prefetches and contention effects limited addi-
tional performance benefits. Similar flush primitives have also been pro-
posed by Hill et al.(38) and Skeppstedt and Stenström.(39) Mechanisms to
reduce invalidation latencies by employing prediction to flush cache lines
have also been proposed.(17,40) These techniques reduce a three-hop trans-
action to a two-hop transaction while SP converts a three-hop transaction
into a local cache access.

8. CONCLUDING REMARKS

In this paper, we have studied two mechanisms for reducing commu-
nication latencies inside critical sections. First, we discussed IQLs as a
mechanism to build an orderly queue of lock requestors to reduce syn-
chronization delay. Second, we described SP, a mechanism to overlap lock
transfer with data believed to be associated with that lock, thus attempt-
ing to convert all global data accesses performed in a critical section into
local cache accesses. We showed that SP offers additional benefits on top
of those provided by IQLs.

Mp3d was chosen as a benchmark specifically because it exhibits the
kind of behavior we were targeting, and both mechanisms succeeded in
reducing communication delays. The net result was that the application
saw a speedup of 21% for the bus and 32% for the directory system over
an aggressive base case of IQLs. Indeed, all the benchmarks saw reduc-
tions in shared-memory stalls within critical sections, though for some this
delay was so small that the reduction did little to improve overall per-
formance. Benchmarks with highly contended locks (such as raytrace),
show large speedups in some cases. The SP mechanism can provide fur-
ther speedups in overall performance by substantially reducing the net-
work traffic and three-hop transactions.

We conclude that the two mechanisms can combine to reduce the
communication delays within critical sections by more than 50%. In
addition, speculative push can quite often collapse the read-modify-
write sequences within a critical section into a local cache access. While
the total reduction in stalls varies depending on the percentage of time the
processor is stalled for communication latencies, the reduction was consis-
tent across all benchmarks.
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