An Analysis of a Resource Efficient
Checkpoint Architecture

HAITHAM AKKARY, RAVI RAJWAR, and SRIKANTH T. SRINIVASAN
Intel Corporation

Large instruction window processors achieve high performance by exposing large amounts of in-
struction level parallelism. However, accessing large hardware structures typically required to
buffer and process such instruction window sizes significantly degrade the cycle time. This paper
proposes a novel checkpoint processing and recovery (CPR) microarchitecture, and shows how to
implement a large instruction window processor without requiring large structures thus permitting
a high clock frequency.

We focus on four critical aspects of a microarchitecture: (1) scheduling instructions, (2) recov-
ering from branch mispredicts, (3) buffering a large number of stores and forwarding data from
stores to any dependent load, and (4) reclaiming physical registers. While scheduling window size
is important, we show the performance of large instruction windows to be more sensitive to the
other three design issues. Our CPR proposal incorporates novel microarchitectural schemes for ad-
dressing these design issues—a selective checkpoint mechanism for recovering from mispredicts, a
hierarchical store queue organization for fast store-load forwarding, and an effective algorithm for
aggressive physical register reclamation. Our proposals allow a processor to realize performance
gains due to instruction windows of thousands of instructions without requiring large cycle-critical
hardware structures.

Categories and Subject Descriptors: C.1 [Processor Architectures]:
General Terms: Computer systems

Additional Key Words and Phrases: Computer architecture, scalable architecture, checkpoint ar-
chitecture, high-performance computing

1. INTRODUCTION

Achieving high performance in modern microprocessors requires a combination
of exposing a large amount of instruction level parallelism (ILP) and processing
instructions at a high clock frequency. Exposing maximum ILP in the presence
of long latency operations such as load misses to memory, dependent chains
of floating point operations and so on requires the processor to concurrently
operate upon a large number of instructions, also known as an instruction

Authors’ address: Intel Microarchitecture Research Lab (MRL), JF3-332, 2111 NE 25th Avenue,
Hillsboro, OR 97124; email: (haitham.h.akkary;ravi.rajwar;srikanth.t.srinivasan}@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2004 ACM 1544-3566/04/1200-0418 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004, Pages 418-444.

An Analysis of a Resource Efficient Checkpoint Architecture . 419

window. An instruction window is defined as consisting of instructions renamed
but not yet retired. For example, in reorder buffer based processors, every in-
struction that has a reorder buffer entry allocated is considered part of the
instruction window. Hardware structures to buffer all instructions in a con-
ventional, large instruction window must be sufficiently large. However, high
clock frequencies require frequently accessed structures to be small and fast.
With increasing clock frequencies, new designs that do not require large cycle-
critical hardware structures become necessary for building large instruction
window processors. This paper presents a detailed study of performance is-
sues related to large instruction window processors and presents a novel and
efficient checkpoint processing and recovery (CPR) microarchitecture for such
processors.

Checkpoints in processors are typically used to repair architectural state to a
known previous state. The use of checkpoints for out-of-order processors in the
context of recovering from branch mispredictions and exceptions was proposed
by Hwu and Patt [1987]. Some processors have since used checkpoints to recover
architectural register state in the event of branch mispredictions [Leibholz and
Razdan 1997; Yeager 1996]. Checkpoints were first used for tolerating long
memory latencies in the virtual ROB proposal [Cristal et al. 2002].

In this paper, we analyze our checkpoint architecture proposal, checkpoint
processing and recovery [Akkary et al. 2003], for sustaining a large num-
ber of in-flight instructions in a resource-efficient manner. Building a scal-
able checkpoint-based processor requires addressing various aspects such as
register files, store queues and so on. This paper shows how to implement
large instruction-window checkpoint architectures without requiring key cycle-
critical structures to scale.

Four key aspects of a microprocessor critically affected by the demands placed
by a large instruction window and the need for a high clock frequency are
(1) the scheduling window, (2) branch misprediction recovery mechanism, (3)
the store queue, and (4) the physical register file. The mechanisms, size, and
access latency of structures associated with these aspects are potential key
parameters in achieving high performance. In Section 3 we establish the effect
on performance due to these aspects.

The scheduling window consists of instructions renamed but not yet issued
to the execution units, and is examined each cycle to find instructions for is-
sue. In Section 3.1, we show that, while scheduling windows are important,
their size is not the most critical issue when building a high-performance large
instruction window processor. The scheduling window size in an out-of-order
processor needs to increase from current sizes only in the presence of long
latency operations. Since only a small number of instructions are dependent
on long latency operations and block the scheduler, the scheduling window
need not to scale with instruction window size. This was originally observed
by Karkhanis and Smith [2002] and verified for a large set of benchmarks in
Section 5.4.

Branch mispredictions expose the long latency associated with high-
frequency deep pipelines and are the single largest contributor to performance
degradation as pipelines are stretched [Sprangle and Carmean 2002]. Branch

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

420 . H. Akkary et al.

misprediction recovery requires redirecting fetch to the correct instruction and
restoring the rename map table before new instructions can be renamed. The
map table can be restored from a checkpoint [Leibholz and Razdan 1997; Yeager
1996], incrementally restored from a nonspeculative map table such as the re-
tirement register alias table [Hinton et al. 2001], or incrementally restored
from a history buffer that stores the speculative map table updates performed
since the mispredicted branch was dispatched. In Section 3.2, we show practi-
cal implementations of these traditional recovery mechanisms to be either too
costly or too slow, and in Section 4.1 we present a new policy of checkpointing
the map table at low-confidence branches. This forms the basis of the CPR mi-
croarchitecture and allows a small number of checkpoints to be sufficient for a
large instruction window.

The store queue is a critical component of out-of-order processors. Store
queues serve three primary functions: disambiguating memory addresses,
buffering stores (completed and otherwise) until retirement, and forwarding
data to dependent load operations. The last operation, called store-to-load for-
warding, directly impacts cycle time. Since a load may depend upon any store
in the queue and multiple stores to the same address may simultaneously be
present, the circuit to identify and forward data is complex and incurs long
delays as store queue size increases. The store queue must provide the depen-
dent load with data within the data cache access time to avoid complications
of scheduling loads with variable latencies. Designing store queues with sizes
much larger than currently feasible (Pentium® 4 has a 24 entry store queue)
using conventional methods are highly unlikely, without making the forward-
ing circuit a critical path, thus increasing cycle time. We study the performance
impact of the store queue in Section 3.3, and in Section 4.2 we propose a hier-
archical store queue organization.

The physical register file (referred to from now on as register file) increases
ILP by removing write-after-write and write-after-read dependences. Current
mechanisms for allocating and freeing physical registers result in the lifetime
of a physical register exceeding the lifetime of the allocating instruction. This
requires the register file size to be of the same order as the instruction win-
dow size as shown in Section 3.4. For large instruction windows, naively in-
creasing the register file size increases the register access time. Multicycle
register file accesses degrade performance and also increases branch mispre-
diction penalty. While different register file organizations have been proposed
[Balasubramonian et al. 2001; Capitanio et al. 1992; Cruz et al. 2000], these
proposals do not change the large register file requirement and hence can ad-
versely impact area size and power. In this work, we demonstrate that register
files need not be scaled with large instruction windows if an aggressive reg-
ister reclamation policy such as the one proposed by Moudgill et al. [1993]
is used. An aggressive register reclamation policy enables a register file to
perform comparable to a larger conventional register file by significantly re-
ducing the average lifetime of physical registers. In Section 4.3, we show how
an aggressive register reclamation algorithm can be adapted to a checkpoint
architecture.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 421

Paper contributions: The paper makes the following contributions in analysis
and design of high-performance large instruction window processors.

—CPR: A new resource-efficient microarchitecture. Our CPR microarchitec-
ture significantly outperforms a ROB-based design with identical buffer re-
sources, even for small window sizes. We argue that while the ROB itself
can be made larger, the mechanisms associated with the ROB inhibit perfor-
mance and need to be implemented differently. By off-loading all functionality
of a ROB to other scalable mechanisms, we move away from a centralized,
ROB-based processor design.

—Confidence-based checkpoints. We show branch recovery mechanisms to be
critical for high performance and show a reorder buffer (ROB)-based recov-
ery mechanism to be a performance limiter. Instead of using a ROB, we
propose selectively creating checkpoints at low-confidence branches. Our
selective checkpointing mechanism enables fast branch misprediction re-
covery and minimizes checkpoint overhead. We show eight such check-
points are sufficient to achieve most of the performance of a 2048-entry
instruction window processor with an ideal branch misprediction recovery
mechanism.

—Hierarchical store queues. Our novel hierarchical store queue organization
can buffer a large number of stores and can perform critical store-to-load
forwarding without degrading cycle time.

—Bulk retirement. While not a key performance aspect in itself, we break the
limit of in-order serialized retirement imposed by reorder buffers by provid-
ing the ability to retire hundreds of instructions per cycle.

The paper is organized as follows. We outline our simulation methodology
in Section 2 and present a limit study analysis to identify key performance
issues in Section 3. Section 4 presents and evaluates individual solutions to
the key issues. Section 5 puts the individual solutions together into a single
microarchitecture and evaluates the new CPR microarchitecture. Related work
is discussed in Section 6, and we conclude in Section 7.

2. SIMULATION METHODOLOGY

We use a detailed execution-driven simulator working on top of a micro-
operation (uop) level IA32 functional simulator for executing long instruction
traces (LITs). A LIT is a snapshot of the processor architectural state including
memory and is used to initialize the execution-driven performance simulator.
A LIT includes all system interrupts needed to simulate system events such as
DMA traffic and so on. The simulator executes both user and kernel instruc-
tions. Our baseline processor is based on a Pentium® 4 and, the parameters are
shown in Table I. A detailed memory subsystem is also modeled. The simulated
benchmark suite is listed in Table II. All performance numbers in this paper are
reported as normalized micro-operations per cycle (uPC on the y-axis) where
the normalization is with respect to the performance of the baseline parameters
of Table I and marked as (base) in the graphs.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

422 . H. Akkary et al.

Table I. Baseline Processor Parameters

Processor frequency 3.8 GHz
Rename/issue/retire width 3/5/3

Branch mispred. penalty 30 cycles

Instruction window size 128

Scheduling window size 128

Register file 96 integer, 96 floating point
Load/store buffer sizes 48/32

Functional units Pentium® 4 equivalent
Branch predictor combining (64 K gshare, 16 K bimod)
Hardware data prefetcher Stream based (16 streams)
Trace cache 32 K-uops, 8-way

L1 Data cache 16 KB, 4 cycle hit, 64 byte line

L2 Unified cache 1 MB, 8-way, 16 cycle hit, 64-byte line
L1/L2 Line size 64 bytes

Memory latency (load to use) 100 ns

Table II. Simulated Benchmark Suites

[Suite | No. of Benchmarks | Descriptions/Examples |
SPECFP2K (SFP2 K) 14 http://www.spec.org
SPECINT2K (SINT2 K) 12 http://www.spec.org
Internet (WEB) 12 SPECjbb, WebMark
Multimedia (MM) 10 MPEG, speech recog.,

photoshop
Productivity (PROD) 13 SYSmark2k, Winstone,
Server (SERVER) 4 TPC-C
Workstation (WS) 14 CAD, rendering

3. ALIMIT STUDY AND PERFORMANCE ANALYSIS

In this section, we analyze the following four key aspects affected by large
instruction windows in detail: the scheduling window, branch misprediction
recovery mechanism, the store queue, and the register file.

To bound performance gain due to large instruction windows, we first per-
form a limit study. In this study, the four key aspects we identified earlier are
idealized and the instruction window size is varied from 128 up to 2048. In other
words, for an instruction window size of 1024, the scheduling window size is
1024, the store queue and register file are sized ideally, and the rename map
table is available instantaneously for branch misprediction recovery. For the
studies in this section, we assume perfect memory disambiguation. All other
parameters of the processor are similar to the baseline microarchitecture.

Figure 1 shows the performance variation with increasing instruction win-
dow sizes. The label iwN corresponds to an instruction window of size N. As
seen from the graph, significant performance can be obtained with increas-
ing instruction windows, up to 55% for 2048 entry instruction windows, if we
idealize certain aspects of the processor.

To understand the sensitivity to performance of the individual key aspects
mentioned earlier, we conduct further experiments. For each experiment, we
vary the aspect parameter under study and idealize the other key aspects. Thus,

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

1.6

An Analysis of a Resource Efficient Checkpoint Architecture . 423

1.4 _
1.2]

1
0.8 :—
0.6 :—
04 |
02 4

o 1

Diw128 (base)
miw256
Oiws12
Hiw1024
Eiw2048

Normalized uPC

Il

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 1. Impact of instruction window size.

.8
1 ,_sw128 (base)
.6 Oiw2k_sw64
1 Oiw2k_sw128
4 M iw2k_sw256
1 @iw2k_sw512
. W iw2k_sw2k
BENIRNIERN

SFP2K SINT2K WEB MM PROD SERVER WS

-t
o)

-
i

-t
N
I

—_
|

Normalized uPC
o o (@] o

N
L

o
I

Fig. 2. Impact of scheduling window size.

three of the four parameters are kept idealized while one parameter is varied.
This allows us to study one aspect in isolation without interference from other
key parameters.

3.1 Impact of Scheduling Window Size

Figure 2 shows the impact of the scheduling window size (64 up to 2048) for a
2048-entry instruction window. The label iwN _swM corresponds to an instruc-
tion window of size N and a scheduling window of size M. We model an ideal
store queue, a sufficiently large register file, and ideal misprediction recovery
mechanism. As we can see, a 256-entry scheduling window achieves nearly the
same performance as a 2048-entry scheduling window for an instruction win-
dow size of 2048. For most benchmarks, even a 128-entry scheduling window
achieves a significant percentage of the ideal performance.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

424 . H. Akkary et al.

An out-of-order processor’s scheduler fills and blocks only in the presence
of long latency operations—primarily load misses to main memory. Since the
scheduler can continue to issue independent instructions, only instructions de-
pendent on the load miss occupy scheduler entries for a long period of time. Our
results from Figure 2 show a relatively small scheduling window that is suffi-
cient to support a large instruction window. This suggests only a small number
of instructions in a large instruction window are waiting for cache miss data at
any given time. Similar results have been reported for the integer benchmarks
in another earlier study [Karkhanis and Smith 2002]. We verify these results
for a large set of benchmarks and also show the scheduling window in the ab-
sence of cache misses needs to be only a small fraction of the instruction window
in Section 5.4. Hence, we believe, while we need to investigate means of build-
ing a 128 to 256-entry scheduler, building bigger schedulers is not necessary to
fully exploit large instruction windows, and assume a 128-entry scheduler for
the rest of the paper, unless otherwise specified.

3.2 Impact of Misprediction Recovery Mechanism

Two main contributors to performance degradation due to branch mispredic-
tions are cycles to resolve a branch, and cycles to recover after the branch mis-
prediction is resolved. In this paper, we focus on misprediction recovery. Mis-
prediction recovery involves restarting fetch and renaming instructions from
the correct path. Fetch from the correct path may restart immediately after the
branch misprediction is resolved. However, the correct path instructions can-
not be renamed until the rename map table corresponding to the mispredicted
branch is restored.
Common methods for restoring the map table include

(1) Using map table checkpoints. Map table checkpoints are created periodi-
cally either at every branch or every few cycles [Leibholz and Razdan 1997,
Yeager 1996]. On a misprediction, the checkpoint corresponding to the mis-
predicted branch is restored. The number of checkpoints limits the number
of unresolved branches allowed in the instruction window.

(2) Using the retirement map table (RMAP). In this scheme, a retirement map
table [Hinton et al. 2001]is used in addition to the frontend map table. Each
ROB entry also has the rename map for its corresponding instruction. Once
a misprediction is resolved, the mispredicted branch is allowed to reach
the head of the ROB at which time the retirement map table will have
the correct map table corresponding to the mispredicted branch. At this
point, the retirement map table is copied to the frontend map table, after
which renaming can start. Since all instructions prior to the mispredicted
branch must be retired before renaming can start, this scheme can lead
to significant delays if long latency operations prior to the mispredicted
branch stall retirement.

(8) Using the retirement map table and the ROB (RMAP+WALK). This scheme
is an optimization on the scheme above. Instead of waiting for the mis-
predicted branch to reach the head of the ROB, we start with the current

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 425

Normalized uPC
o o
» [o+]

@iw128_RMAP (base)
miw2k_RMAP
Oiw2k_RMAP+WALK
Oiw2k_HBMAP+WALK
Eiw2k_recoverylDEAL

© o
N »
] !

o
|

SFP2K SINT2K WEB MM PROD SERVER WS
Fig. 3. Impact of misprediction recovery mechanism.

retirement map table and pro-actively walk from the head of the ROB to-
ward the mispredicted branch, incorporating the rename information of
each ROB entry. This allows renaming of correct path instructions to com-
mence without waiting for all instructions prior to the mispredicted branch
to retire.

(4) Using the frontend map table and a history buffer (HBMAP+WALK). In this
scheme, a history buffer is used to store overwritten maps of each instruc-
tion. On a branch misprediction, we start with the current frontend map
table. We pro-actively walk from the current tail of the ROB (i.e., the most
recently allocated instruction) toward the mispredicted branch, incorpo-
rating the overwritten maps of each instruction. Depending on whether the
mispredicted branch is closer to the ROB head or ROB tail, RMAP + WALK,
or HBMAP + WALK will perform better.

The periodic checkpoint method as described above, while quick, is imprac-
tical to implement and resource inefficient because hundreds or thousands of
checkpoints may be required as instruction window sizes scale to the thou-
sands. Further, only having a few checkpoints made at conditional branches
performed worse than the other schemes we discuss. Hence we do not present
results for the periodic checkpoint scheme. Sequentially restoring the map ta-
ble, while implementable, could contribute to a significant increase in branch
misprediction penalty since many instructions may be in the ROB or history
buffer prior to the mispredicted branch and need to be serially processed. As
instruction window size increases, the above methods are either costly or may
become too slow.

We evaluate the three sequential map table restoration schemes for large
instruction windows and compare them to an ideal misprediction recovery
scheme. The scheduling window, register file, and store queue sizes are ide-
alized. Figure 3 presents the results. No single scheme works for all work-
loads, and all show significant performance reduction compared to the ideal
mechanism. The history buffer method (HBMAP+WALK) performs the best.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

426 . H. Akkary et al.

1.6
1.4 +—
1.2
e]
=)
8
N 0.8
g Wiw128_stq32 (base)
S 061 Oiw2k_stq32
0.4 | Oiw2k_stq64
: miw2k_stq128
0.2 - Oiw2k_stq256
W iw2k_stg512
0 - [T B[O T

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 4. Impact of store queue size.

Nevertheless, on benchmarks (e.g., SPECINT 2000) with frequent branch mis-
predictions the scheme suffers an 11% reduction in performance relative to
the ideal model. The above results indicate the importance of having efficient
misprediction recovery mechanisms to exploit performance of large instruction
window processors.

3.3 Impact of the Store Queue

Large instruction windows place high pressure on the store queue because
the store queue size is directly proportional to the number of stores in the
instruction window. The store queue is a cycle-critical component of modern
processors because it often needs to provide data to dependent load instructions
in the same time it takes to access the data cache. A store queue with an
access time larger than the data cache hit latency requires the scheduler to
deal with an additional load latency and predict if a load hits the store queue or
not. Mechanisms to recover from scheduler mispredicts introduce tremendous
complexity to time-critical scheduling logic. Further, stores may stay in the store
queue for long durations because, traditionally, stores are retired in order to
allow for misprediction recovery, precise exceptions, and memory consistency
requirements. A large fraction of loads (26% to 42%) hit stores in the store
queue. Hence, store-to-load forwarding is critical to achieving high performance
because it prevents dependent loads from stalling.

Figure 4 shows the impact on performance in a 2048-entry instruction win-
dow model as the store queue size varies from 32 to 512 entries. The label
iwN _stqM corresponds to an instruction window of size N and a store queue of
size M. The scheduling window size, misprediction recovery mechanism, and
register file are idealized. A store queue size of at least 128 entries is required
to achieve performance close to the ideal 2048-entry instruction window. Such
size is a significant increase above current sizes (24—-32) and will be quite a de-
signing challenge in a naively scaled up implementation of a large instruction
window processor.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 427

1.6
1.4
12 1]
g
s 17
°©
Sos
.(_é .
50.6 - m@iw128 (base)
miw2k_rf128
0.4 - Oiw2k_rf256
Oiw2k_rf512
02 w2k _rfIDEAL
o | | TN [N]

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 5. Impact of register file size.

3.4 Impact of the Register File Size

Instructions with a destination register operand require a physical regis-
ter to be allocated. In conventional processors, a physical register is allocated
at the time the corresponding instruction is renamed, and is released when
a subsequent instruction that overwrites the physical register’s correspond-
ing logical register is retired. Thus, register reclamation is tied to in-order
instruction retirement and the lifetime of a physical register exceeds the life-
time of its allocating instruction. Since most instructions have a destination
register operand, the register file size must scale with the instruction window
size as shown in Figure 5. The label iwN _rfM corresponds to an instruction win-
dow of size N and a physical register file with M floating point and M integer
registers.

Thus, large instruction windows place tremendous pressure on the register
file. The register file is typically a highly ported structure. Building large highly
ported register files to accommodate the renaming demands of large windows
is difficult, introduces complexity, and increases cycle time. Therefore, we must
investigate alternative mechanisms to design register files for large instruction
window processors.

4. IMPLEMENTING LARGE INSTRUCTION WINDOWS

In the earlier section, we have shown performance of large instruction window
processors to be most sensitive to the branch misprediction recovery mechanism
and the size of the store queue and register file. In this section we address
these three critical aspects. First, we present a new approach to recovering
the rename map table in Section 4.1. Then, in Section 4.2, we present and
evaluate a new store queue organization. Finally, in Section 4.3 we discuss
an aggressive reclamation mechanism for the register file. These three new
proposals form the key components for the CPR microarchitecture discussed in
Section 5.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

428 . H. Akkary et al.

4.1 Selective Low-Confidence Branch Checkpoints

The misprediction recovery mechanism must be fast and have low overhead.
As discussed in Section 3.2, except for the checkpoint mechanism, the other
schemes recover maps serially. Thus, for high performance, the checkpoint
mechanism is preferred. Our mechanism for recovering rename maps also uses
checkpoints of the map table. However, we limit the number of such check-
points to carefully selected points in the instruction window. Ideally, we would
like to create checkpoints exactly on mispredicted branches. Hence, unlike ear-
lier proposals where map table checkpoints are created either at every branch
or every few instructions, we create map table checkpoints at branches with a
high misprediction probability, selected using a confidence estimation scheme.

We rely on the same checkpoints created to handle branch misprediction
recovery to implement precise interrupts and exceptions and to deal with
architecture-specific serializing instructions. We now discuss the conditions
under which checkpoints are created and then discuss checkpoint buffer man-
agement policies.

4.1.1 Checkpoint Creation. Since checkpoints are not created at every
branch, a branch misprediction may result in execution restarting from the
nearest checkpoint prior to the mispredicted branch. This causes the good in-
structions between the checkpoint instruction and the mispredicted branch to
be re-executed. We call this re-execution overhead the checkpoint overhead
(COVHD). A branch confidence estimator [Jacobsen et al. 1996] is used to min-
imize this overhead. The estimator uses a table of 4-bit saturating counters
indexed using an xor of the branch address and global branch history. A correct
prediction increments the counter, and a misprediction resets the counter to
zero. A counter value of 15 signals high confidence while the remaining values
signal low confidence. To minimize COVHD, in addition to creating checkpoints
at low-confidence branches, a checkpoint is also created every 256 instructions.

While a checkpoint is made at low-confidence branches, a noncheckpointed
branch may be mispredicted, forcing a recovery to a prior checkpoint. To prevent
the same branch from mispredicting again and thus degrading performance,
on a re-execution from a checkpoint, we use the branch outcome from the pre-
vious aborted execution itself rather than a prediction. This is done by storing
the branch distance (in number of branches) from the checkpoint and the as-
sociated branch outcome. Furthermore, to guarantee forward progress, once a
branch misprediction is resolved and re-execution begins from a prior check-
point (C1), we force a new checkpoint (C2) at the first branch (irrespective of
whether it is a low-confidence branch or not). This allows instructions between
checkpoints C1 and C2 to be retired even in the pathological case where mul-
tiple branches get alternatively mispredicted. To handle other events such as
exceptions and memory consistency events such as snoop invalidations, we use
a similar mechanism and allow a checkpoint to be forced even on the very next
instruction after a prior checkpoint.

4.1.2 Checkpoint Buffer Management. The checkpoint buffer keeps track
of map table checkpoints. Checkpoints are allocated and reclaimed in a

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 429

first-in-first-out order. Each checkpoint buffer entry has a counter to determine
when the corresponding checkpoint can be freed. The counter tracks comple-
tion of instructions associated with the checkpoint—the counter is incremented
when an instruction is allocated and decremented when the instruction com-
pletes execution. Counter overflow is prevented by forcing a new checkpoint.

A checkpoint is allocated only if a free checkpoint is available. If a low con-
fidence branch is fetched and a free checkpoint is not available, the processor
ignores the low-confidence prediction of the branch and continues fetch, dis-
patch, and execution without creating any additional checkpoints as long as
the last checkpoint’s counter does not overflow. We find that not stalling on a
checkpoint buffer full condition is important for high performance.

The oldest checkpoint is reclaimed when its associated counter has a value
of 0 and the next checkpoint has been allocated. This means all instructions
associated with the older checkpoint have been allocated and have completed
execution.

Each instruction has an identifier associating it with a specific checkpoint.
Instructions use this identifier to access the appropriate checkpoint buffer for
incrementing and decrementing the counter. This identifier is also used to se-
lect instructions to be squashed or committed. As soon as the last instruction
belonging to a checkpoint completes, all instructions in that checkpoint can be
retired instantly and the associated checkpoint is reclaimed. This provides the
ability to commit hundreds of instructions instantly thereby potentially remov-
ing the in-order retirement constraints enforced by the ROB. We will discuss
this more in Section 5.2.

In our proposal, rather than using the ROB, we use a substantially smaller
checkpoint buffer for misprediction recovery. Importantly, the size of the in-
struction window is not necessarily limited by the checkpoint buffer size be-
cause each checkpoint may correspond to a large number of instructions, and
their numbers can vary across checkpoints. For example, if a checkpoint en-
try on the average corresponds to 300 instructions, eight checkpoints would be
sufficient to support a 2048-entry instruction window.

4.1.3 Selective Checkpointing Results. Figure 6 compares four methods
for restoring the map table against the ideal scheme. The scheduling window,
store queue, and register file are sized ideally. Three of the methods are from
Section 3.2 and the fourth is our selective checkpoint proposal. Our proposal
uses eight checkpoints and employs a branch confidence estimator for decid-
ing when to create a checkpoint. As can be seen from the graph, our proposal
performs the best on average across all benchmarks, with the history buffer
method coming second. Further, our proposal performs within 7% of ideal.

Table III presents key metrics to help better understand the behavior of our
selective checkpoint scheme. CCOV denotes the average percentage of mispre-
dicted branches that are predicted to be low confidence and checkpointed, while
COVHD denotes the average number of good instructions re-executed because
of rolling back to a prior checkpoint. We achieve a high CCOV and a very low
COVHD because of the high mispredicted branch coverage achieved by the
low-confidence estimator we use.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

430 . H. Akkary et al.

1.6

1.4

-
N
|

-
|

miw128_RMAP (base)
— — — miw2k_RMAP H
Oiw2k_RMAP+WALK
- - - Oiw2k_ HBMAP+WALK |
Hiw2k_SEL-CKPT

Eiw2k_recoverylDEAL

WS

SFP2K SINT2K WEB MM PROD SERVER

Normalized uPC
o o
o o™

Fig. 6. Selective checkpoint performance.

Table III. Selective Checkpoint Related Statistics

Misprediction | Checkpoint Checkpoint
Distance Coverage Overhead (COVHD)

Bench. (MPD) (CCOV) (%) | per MP. | of Insn (%)
SFP2K 1265 75 20 1.6
SINT2K 312 81 12 3.8
WEB 575 73 31 5.4
MM 320 74 25 7.8

PROD 444 84 9 2

SERVER 478 74 15 3.1
WS 568 70 32 5.6

Selective checkpoints using a low-confidence estimator enable the processor’s
instruction window to adapt to an application’s frequency of branch mispredic-
tions. Consider SFP2K and SINT2k benchmark suites. The average distance
between branch mispredictions (MPD) is significantly larger for SFP2K than
SINT2K (1265 uops vs. 312 uops), while CCOV is about the same. The ratio
of correctly predicted branches to mispredicted branches that are assigned low
confidence by the confidence estimator is about 4 to 1 in general for all bench-
mark suites. Hence, the average distance between checkpoints is about 253
uops (1265/5) for SFP2K and 62 uops (or 312/5) for SINT2K. Using eight check-
points, we can achieve close to a 2048-entry (253*8) and a 512-entry (62*8)
instruction window for SFP2K and SINT2K, respectively. This is optimal since
large instruction windows are less beneficial for performance when it is highly
unlikely that fetch can proceed along the correct path for long due to frequent
branch mispredictions.

4.2 Hierarchical Store Queue Organization

A store queue must have the capacity to buffer all stores within a large in-
struction window, typically on the order of hundreds and, more importantly,
must forward data to any dependent load in the same time as the first-level

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 431

data cache hit latency. We propose and evaluate a hierarchical store queue:
a fast and small first-level store queue backed by a much larger and slower
second-level store queue. Since stores typically forward to nearby loads, most
store-to-load forwarding occurs from the first-level store queue. Thus, the hier-
archical organization works well.

4.2.1 Level One Store Queue. The fast-level one store queue (L1 STQ) is a
small n-entry buffer holding the last n stores in the instruction window. This
buffer is similar to store queues in current processors and is designed as a
circular buffer with head and tail pointers. When a new store is inserted into
the instruction window, an entry is allocated for the store at the tail of the
L1 STQ. When a conventional store queue is full, instruction allocation stalls.
However, when the L1 STQ is full, the oldest store is removed from the head of
the queue to make space for the new store, and is moved into the backing level
two store queue (L2 STQ). The L1 STQ has the necessary address matching
and store select circuit to forward data to any dependent loads.

4.2.2 Level Two Store Queue. The level two store queue (L2 STQ) is much
larger and slower than the L1 STQ and accepts stores forced out from the L1
STQ. Stores remain in the L2 STQ until retirement. In addition, the L2 STQ
has a membership test buffer (MTB) associated with it. The MTB is similar to
a Bloom filter [Bloom 1970] and aids in quickly determining whether a given
load address matches a store entry in the L2 STQ.

The MTB is a direct-mapped nontagged array of counters indexed by a part of
a load or store address. When a store is removed from the L1 STQ and is placed
into the L2 STQ, the corresponding untagged MTB entry is incremented. When
a store retires, updates the data cache and is removed from the L2 STQ, the
corresponding untagged MTB entry is decremented. A nonzero count in the
MTB entry potentially points to a matching store in the L2 STQ. On the other
hand, a zero count in the MTB entry guarantees a matching store that does
not exist in the L2 STQ. While tagging the MTB will prevent false matches,
a nontagged and direct-mapped design makes the MTB access possible under
the time to access the data cache and the L1 STQ—a critical requirement to
prevent complexity in the scheduler. The MTB also contains the count of store
entries in the L2 STQ with unknown address. The counter is used to quickly
determine if there is a potential load conflict with unknown-address stores in
the L2 STQ.

4.2.3 Hierarchical Store Queue Design. Figure 7 shows the hierarchical
two level store queue organization. When a load is issued, and while the data
cache is being read, the L1 STQ and the MTB are also accessed in parallel. If
the load hits the L1 STQ, the store data is forwarded to the load. If the load
misses the L1 STQ, and the MTB entry is zero (i.e., the L2 STQ also does not
have a matching address), the data is forwarded to the load from the data cache.
If the load misses the L1 STQ and the MTB indicates a potential match in the
L2 STQ (i.e., the MTB entry is nonzero), the load is penalized a data cache miss
penalty to allow sufficient time to access the L2 STQ and resolve the load-store
dependency. If the load hits the L2 STQ, data is supplied to the load from the

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

432 . H. Akkary et al.

load L1STQ MTB L2 STQ Dcache
address + +

miss hit

Dcache
Data

read

) L1STQ :
hit Data miss
>

L »
data to register file

Fig. 7. Two-level hierarchical store algorithm.

L2 STQ, else the data is forwarded to the load from the data cache. Since the
MTB is not tagged, a nonzero MTB entry count does not necessarily guarantee
a matching store in the L2 STQ. However, the load has already suffered a
delay equivalent to a data cache miss. Spurious hits in the MTB due to address
aliasing therefore must be minimized by making the MTB as large as it can be,
while keeping it accessible within the time to access the L1 STQ and the data
cache.

4.2.4 Memory Disambiguation. Until now, we have assumed perfect mem-
ory disambiguation for our studies. Store-load dependences are highly pre-
dictable [Moshovos and Sohi 1997]. Hence, we use a memory-dependence pre-
dictor and let a load proceed if the predictor indicates that the load has no
conflict with an unknown store address. On a store-load dependence viola-
tion, the processor needs to rollback to a prior checkpoint. Hence, our memory-
dependence predictor focuses on minimizing load-store dependence violations
and not necessarily achieving the best prediction accuracy. The predictor is
based on the notion of a store-distance of a load computed as the number of
store queue entries between the load and its forwarding store. To reduce alias-
ing and allow forwarding from different instances of the same store at varying
distances from the load, up to four such distances are stored in a nontagged
array indexed by the load instruction address. A load is stalled if the distance
from a load to a current unresolved store address matches a distance value
stored in the array.

We detect memory-dependence violations by letting stores snoop a set-
associative load buffer. Because the load buffer is not on the critical path and
does not forward any data, it is not a critical resource, so we do not focus on
load buffers.

4.2.5 Hierarchical Store Queue Performance. Figure 8 shows the perfor-
mance of the hierarchical store queue proposal, compared to the baseline and
to an ideal 2048-entry instruction window. The scheduling window size, branch

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 433

16
1.4
1.2 1

g

> 1 a

B

N 0.8 -

g 06 - @iw128_stq32 (base)

2 miw2k_[1stq32_I2stq256
0.4 1 Oiw2k_I1stq48_I2stq256
0.2 miw2k_stqlDEAL

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 8. Hierarchical store queue performance.

Table IV. Store-Load Forwarding Characteristics

Percentage of all | Percentage of Forwarded
Loads Loads That Hit Percentage of all Loads That
Bench. Store-Forwarded in L2 STQ False Hit in MTB | Search L2 STQ
SFP2K 26 18 2 7
SINT2K 31 20 2 8
WEB 35 11 2 6
MM 27 13 2 6
PROD 42 13 2 9
SERVER 39 14 4 9
WS 34 17 3 9

recovery, and register file size are idealized. We show two L1 STQ configura-
tions with 32 and 48 entries. L2 STQ and MTB are each 256 entries for both
configurations (aliasing still occurs in the MTB because it is untagged). We see
the iw2k 11stq48_12stq256 performance comes very close to the ideal 2048-entry
instruction window model.

The hierarchical store queue design copes with store to load forwarding com-
plexity without paying a performance hit due to increased forwarding latency.
The design does not reduce the latency or the energy needed to access the large
L2 STQ CAM array. For the hierarchical store queue design to perform well,
forwarding from the L2 STQ has to be infrequent, in spite of the frequent store
data forwarding on Pentium processors due to limited logical register space.

Table IV shows store-load forwarding characteristics with the hierarchical
store queue. Column 2 in Table IV shows the percentage of loads that read data
from either the L1 or L2 store queues. 26% to 42% of loads are forwarded data
from the store queues in our CPR model, depending on the benchmark suite.
However, the majority of forwarding is from the L1 STQ and less than 20% of the
forwarded loads get their data from the L2 STQ, as shown in column 3. In addi-
tion to L2 STQ forwarding, up to 4% of all loads (column 4) are subject to an extra
L2 STQ lookup latency due to false hits from address aliasing in the MTB. The

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

434 . H. Akkary et al.

size of the MTB we use is 256 entries, and aliasing can be reduced further with
larger MTB sizes. However, the MTB needs to be kept small enough to allow
access latency within the time it takes to read the data cache and the L1 STQ.

Column 5 shows the percentage of all loads that search the L2 STQ (column
5 = (column 2 * column 3)/100 + column 4)). Less than 10% of all loads are
subject to the L2 STQ lookup latency. The performance impact of the increased
L2 STQlatency in our large window CPR design is minor, since our large window
design is well suited for handling these relatively infrequent load operations
that require L2 STQ lookup.

4.3 Physical Register Reclamation

Current processors use in-order instruction retirement to determine when a
physical register may be freed, causing the lifetime of a physical register to be
typically much larger than the lifetime of the instruction allocating that regis-
ter. This artificially constricts supply of free physical registers and necessitates
large register files.

However, most physical registers can be freed much earlier—as soon as all
readers of the physical register have read the physical register, and the logical
register corresponding to the physical register has been renamed again. Such
an aggressive register reclamation scheme enables physical register usage to
more closely match the true lifetimes of registers. Hence, rather than build large
register files, we focus on efficiently reclaiming physical registers to provide the
performance of a large register file without actually building one.

The aggressive register reclamation scheme can be implemented by associat-
ing a use counter and an unmapped flag with each physical register [Moudgill
et al. 1993]. A physical register’s use counter is incremented in the rename
stage of the pipeline, when the input operand of an instruction (the reader) is
mapped to the physical register. The use counter is decremented in the reg-
ister read stage of the pipeline, when the reader actually reads the physical
register. A physical register’s unmapped flag is set when the logical register
corresponding to the physical register is renamed again. A physical register
can be reclaimed once its use counter value is 0, and its unmapped flag is set.

Using map table checkpoints makes the above aggressive register reclama-
tion scheme easier to implement. Since a checkpoint provides the ability to
restore the architecturally correct register state, physical registers belonging
to a checkpoint (i.e., physical registers which are mapped to logical registers at
the time of checkpoint creation) should not be released until the corresponding
checkpoint is released. Hence, when a checkpoint is created, we increment the
use counters for all physical registers belonging to the checkpoint. Similarly,
when a checkpoint is released, we decrement the use counters of all physical
registers belonging to the checkpoint. Using checkpoints as a reader guarantees
physical registers are not released until all checkpoints to which they belong
are released.

The unmapped flags are made part of the checkpoint. Hence, even if a
misspeculated instruction overwrites a logical register, a checkpoint recovery
results in these flags being restored to the correct values corresponding to the

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 435

1.6

1.4

4
M
|

Normalized uPC
o
o]

0.6
0.4 -
0.2 4 Eiw2k_rf192_aggr-reclaim
miw2k rfIDEAL
0 |

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 9. Aggressive register reclamation performance.

Average register lifetime (cycles)

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 10. Average register lifetimes for different register reclamation schemes.

checkpoint. Furthermore, all misspeculated instructions drain out of the pipe,
asis done in current processors, and decrement any counters they incremented.
Doing so is necessary for a processor with checkpoints to function correctly in
the event of branch mispredictions, and also handle interrupts and exceptions
precisely.

Figure 9 shows the results. The label iwN rfM corresponds to an instruction
window of size N and a register file with M integer and M floating point reg-
isters. The scheduling window size, branch recovery, and store queue size are
idealized. Figure 5 in Section 3.4 shows a 512-entry register file (512 integer
and 512 floating point registers) achieves performance close to an ideal config-
uration. Our results in Figure 9 show a 192-entry register file with aggressive
reclamation achieves performance similar to that of a 512-entry register file
with conventional reclamation.

To understand why the aggressive register reclamation scheme works,
Figure 10 shows the average lifetime of physical registers mapped to logical

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

436 . H. Akkary et al.

Table V. Checkpointed Register Statistics

Per-cycle Average Number of
Bench. Checkpoints | Int Regs. | FP Regs.
SFP2K 3 25 13
SINT2K 4 27 —
WEB 3 22 —
MM 3 23 15
PROD 3 22 —
SERVER 4 26 —
WS 3 22 —

registers (including both integer and floating point registers) for three register
reclamation schemes: a conventional ROB-based scheme (conv), the aggressive
scheme used in CPR (aggr), and an ideal scheme (ideal) that uses a counter-
based aggressive scheme similar to the one used in CPR but knows (using oracle
information) the last reader of a physical register even if the logical register
corresponding to the physical register has not been re-mapped.

From Figure 10, we see CPR’s aggressive register reclamation scheme re-
duces register lifetimes by an average of 21% across all benchmarks. A further
16% reduction in lifetimes can be achieved using the ideal scheme. Practical
implementations of the ideal scheme would require either predicting the last
reader of registers, speculatively releasing the registers and recovering from
mispredictions, or using the compiler to annotate the program with the last
reader information, and is left as future work.

With CPR, the lifetimes of the checkpointed physical registers with the aggr
and ideal schemes may increase compared to the conv scheme because the
checkpointed physical registers cannot be released until the checkpoints to
which they belong retire. Table V shows the average number of integer and
floating point physical registers held by checkpoints, and the average number
of checkpoints present in the window per cycle. There are between 3 and 4
checkpoints in the processor. The checkpoints hold onto between 22 and 27 in-
teger physical registers. Since SFP2K and MM are the benchmark suites that
frequently use the floating point physical registers, checkpointed floating point
register results are shown only for these benchmarks. For these benchmarks,
around 15 floating point physical registers are tied down by checkpoints at any
point of execution.

The register lifetimes shown in Figure 10 include the lifetimes of both the
checkpointed and noncheckpointed physical registers. In spite of the increase
in register lifetimes of the checkpointed physical registers with CPR, Figure 10
shows a decrease in register lifetimes for the the aggr and ideal schemes. Hence,
for both the aggr and ideal schemes, the reduction in lifetimes of the noncheck-
pointed physical registers is significantly higher than shown in Figure 10.

5. THE CPR MICROARCHITECTURE

Until now we have evaluated our individual proposals in isolation. In this
section we evaluate the checkpoint processing and recovery microarchitecture
that incorporates our earlier individual proposals for misprediction recovery,

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 437

aggressive register reclamation, and hierarchical store queues. Section 5.1 dis-
cusses some design aspects of CPR processors. Integrating the various mecha-
nisms into one microarchitecture has implications for conventional ROB-based
microarchitectures and we discuss them in Section 5.2. Section 5.3 presents
performance results, and Section 5.4 presents CPR’s large instruction window
characteristics.

5.1 CPR Microarchitecture Design Implications

CPR uses numerous counters—from counters for tracking allocated instruc-
tions, counters for reclaiming registers, to counters in the store queues. To ease
counter management, we allow all instructions to eventually decrement the
counters, including squashed instructions that are merely drained out of the
pipeline. Only when a counter becomes zero do we release its associated re-
source. For example, if an instruction is squashed due to a branch mispredict,
the instruction will still decrement any related counters even as it is draining
out of the pipeline without affecting any other architected state. Thus we do
not require any global reset signals for counters in the various structures.

CPR allows a commit of hundreds of instructions instantaneously by simply
manipulating a counter. These instructions may include many branches and
store operations. A ROB-based architecture would retire stores in sequence
and update any branch predictor serially as branches are retired. These func-
tions traditionally associated with a single instruction commit, as occurs in
a ROB-based design, need to be handled differently with a checkpoint-based
architecture’s bulk commit. We update the branch predictor once the branch
executes rather than when the branch retires. We observe that speculatively
updating a branch predictor does not degrade performance.

To enable the hierarchical store queue to handle bulk commits, each store’s
checkpoint identifier is associated with its corresponding entry in the store
queue. This identifier is used to perform a bulk commit/squash of stores in
the store queue. Manipulating similar bits in store queues is already done in
modern out-of-order processors.

5.2 CPR and Reorder Buffers

Reorder buffers are used in modern processors to provide in-order semantics
for instructions in the instruction window. This in-order semantic is currently
needed for (1) recovering from branch mispredictions, (2) retiring state to reg-
isters and memory in program order, (3) providing precise interrupts, and
(4) managing the register file, either in the form of providing storage for re-
named registers or, if a separate physical register file is used, a mechanism for
reclaiming physical registers after retirement.

As an instruction window size increases, using the ROB for misprediction re-
covery and register file management inhibits performance gains. While it may
be possible to build very large ROBs (mainly FIFO structures), we argue that
doing so does not provide performance because the real performance limiters
are the mechanisms that use the ROB, and not the ROB itself. We have shown
this in earlier sections where branch misprediction recovery mechanisms and

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

438 . H. Akkary et al.

1.8

1.6

O ROB_iw128_sw48_stq24 (base)

Normalized uPC

B ROB_iw320_sw128_stq48
0.4 1 OCPR_sw128_|1stq48_I2stq256
0.2 1 B ROB_iw2k_sw2k_stq512_rfIDEAL

0. I IENIEIN

SFP2K SINT2K WEB MM PROD SERVER WS

Fig. 11. CPR performance.

register reclamation severely limit performance as processors go to large in-
struction windows.

CPR uses confidence-based checkpoints and checkpoint counters for mispre-
diction recovery where each checkpoint could correspond to a group of hun-
dreds of instructions. A branch misprediction results in rollback to the clos-
est checkpoint. Aggressive register reclamation occurs using counters whereby
decoupling register reclamation from the in-order instruction retirement se-
mantics provided by the ROB. Further, as discussed in Section 4.1, the same
checkpoints above are also used for recovering from faults and in providing
precise interrupts.

CPR replaces the functionality of the ROB by new and scalable mechanisms.
We have thus developed a high performance ROB-free architecture. It may
indeed be time to retire the ROB itself.

5.3 CPR Performance Analysis

Figure 11 presents CPR processor performance results. The CPR processor has
a 128-entry scheduling window, 8 map table checkpoints made selectively at
low-confidence branches, 192 integer and 192 floating point register with ag-
gressive reclamation, a 48-entry L1 STQ, and a 256-entry L2 STQ. The CPR
processor is compared to two conventional processors and an ideal 2048-entry
instruction window. The first conventional configuration (also the baseline) has
a 128-entry instruction window (iw128), a 48-entry scheduling window (sw48),
and a 24-entry store queue (stq24) signified by iw128_sw48_stq24. The sec-
ond conventional configuration is iw320_sw128_stq48. Both have appropriately
sized register files. The remaining parameters for all configurations are similar
to Table I except now we use a distance-based memory dependence predictor
for all schemes.

The iw320_sw128_stq48 configuration has equal buffer capacity as the CPR
processor for all timing critical parameters except our proposal replaces the
320-entry ROB of the conventional processor with an 8-entry checkpoint array.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 439

1.45

Normalized uPC
o
-
X

11 X=*- —@— CPR-SFP2K
—&— CPR-SINT2K

1.0 - 4% -ROB-SFP2K|
1 - == =ROB-SINT2K[—
0.95 ; . : .

176/132/66/30 224/168/84/36 272/204/102/42 320/240/120/48

Fig. 12. Equal critical-resource comparison.

From the graph, we make two key observations:

1. CPR processor with eight checkpoints outperforms a conventional 320-entry
ROB processor. SFP2000 benchmarks gain the most. These benchmarks fre-
quently miss the cache and access memory. In such cases, large instruction
windows are necessary to look far ahead and find independent instructions
to execute. This performance gain is present even though the processor we
model in all these configurations uses an aggressive 16-stream data prefetch
hardware.

2. CPR processor achieves between 40% and 75% of ideal performance for a
2048-entry instruction window. Server benchmarks achieve the least perfor-
mance gain. This is due to load stalls resulting from a significant number
of predicted load-to-store dependences. Higher performance can be gained
with better predictors and is left as future work.

Equal critical-resource comparison. To determine the resource efficiency of
our microarchitecture, we compare the performance of a conventional ROB-
based processor to a CPR processor that uses equal critical resources, for var-
ious processor configurations. For each configuration, the register file and the
scheduling window are kept the same for both CPR and ROB-based processors.
The timing critical L1 STQ size used in the CPR processor matches the store
queue size used in the ROB-based processor. The CPR processor also uses a
256-entry L2 STQ not on the cycle critical path.

Figure 12 shows the results for the SFP2K and SINT2K benchmarks. The
x-axis label format w/x/y/z corresponds to a design for a w-entry instruction
window, x integer and x floating point registers, a y-entry scheduling window,
and a z-entry store queue. While the CPR model uses eight map checkpoints
for each point instead of a ROB, the ROB model has a w-entry reorder buffer
at each point. The remaining x, y, and z parameters are identical for the CPR
and the ROB. The y-axis has normalized uPC with respect to the baseline
configuration (128/96/48/24). The results show, for equal buffer sizes, a CPR
processor outperforms a ROB-based processor even for small configurations.
This highlights the resource utilization efficiency of the CPR processor.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

440 . H. Akkary et al.

100 - = —8—CPR-SFP2K [~
£ 80 VUN —A—CPR-SINT2K |
s A \ \ - 4 -ROB-SFP2K
2 60 - % -ROB-SINT2K |
e = \\

5 >
= 20 L
X
O T T T T T

0 128 256 512 1024 1536
Instruction window size >=

Fig. 13. ROB, CPR instruction window size distribution.

Table VI. Load Miss Characteristics

Percentage of Percentage of
Retired Miss-dependent | Miss-dependent In Absence of Miss,

Instructions in Instructions in Instructions | Average Instructions in
Bench. Load Miss Shadow | Load Miss Shadow | Per Load Miss | Scheduler ROB
SFP2K 13 23 10 263 1293
SINT2K 7 20 15 462 2051
WEB 7 24 12 242 819
MM 8 34 10 310 965
PROD 2 22 11 436 1049
SERVER 26 23 12 149 441
WS 19 25 5 133 1157

5.4 CPR Instruction Window Characteristics

In this section, we study the instruction window characteristics of CPR. Fig-
ure 13 shows the instruction window size distribution for a 256-entry ROB
machine and an equal critical resource CPR machine for the SINT2K and
SFP2K benchmarks. A point (x, y) on the graph indicates that for y% of cy-
cles, the instruction window had greater than or equal to x instructions in
the instruction window. The CPR machine can sustain more than 512 in-
structions in the instruction window for a significant fraction of the execution
time.

A large instruction window is needed mostly in the presence of load misses
that go to main memory. Column 2 of Table VI shows the average percentage of
retired instructions that are in the instruction window in the shadow of a load
miss (i.e., from the time a load miss is detected till the load data returns). The
SFP2K, SERVER, and WS benchmarks have a higher fraction of instructions in
the shadow of load misses than the other benchmarks. The performance benefit
due to large instruction windows is also higher for these benchmarks.

Column 3 of Table VI shows that 20%—34% of instructions in the instruction
window in the shadow of load misses depend on the miss data. With an average
window size of 300—600 instructions for CPR, a 256-entry scheduler provides
enough capacity to hold miss-dependent instructions without stalling, most of
the time. The average number of miss-dependent instructions per load miss is

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 441

—®—CPRSFP2K |——
—B— ROB-256-SFP2K
- - -ROB-128-SFP2K
\o\ —&— CPR-SINT2K
—O— ROB-256-SINT2K

< = =X= =ROB-128-SINT2K [
AN

-
»

RS
»7.

_

2
b
A

% of execution time

oON B O ® O
L+
v

Number of outstanding cache misses to memory

Fig. 14. ROB, CPR outstanding L2 cache miss distribution.

even smaller (column 4 in Table VI), since multiple loads often access the same
cache miss block.

Even in the absence of cache misses, we see a small percentage of instruc-
tions waiting in the scheduler for execution compared to the total number of
instructions in a large window processor. Columns 5 and 6 in Table VI show
the average number of instructions in the scheduler and the average number
of instructions in the ROB, respectively, when measured on an ideal 2K win-
dow/2K scheduler ROB-based machine with perfect cache and perfect branch
prediction. Because scheduler entries are freed when their instructions are is-
sued and ROB entries are freed when instructions are retired, out-of-order issue
and in-order retirement cause instructions to occupy ROB entries a lot longer
than scheduler entries. Therefore, scaling the scheduler is a lot less critical
than scaling the total instruction window for high performance large window
machines such as CPR, both in the presence and absence of cache misses.

One of the main benefits due to the large instruction windows achieved by
CPRis the ability to look far ahead in the program and to overlap multiple inde-
pendent misses to main memory (also referred to as memory level parallelism
or MLP). Figure 14 shows the L2 cache miss distributions for the CPR machine
and the 256-entry ROB machine for the SINT2K and SFP2K benchmarks. A
point (x, y) on the graph indicates that for y % of cycles, there were at least x
outstanding L2 cache misses in the instruction window. For the SFP2K bench-
marks that have a high number of L2 cache misses, we see the CPR machine
overlaps multiple misses for a higher fraction of the execution time. Since the
execution times of the CPR machine is smaller than that of the ROB machine,
the L2 cache miss distribution curves for the CPR machine are always higher
than those for the ROB machine, in spite of having similar number of L2 cache
misses as the ROB machine.

The results in this section show that CPR can sustain a large instruc-
tion window without requiring large cycle-critical resources, and CPR signifi-
cantly outperforms a conventional ROB machine given equal resources. Hence,
CPR is a promising microarchitecture for designing future high-performance
microprocessors.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

442 . H. Akkary et al.

6. RELATED WORK

Checkpointing for repairing architectural state due to branch mispredictions
and exceptions was proposed by Hwu and Patt [1987]. Their proposal also
did not employ a ROB but rather used checkpoints at conditional branches
to restore state. The Pentium 4 uses a retirement register alias table to track
maps [Hinton et al. 2001], while the MIPS R10000 [Yeager 1996] and Alpha
21264 [Leibholz and Razdan 1997] use a checkpoint method to recover rename
maps. The checkpoint method as used by the MIPS R10000 and Alpha 21264
do not scale as instruction windows become larger. History buffers have also
been proposed to restore the register rename map table [Ranganathan et al.
1997; Smith and Pleszkun 1985].

Using checkpoints for tolerating long memory latencies was first proposed
by Cristal et al. [2002]. In their initial proposal, the virtual ROB [Cristal et al.
2002], and in subsequent work [Cristal et al. 2004], checkpoints are created
at long latency loads and periodic intervals and ROB entries of instructions
following a long latency operation are released even before they complete. They
call the latter mechanism out-of-order commit. This enables them to emulate
a large virtual ROB while using a small physical ROB. As the ROB entries are
released, their physical registers are also released early. Cristal et al. [2003] also
studied the utilization of various critical resources in a processor that supports
a large number of in-flight instructions.

Run-ahead execution [Dundas and Mudge 1997] uses checkpointing for
prefetching in the shadow of a cache miss, while selectively checkpoints the
map table at weakly predicted branches [Moshovos 2003] that have been pro-
posed to reduce number of checkpoints and power in the rename unit.

The Cherry proposal [Martinez et al. 2002] uses the ROB and recycles physi-
cal registers and other resources once their associated instructions are branch-
safe and memory-safe; that is, all branches prior to the instruction have com-
pleted and all loads have issued. Early resource reclamation is limited to a
subset of the ROB. A checkpoint of the architected register file is also used
but only for recovering from exceptions and the ROB is used for retiring in-
structions. They do not address the problem of branch misprediction recovery
latency.

The IBM Power4 provides the effect of a larger ROB by assigning groups of
up to six instructions to a ROB entry [Tendler et al. 2002]. Here, the ROB size
still grows linearly with instructions. However, our selective checkpoint scheme
allows much larger scaling without requiring a ROB.

Various register file organizations have been proposed [Balasubramonian
et al. 2001; Capitanio et al. 1992; Cruz et al. 2000]. The counter method for
reclaiming physical registers has been proposed earlier [Moudgill et al. 1993]
for a ROB-based MIPS R10000-style processor.

Research in instruction scheduling has focused on logic design for large
scheduling windows [Brown et al. 2001], and dependency-based scheduling
queues [Palacharla et al. 1997]. Decentralized schedulers, where a collection
of small schedulers are associated with functional units, have also been exten-
sively studied [Hinton et al. 2001; Palacharla et al. 1997]. Large instructions

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

An Analysis of a Resource Efficient Checkpoint Architecture . 443

buffers have been proposed from where instructions dependent on other long
latency instructions are reactivated for scheduling when the long latency in-
structions complete [Lebeck et al. 2002].

7. CONCLUDING REMARKS

In this paper, we show it is possible to implement a processor with a large in-
struction window without requiring large cycle-critical buffers. We do this by
carefully examining several critical aspects of large instruction windows and
studying the sensitivity to performance of each aspect in isolation with other as-
pects idealized. These studies reveal that while larger scheduling windows are
important, other design aspects become more critical as an instruction window
size increases. We use this insight to develop efficient mechanisms for handling
branch misprediction recovery, forwarding data to dependent loads from large
number of stores, and physical register reclamation. We combine these mecha-
nisms to propose a new microarchitecture based on checkpoint processing and
recovery (CPR).

CPR is a ROB-free architecture requiring only a small number of rename
map checkpoints selectively created at low-confidence branches, while capable
of supporting a large instruction window of the order of thousands of instruc-
tions. We argue that while large ROBs can be built, the mechanisms that de-
pend upon the ROB, such as branch misprediction recovery and conventional
physical register reclamation, are the real performance limiters. Thus, simply
building a large ROB would not by itself provide performance gains. CPR decou-
ples misprediction recovery and register reclamation from the ROB, and uses a
scalable hierarchical store queue, thus allowing for scalable high-performance
solutions for supporting very large instruction windows. While CPR scales eas-
ily to very large windows, it also outperforms a conventional ROB-based design
even with the exact same cycle-critical buffer sizes.

ACKNOWLEDGMENTS

We thank Mike Fetterman, Stephan Jourdan, Konrad Lai, Eric Rotenberg, John
Shen, Jim Smith, Jared Stark, and Mike Upton for discussions and comments.

REFERENCES

AxKARY, H., Raswar, R., AND Srintvasan, S. T. 2003. Checkpoint processing and recovery: Towards
scalable large instruction window processors. In Proceedings of the 36th International Symposium
on Microarchitecture.

BALASUBRAMONIAN, R., DWARKADAS, S., AND ALBONESI, D. 2001. Reducing the complexity of the reg-
ister file in dynamic superscalar processors. In Proceedings of the 34th International Symposium
on Microarchitecture. 237-249.

Broom, B. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13,7
(July), 422-426.

Brown, M. D., STaRK, J., AND PatT, Y. N. 2001. Select-free instruction scheduling logic. In Proceed-
ings of the 34th International Symposium on Microarchitecture. 204—213.

Caritanio, A., Durt, N., anp Nicorau, A. 1992, Partitioned register files for VLIWs: A preliminary
analysis of tradeoffs. In Proceedings of the 25th International Symposium on Microarchitecture.
292-300.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

444 . H. Akkary et al.

CRISTAL, A., MARTINEZ, J. F., LL0sA, J., AND VALERO, M. 2003. A case for resource-conscious out-of-
order processors. In Computer Architecture Letters.

CRISTAL, A., ORTEGA, D., LLosa, J., AND VALERO, M. 2004. Out-of-order commit processors. In Pro-
ceedings of the 10th International Symposium on High-Performance Computer Architecture. 48—
59.

CristaL, A., VALERO, M., Lrosa, J.-L., aND GonzaLEz, A. 2002. Large Virtual ROBs by Proces-
sor Checkpointing. Tech. Rep. UPC-DAC-2002-39, Department of Computer Science, Barcelona,
Spain. July.

Cruz, J.-L., GoNzALEZ, A., VALERO, M., AND TorHAM, N. P. 2000. Multiple-banked register file archi-
tectures. In Proceedings of the 27th Annual International Symposium on Computer Architecture.
ACM Press. 316-325.

Dunpas, J. aND MuDGE, T. 1997. Improving data cache performance by pre-executing instructions
under a cache miss. In Proceedings of the 1997 International Conference on Supercomputing.
68-75.

HintoN, G., SAGER, D., UproN, M., Bogas, D., CARMEAN, D., KYKER, A., AND RousseL, P. 2001. The
microarchitecture of the Pentium 4 processor. Intel Technology Journal.

Hwu, W. W. anp Part, Y. N. 1987. Checkpoint repair for out-of-order execution machines. In
Proceedings of the 14th Annual International Symposium on Computer Architecture. 18—26.

JacosseN, E., ROTENBERG, E., aND SmiTH, J. E. 1996. Assigning confidence to conditional branch
predictions. In Proceedings of the 29th International Symposium on Microarchitecture. 142-152.

Karkaanis, T. AND SmiTH, J. E. 2002. A day in the life of a data cache miss. In Workshop on Memory
Performance Issues.

LeBECK, A. R., KopPaNALIL, dJ., L1, T., PATWARDHAN, dJ., AND RoTENBERG, E. 2002. A large, fast in-
struction window for tolerating cache misses. In Proceedings of the 29th Annual International
Symposium on Computer Architecture. 59-70.

LeiBHOLZ, D. AND RazpAN, R. 1997. The Alpha 21264: A 500 MHz out-of-order execution micropro-
cessor. In Proceedings of the 42nd IEEE Computer Society International Conference (COMPCON).
28-36.

Magrringz, J. F., REnay, J., Huang, M. C., Prvurovic, M., AND TorRrELLAS, J. 2002. Cherry: Check-
pointed early resource recycling in out-of-order microprocessors. In Proceedings of the 35th In-
ternational Symposium on Microarchitecture.

Mosnovos, A. 2003. Checkpointing alternatives for high performance, power-aware processors.
In Proceedings of the 2003 International Symposium on Low Power Electronics and Design. ACM
Press, New York, 318-321.

MosHovos, A. AND SoHI, G. S. 1997. Streamlining inter-operation memory communication via data
dependence prediction. In Proceedings of the 30th International Symposium on Microarchitecture.
235-245.

MoubciLL, M., PiNgaL, K., AND VassiLiapis, S. 1993. Register renaming and dynamic speculation:
an alternative approach. In Proceedings of the 26th International Symposium on Microarchitec-
ture. 202—-213.

ParacHARLA, S., Jouppr, N. P., anD SmitH, J. E. 1997. Complexity-effective superscalar processors.
In Proceedings of the 24th Annual International Symposium on Computer Architecture. 206—218.

RancanaTHAN, P., Pa1, V. S., AND ADVE, S. V. 1997. Using speculative retirement and larger instruc-
tion windows to narrow the performance gap between memory consistency models. In Proceedings
of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures. 199—-210.

SmitH, J. E. AND PrEszkUN, A. R. 1985. Implementation of precise interrupts in pipelined pro-
cessors. In Proceedings of the 12th Annual International Symposium on Computer Architecture.
36-44.

SPRANGLE, E. AND CARMEAN, D. 2002. Increasing processor performance by implementing deeper
pipelines. In Proceedings of the 29th Annual International Symposium on Computer Architecture.
25-34.

TENDLER, J. M., Dopson, S., FieLps, S., LE, H., aND SiNHAROY, B. 2002. POWER4 system microar-
chitecture. IBM J. Res. Dev. 46, 1 (Jan.), 5-25.

Yeacer, K. 1996. The MIPS R10000 superscalar microprocessor. [IEEE Micro 16, 2 (April), 28-40.

Received June 2004; revised October 2004; accepted October 2004

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

