From:
Subject:
Date:
To:

Ravi Rajwar <ravi.rajwar@intel.com>

TM workshop 4/8

March 28, 2005 7:52:45 AM PST

Brian Bershad <bershad@cs.washington.edu>

Dear Brian,

I am in the process of drawing up an agenda for the transactional memory
workshop on 4/8.

| was wondering if you would be able to give a 10-15 minute talk on your
perspective on the role of transactions for operating systems, including
your past experiences.

| am putting aside a one-hour session on transactions and operating
systems issues and would like you to give a short talk in that session.

Please let me know if you would be able to do this.

Thanks,

Ravi



The Role of Transactions for
Operating Systems, including
my Past Experiences

Brian Bershad
Uw



MAKE and USE

« MAKE

— OS can implement Transactional Memory
for applications

« USE

— OS can use Transactional Memory for its
OwWn purposes



MAKE all

 Library or Server-based systems
— RVM
— Signal, page-get/set-state, thread-get/set-state

 Kernel-based RVM

— RHINO (on Spin) using extension technology
— VINO as extension technology
— Signal, page-get/set-state, thread-get/set-state

 Differ in performance and portability, but not
function



MAKE some

« Compensate for missing hardware

— No TestAndSet (MIPS)

« Simulate the instruction (DEC Ultrix)

— Trap, disable interrupts, read-modify-write, enable
interrupts, RTI

— Slow
» Restartable sequences (Bershad & Redell 91)
— Read-modify-write.
— If the OS preempts within, PC is “adjusted” backwards.
» Works only on a uniprocessor

— No CAS

» Roll-out sequences (Bershad 93)
— Lock, Read-compare-swap, Unlock.

— If the OS preempts within, force unlock and adjust PC
backwards or forwards, depending on point of incursion



USE

* Goal: OS Performs Atomic updates in the
presence of concurrent activities

— Eg, scheduling queue, fs buffer, etc.

* Non Goal: Recoverability
— Although QuickSilver (86) is a notable exception



USE:Atomic Updates

On a uniprocessor
— Make all memory transactional by disabling interrupts

— It's ok to do things like this inside the os
* OS implements a VM, but doesn’t need to run on one.

Curiously,
— Most potentially interruptible sequences are not interrupted.
— Begin/End overhead dominates useful work

— Under high load, lost data (missed interrupts) is common
« Expensive B/E leads to high load sooner

— Make it cheaper please

Led to Optimistic Synchronization in the kernel
(Stodolsky&Bershad 93)

— Pretend interrupts are disabled

— If an interrupt occurs, defer and disable



USE (Really)

* No Locks
— Ability to withstand arbitrary delays w/o stalling

« Eg, no more “page fault with lock held”
e« Cache misses
* Processor failure

— No priority inversion
« Simplest case: acquiring a lock you already hold.
— Lock-free? Wait-free? Who really cares?

 Examples

— Synthesis (Massalin 91)
— Cache Kernel (Greenwald & Cheriton 96)



USE: Lists, Versions, and

DCAS

There are lists and objects.

Every list has a version number

Version is incremented whenever the list changes
Double-compare-and-swap (HW or SW)

“If neither the list
nor the object have
changed, change
the list and the
object.

int DCAS(int *addrl, int *addr2,
int oldl, int old2,

int newl, int newl)
{
<begin atomic>
if ((*addrl == oldl) && (*addr2 == old2)) {
*addrl = newl; *addr2 = new2;
return(TRUE);
} else {
return(FALSE);
}

<end atomic>

}




USE: Exceptions

» What if the data structure/algorithm
does not lend itself to DCAS?

— Herlihy’s transform technique seems too
difficult, and the others ones you can't
understand

* Abandon concurrency

— Synchronous request/response to a
serializing manager process



MAKE/USE: Conclusions

« MAKE

— Low-end to high-end
— Plenty of Tricks --solve the problem at its source

« USE

— Intellectually interesting
— A few successes (eg, opt spl)

— Costs generally seemed greater than benefits
« Hardware
— missing or $$, especially under contention
* Threads+locks got easier
— Tools, language support
« Depressing exceptions



