

The Role of Transactions for
Operating Systems, including

my Past Experiences

Brian Bershad
UW

MAKE and USE

• MAKE
– OS can implement Transactional Memory

for applications
• USE

– OS can use Transactional Memory for its
own purposes

MAKE all

• Library or Server-based systems
– RVM
– Signal, page-get/set-state, thread-get/set-state

• Kernel-based RVM
– RHINO (on Spin) using extension technology
– VINO as extension technology
– Signal, page-get/set-state, thread-get/set-state

• Differ in performance and portability, but not
function

MAKE some
• Compensate for missing hardware

– No TestAndSet (MIPS)
• Simulate the instruction (DEC Ultrix)

– Trap, disable interrupts, read-modify-write, enable
interrupts, RTI

– Slow
• Restartable sequences (Bershad & Redell 91)

– Read-modify-write.
– If the OS preempts within, PC is “adjusted” backwards.

» Works only on a uniprocessor

– No CAS
• Roll-out sequences (Bershad 93)

– Lock, Read-compare-swap, Unlock.
– If the OS preempts within, force unlock and adjust PC

backwards or forwards, depending on point of incursion

USE

• Goal: OS Performs Atomic updates in the
presence of concurrent activities
– Eg, scheduling queue, fs buffer, etc.

• Non Goal: Recoverability
– Although QuickSilver (86) is a notable exception

USE:Atomic Updates
• On a uniprocessor

– Make all memory transactional by disabling interrupts
– It’s ok to do things like this inside the os

• OS implements a VM, but doesn’t need to run on one.

• Curiously,
– Most potentially interruptible sequences are not interrupted.
– Begin/End overhead dominates useful work
– Under high load, lost data (missed interrupts) is common

• Expensive B/E leads to high load sooner
– Make it cheaper please

• Led to Optimistic Synchronization in the kernel
(Stodolsky&Bershad 93)
– Pretend interrupts are disabled
– If an interrupt occurs, defer and disable

USE (Really)

• No Locks
– Ability to withstand arbitrary delays w/o stalling

• Eg, no more “page fault with lock held”
• Cache misses
• Processor failure

– No priority inversion
• Simplest case: acquiring a lock you already hold.

– Lock-free? Wait-free? Who really cares?
• Examples

– Synthesis (Massalin 91)
– Cache Kernel (Greenwald & Cheriton 96)

USE: Lists, Versions, and
DCAS

• There are lists and objects.
• Every list has a version number
• Version is incremented whenever the list changes
• Double-compare-and-swap (HW or SW)

“If neither the list
nor the object have
changed, change
the list and the
object.

USE: Exceptions

• What if the data structure/algorithm
does not lend itself to DCAS?
– Herlihy’s transform technique seems too

difficult, and the others ones you can’t
understand

• Abandon concurrency
– Synchronous request/response to a

serializing manager process

MAKE/USE: Conclusions

• MAKE
– Low-end to high-end
– Plenty of Tricks --solve the problem at its source

• USE
– Intellectually interesting
– A few successes (eg, opt spl)
– Costs generally seemed greater than benefits

• Hardware
– missing or $$, especially under contention

• Threads+locks got easier
– Tools, language support

• Depressing exceptions

