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Ravi Rajwar <ravi.rajwar@intel.com>

TM workshop 4/8

March 28, 2005 7:52:45 AM PST

Brian Bershad <bershad@cs.washington.edu>

Dear Brian,

I am in the process of drawing up an agenda for the transactional memory
workshop on 4/8.

| was wondering if you would be able to give a 10-15 minute talk on your
perspective on the role of transactions for operating systems, including
your past experiences.

| am putting aside a one-hour session on transactions and operating
systems issues and would like you to give a short talk in that session.

Please let me know if you would be able to do this.

Thanks,

Ravi



The Role of Transactions for
Operating Systems, including
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MAKE and USE

« MAKE

— OS can implement Transactional Memory
for applications

« USE

— OS can use Transactional Memory for its
OwWn purposes



MAKE all

 Library or Server-based systems
— RVM
— Signal, page-get/set-state, thread-get/set-state

 Kernel-based RVM

— RHINO (on Spin) using extension technology
— VINO as extension technology
— Signal, page-get/set-state, thread-get/set-state

 Differ in performance and portability, but not
function



MAKE some

« Compensate for missing hardware

— No TestAndSet (MIPS)

« Simulate the instruction (DEC Ultrix)

— Trap, disable interrupts, read-modify-write, enable
interrupts, RTI

— Slow
» Restartable sequences (Bershad & Redell 91)
— Read-modify-write.
— If the OS preempts within, PC is “adjusted” backwards.
» Works only on a uniprocessor

— No CAS

» Roll-out sequences (Bershad 93)
— Lock, Read-compare-swap, Unlock.

— If the OS preempts within, force unlock and adjust PC
backwards or forwards, depending on point of incursion



USE

* Goal: OS Performs Atomic updates in the
presence of concurrent activities

— Eg, scheduling queue, fs buffer, etc.

* Non Goal: Recoverability
— Although QuickSilver (86) is a notable exception



USE:Atomic Updates

On a uniprocessor
— Make all memory transactional by disabling interrupts

— It's ok to do things like this inside the os
* OS implements a VM, but doesn’t need to run on one.

Curiously,
— Most potentially interruptible sequences are not interrupted.
— Begin/End overhead dominates useful work

— Under high load, lost data (missed interrupts) is common
« Expensive B/E leads to high load sooner

— Make it cheaper please

Led to Optimistic Synchronization in the kernel
(Stodolsky&Bershad 93)

— Pretend interrupts are disabled

— If an interrupt occurs, defer and disable



USE (Really)

* No Locks
— Ability to withstand arbitrary delays w/o stalling

« Eg, no more “page fault with lock held”
e« Cache misses
* Processor failure

— No priority inversion
« Simplest case: acquiring a lock you already hold.
— Lock-free? Wait-free? Who really cares?

 Examples

— Synthesis (Massalin 91)
— Cache Kernel (Greenwald & Cheriton 96)



USE: Lists, Versions, and

DCAS

There are lists and objects.

Every list has a version number

Version is incremented whenever the list changes
Double-compare-and-swap (HW or SW)

“If neither the list
nor the object have
changed, change
the list and the
object.

int DCAS(int *addrl, int *addr2,
int oldl, int old2,

int newl, int newl)
{
<begin atomic>
if ((*addrl == oldl) && (*addr2 == old2)) {
*addrl = newl; *addr2 = new2;
return(TRUE);
} else {
return(FALSE);
}

<end atomic>

}




USE: Exceptions

» What if the data structure/algorithm
does not lend itself to DCAS?

— Herlihy’s transform technique seems too
difficult, and the others ones you can't
understand

* Abandon concurrency

— Synchronous request/response to a
serializing manager process



MAKE/USE: Conclusions

« MAKE

— Low-end to high-end
— Plenty of Tricks --solve the problem at its source

« USE

— Intellectually interesting
— A few successes (eg, opt spl)

— Costs generally seemed greater than benefits
« Hardware
— missing or $$, especially under contention
* Threads+locks got easier
— Tools, language support
« Depressing exceptions



