
Transactional Memory for the Masses
(ASTM, dual data structures)

Michael L. Scott
University of Rochester
(joint work with Bill Scherer & Virendra Marathe)
8 April 2005



2

Practical Nonblocking STM Systems

Sun DSTM, Cambridge OSTM, . . .
 Space linear in total #objects or #objects

currently in use, w/ very small constant
 Time w/in a modest constant factor of fine-grain

locks in the absence of contention
 Faster than coarse-grain locks in the presence of

contention, with comparable programmer effort
 (not to mention failure/preemption/page fault

tolerance, deadlock/inversion freedom, . . . )



3

Systems vary in:

Granularity – word-based, object-based

Progress model – lock-free, obstruction-free

Indirection overhead – in-place mutation,
pointer to object, pointer to pointer to object

Acquire semantics – eager v. lazy, read v. write,
(validation overhead)

These are not independent!



4

Sun DSTM [Herlihy, Luchangco, Moir, Scherer]

Object-based
Obstruction-free
(w/ contention
management)
Double
indirection
Eager acquire for
write; optional
reader list

C

?

–
+

–
+

copy

CAS



5

Rochester ASTM

Optional locators; both eager and lazy acquire

–
+

CAS



6

Rochester ASTM (2)

Single-indirection for mostly-read object



7

Rochester ASTM (3)

Writer installs DSTM-style locator;
retained by subsequent writers

?

–
+

copy

CAS



8

Rochester ASTM (4)

Reader reverts to single indirection

A

–
+

CAS

Avoid indirection
when reading
Detect conflicts
early when
writing
Lazy acquire also
an option

 Contention management



9

ASTM Performance

LFUCache RBTree



10

STM Challenges

Finding the right programming model
Integrating with existing models, languages,
compilers
Overhead reduction
Hardware accelleration/hybrids;
portability across platforms

Condition synchronization



11

Dual Data Structures [DISC’04]

Don’t fail; insert request instead
 explicit (fair) control of request ordering

Request and successful follow-up are
nonblocking
Contention-free waiting: unsuccessful
follow-ups perform no remote references
 spinning or scheduler-based

Compatible with Java, C#, etc.
 avoid “covering conditions,” repeated testing

SynchronousQueue, Exchanger for JSR166



12

www.cs.rochester.edu/~scott/synchronization/


