
Hybrid Hardware/Software 
Transactional Memory

Mark Moir
Principal Investigator

Scalable Synchronization Research Group

Joint work with: Peter Damron, Yossi Lev, 
Victor Luchangco, Dan Nussbaum, Nir Shavit

© Sun 
Microsystems 
2005



Outline

Progress in software TM
Developments in hardware TM
Hybrid Hardware/Software TM

Key idea in abstract
Applied to DSTM
Applied to word-based STM

Concluding remarks

© Sun Microsystems 2005



Software Transactional Memory

Lots of progress in:
Space overhead
Data transparency
Parallelism
Performance

Work beginning on programming 
language/model/interface

Still requires multiple expensive atomic 
instructions per transaction

© Sun Microsystems 2005



Hardware Transactional Memory…

(…including related things like SLE).

Renewed interest.

Two flavours of design:
Best effort: simple, but no guarantees 
Unbounded: can commit any 
transaction, but more complicated

© Sun Microsystems 2005



Hybrid Transactional Memory
Make HTM and STM txns “play together 
nicely”; try hardware first, resort to software 
when it fails

Programmer writes txn code once; hybrid TM 
does the rest

Hardware can be “best effort”, without
impacting programmers

Transactional code can be developed and 
tested without hardware support

© Sun Microsystems 2005



Key idea illustrated

Well-known software
synchronization technique
Copies of data and 
indication of which is 
“current”.

current

0101
1010

© Sun Microsystems 2005



Key idea illustrated

Applying an operation:
make private copy

current

0101
1010

0101
1010 copy

© Sun Microsystems 2005



Key idea illustrated

Applying an operation:
make private copy
modify private copy (sequential code)

current

1101
1010

0101
1010 copy

© Sun Microsystems 2005



Key idea illustrated

Applying an operation:
make private copy
modify private copy (sequential code)
atomically make copy become current

current

1101
1010

0101
1010

© Sun Microsystems 2005



Key idea illustrated

Disadvantages:
no parallelism
copying overhead

current

1101
1010

0101
1010

© Sun Microsystems 2005



Key idea illustrated

Simplified (and wrong!) 
hybrid optimization 
approach:

use hardware TM to 
modify copy in-place, 
and 
check current pointer 
doesn’t change

current

0101
1010

© Sun Microsystems 2005



Key idea illustrated

Advantages:
Nonconflicting operations 
can succeed in parallel
no copying

current

0101
1010

© Sun Microsystems 2005



Key idea illustrated

Advantages:
Nonconflicting operations 
can succeed in parallel
no copying

Disadvantage:
not correct �
software operations might 
copy inconsistent data

current

0101
1010

© Sun Microsystems 2005



Key idea illustrated

Solution:
indicate “ownership” by 
software operation(s)

software ops acquire 
ownership before copying

hardware ops abort if 
object owned by software

current

0101
1010

H/S
owner

© Sun Microsystems 2005



Example: DSTM
START old new trans

committed T1

1101
1010

0101
1010

© Sun Microsystems 2005



Example: DSTM
START old new trans

committed T1

1101
1010

0101
1010

active T2

1111
1010

copy

© Sun Microsystems 2005



Example: DSTM
START old new trans

committed T1

1101
1010

0101
1010

active T2

1111
1010

copy

© Sun Microsystems 2005



Hybrid DSTM
START old new trans

committed T1

1101
1010

0101
1010

Use hardware TM to check object not owned 
by active software txn, and if not modify 
current object in-place

Avoids copying and expensive 
synchronization, allows intra-object parallelism

© Sun Microsystems 2005



An Aside

Level of indirection because of single-
word CAS, multi-word locator

H/W TM that guarantees (eventual) 
success of single-cache-line txn would 
remove indirection simply.

Other simple guarantees useful too: e.g., 
txns that read one cache line and write 
one cache line

© Sun Microsystems 2005



Word-based Hybrid TM

TM useful at lower levels too, e.g. JVM, 
GC, etc.

No object infrastructure, want to modify 
data in-place

© Sun Microsystems 2005



Word-based Hybrid TM Prototype

Similar in structure to Harris & Fraser STM
(OOPSLA 2003)

Ownership table; data transparency

Compiler emits code for hardware txn and 
software txn (library calls), and retry/contention 
mgmt code

Hardware transactions augmented to check 
ownership table for conflicting software txns
(multiple levels of granularity possible)

© Sun Microsystems 2005



Word-based Hybrid TM Prototype

Shoe-horned into existing languages to 
allow experimentation with existing code, 
e.g. GC, JVM, etc.

Programming model primitive, but 
workable

Remaining challenges include:
better language integration
validation of hybrid approach

© Sun Microsystems 2005



Concluding Remarks

Hybrid Transactional Memory

Use best-effort hardware TM to boost 
performance of self-contained STM

Eases constraints on hardware designers
Best effort ok, but simple guarantees
desirable

Eases path to adoption of transactional 
programming

© Sun Microsystems 2005


