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Abstract - With increasing complexity of the SoCs, traditional verification approach is not feasible to meet the strict 

time-to-market windows. Accellera's Portable Stimulus Standard (PSS) provides the methodology to abstract the test intent 

to make the tests easily portable to various verification levels like at IP, sub-system, post-silicon etc. However, adopting PSS 

methodology poses its own challenges regarding development and validation of PSS models and implementation APIs. In 

addition, the availability of the qualified PSS models at early stage of the verification effort is a challenge. In this paper, we 

discuss how we used Virtual prototyping (VP) for early development and validation of PSS models for faster and productive 

PSS adoption. 

 

I.   INTRODUCTION 

During last couple of years, there has been significant traction around Accellera’s Portable Test and Stimulus 

Standard[1][2] (PSS). Although, official standard was released in 2018, many companies started developing the tools 

around PSS methodology, which was still at draft stage. This helped in commercial tools being available around the 

same time as standard was released. 

PSS is nothing less than a revolution, which is addressing two of the most challenging problems, “verification” and 

“reuse”, in modern SoCs. With the growing complexity of Systems and the ever-shrinking time-to-market windows, 

the verification challenge is growing day by day – which puts additional burden on verification engineers at different 

stages of SoC life cycle. A significant effort goes into creating tests with same verification intent at various levels, 

like IP, sub-system, system, post-silicon, with little to no reuse. Additionally, porting of these tests from one SoC to 

another SoC is time-consuming and error-prone. With PSS methodology, the test intent is abstracted from the 

implementation, which make it easy to reuse across various verification levels and SoCs. The Figure 1 captures PSS 

flow and its reuse across verification levels and platforms.  

 

Figure 1 Reuse with PSS 

However, adopting PSS methodology is not simple. It takes significant effort to adopt the PSS methodology – 

development of PSS models for the required components and especially, validation of these models. In this paper, we 

discuss about PSS development, various challenges in its deployment and using Virtual Prototyping [3] (VP) to 

overcome those challenges. 
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II.   PSS METHODOLOGY AND CHALLENGES 

The PSS methodology provides an approach to specify test intent at a higher level of abstraction, which allows the 

test to be portable to various verification targets. In this flow, a test case is specified using an abstract model, which 

captures the test configuration and the data flow. This abstract model is agnostic to the verification platform and the 

verification level i.e. it has no dependency on how the test is realized in any given verification environment. With this 

decoupling of test intent and test realization, the tests can be generated for various targets using PSS tools.  

However, it is not easy to get fast benefits out of PSS. The main challenge in deploying PSS is that companies do 

not have existing PSS models available for their IPs. The standard EDA solutions cannot help here, as most of the IPs 

are proprietary and confidential. Thus, the verification teams develop the PSS models, which includes identifying 

abstract attributes to capture the test intent and developing the implementation APIs to program the Design-Under-

Test (DUT) and test. The Figure 2 depicts the flow, with the PSS artifacts to be developed highlighted in blue.  

 

 

The PSS model comprises of the following major artifacts. 

1) Attributes: To specify the configuration parameters of the DUT. These attributes may cover the complete range 

of control parameters or only very high-level parameters. The PSS tools randomize the attributes to generate 

configuration, thus providing ability to generate numerous configuration for the same test. 

2) Constraints: To ensure that randomized configuration is correct, PSS provides mechanism to specify constraints 

between the attributes. As part of the PSS model, the teams need to model the constraints – covering all possible 

attribute values to ensure valid attribute configuration is generated. 

3) APIs: The implementation APIs are not directly part of the PSS model but are needed to program the DUT as per 

the configuration generated in the test. These APIs extract the configuration from the PSS attributes and programs 

the DUT registers and load data to the memory and therefore, are specific to a given verification target. For example, 

in SystemVerilog (SV) simulation environment, these are often developed using SV whereas for emulation or post-

silicon validation, these are developed in C/C++. In addition to test realization, these APIs may also perform 

verification checks e.g. verify that the relevant interrupts are raised, verify DUT output etc. 

Using these PSS models of various components, verification teams can create any complex scenarios in very short 

time.  

The crucial aspect of the PSS model development is verification of the model itself. If the constraints in the PSS 

model are incorrect, the generated test configuration will be invalid and the test will fail. If the APIs are not configuring 

the DUT correctly, the tests will fail. It may lead to very long debug cycles, as the verification team would not know 

whether the issue is in the DUT or with the generated test. Unless the PSS model is validated, there is always doubt 

in the mind of verification engineers whether the tests generated by the PSS model are correct or not. Hence, we need 

to ensure the validity of the PSS model before deploying it for verification across various teams. 

Another challenge for PSS model developers is “how to qualify the models fast” to make it deployable for 

verification. At the IP or the sub-system-level, verification environments are simulation based (SV/UVM), which has 

very slow execution speed for even simpler test cases. In addition, the debugging is hard and the iterations to fix bugs 

and validate is time-consuming. Hence, using simulation for validating the PSS model is not optimal.  

The other way to validate PSS models is using emulation. In emulation environment, the execution speed is high 

and turn-around times are shorter. However, there are two critical bottlenecks to validate PSS model on emulator. The 

first issue is the emulator is available only at a relatively later stage of the SoC development, which means the PSS 

model could not be validated in required time. The second issue is that the emulator is a very expensive resource, 

being shared by many teams and not freely available.  

 
Figure 2 PSS Development 
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Due to these challenges, validating the PSS model is a tedious task, which defeats the whole purpose of PSS. Many 

teams decide not to use PSS precisely due to this reason. 

At Samsung, we recognized this challenge very early. To mitigate it and to get faster results, we used a different 

approach – use Virtual Prototyping methodology to qualify and mature the PSS model. In the following section, it 

discusses how VP methodology helps in getting PSS models ready early and fast.  

III.   PSS DEVELOPMENT FLOW WITH VIRTUAL PROTOTYPING 

A. What is Virtual Prototyping? 

Virtual Prototyping (VP) is a proven methodology, which is widely used to enable early software development. Due 

to complexity of the systems, hardware design and verification takes significant time and effort for the hardware to be 

ready. Traditionally, the software teams wait for the hardware board to be available to bring-up the software. As it is 

the first time the software and hardware come together, software teams face lot of issues. It leads to significant effort 

to debug and fix the issues and teams often struggle to meet the deadlines. 

With the VP methodology, an abstract and functionally accurate model of the system hardware is developed at the 

start of the project. Due to its abstract nature, it is easier to develop and is available much earlier than the hardware. 

A virtual prototype of a SoC includes all major components: CPU models, which are generally Instruction Set 

Simulators (ISS), transaction-level bus model with memory-map, memory sub-systems and various hardware 

accelerators and peripheral models. Using the VP, software teams develop and verify software before hardware is 

available. To ensure that the software developed using VP is portable to the hardware; VP models need to have bit-

accurate implementation of the functionality, register models and interrupt signals. With VP, the software bring-up 

could be achieved within days once the hardware is available. 

In addition, the models are developed using C++/SystemC, which makes it easy to debug and is available to large 

set of users unlike simulation and emulation platforms. Moreover, due to its abstraction, the simulation speed of VP 

is much higher than the RTL simulation – usually more than 100x. Hence, due to its early availability and accuracy to 

the hardware, VP is the ideal platform to validate the PSS models. 

B. PSS Development with VP 

As mentioned above, the PSS model, attributes and constraints, is an abstract representation of the test intent and is 

agnostic to the implementation and target platform. Thus, using VP for validation has no impact on the way the PSS 

models are created. However, the implementation APIs are target specific and hence need to be considered carefully. 

To ensure maximum reuse across various verification targets, the implementation APIs would be best suitable to be 

in ‘C’. It has following advantages:  

1) For System Testing: C-APIs can be cross-compiled and executed on any platform with target CPU – VP, 

emulation and post silicon validation etc. Interestingly the target CPU can be different in each environment. 

2) For Simulation: C-APIs can be used in SV based simulation testing using C-SV DPI (Direct Programming 

Interface). The Figure 3 shows the flow with reuse of C-APIs using the DPI support. The SV test code generated 

by the PSS tool invokes the C-APIs, which in turn invoke SV tasks to perform any register or memory access. The 

Figure 4 shows a PSS example with a component and its corresponding exec block. The exec block contains call to 

a high-level user function, “configure_dut”, which takes an argument of “struct” type. The Figure 5 shows the 

“configure_dut” code snippet along with the change in the C-APIs to enable reuse with SystemVerilog. The C-APIs 

are updated to call the SystemVerilog (SV) tasks to perform the register or memory accesses. The example shows 

the C-API method “configure_dut” that is called from the SV test, generated by a PSS tool, to configure the DUT. 

For performing register writes, it uses a method “write_register”, which can be used to invoke the corresponding 

SV task, “sv_write_register”, by using a compiler directive “WITH_SV_SIM”. With this approach, the C-APIs can 

be reused easily. 

3) For VP Unit-Testing: C-APIs can be used for IP level testing where it is compiled as part of the VP model test-

bench. This is useful in the verification environments without the CPU models. The Figure 5 shows the updates in 

C-APIs to achieve it. Similar to reuse for SV, the “write_register” method can be used to invoke a VP method, 

“tlm_write_register”, by using a compiler directive “NATIVE_BUILD”. The “tlm_write_register” invokes VP test-

bench function to perform the register write. 



 

Figure 3 C-APIs reuse with SystemVerilog using DPI 

 

Figure 4 PSS component and exec block example 

 

Figure 5 C-APIs changes to reuse SystemVerilog tasks 

With the ‘C’ for implementation APIs, it is very easy to use the generated tests across various verification targets.  
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component dut_c { 

    action do_operation { 

        //input and outputs  

       dut_conf_s dut_conf; //dut configuration struct 

    } 

}  

  

extend action dut_c::do_operation { 

   exec body C = """    

   #message(NONE, "Executing: modem_c::receive"); 

   configure_dut(dut_conf); 

   check_dut(); 

   """; 

} 

 

void configure_dut (volatile dut_conf_s * a_conf) 
{ 
    write_register (DUT_REG_ADDR, a_conf->val); 
    ……. 
} 
  
void write_register (unsigned int a_address, unsigned int a_data) 
{ 
#ifdef  WITH_SV_SIM 
    sv_write_register (a_address, a_data); 

#elif  NATIVE_BUILD 

    tlm_write_register (a_address, a_data); 
#else  
    *(a_address) =  data; 
#endif 
}  



C. Executing PSS Tests on VP 

The Figure 6 shows a scenario using the component example shown in Figure 3. The scenario uses “FILL” operation 

for attributes “input_format”, “output_format”, “operation” and “size”. The PSS tools use the FILL operation to 

generate test for each value of the attribute or combination of attributes. For the given example, the attribute 

“input_format” has twelve possible values, attribute “output format” has four possible values, attribute “operation” 

has eleven possible values and attribute “size” has 4 possible values, then tool will generate more than twenty-one 

hundred (2112) tests for this scenario. 

 

Figure 6 PSS scenario 

The Figure 7 shows the pseudo C test code generated from the scenario shown above. 

 

Figure 7 Generated C test pseudo code 

The Figure 8 shows the flow of executing tests on VP. The generated tests are cross-compiled for the target CPU 

and are executed on VP as if running on hardware. Due to its high simulation speed, thousands of tests can be executed 

in short time. 

 

Figure 8 Execution of PSS tests on VP 

extend component pss_top { 

    action dut_scenario { 

        activity { 

            a0: do display_c::show with { 

                dut_conf.input_format == FILL;  

                dut_conf.output_format == FILL; 

                dut_conf.operation == FILL; 

                dut_conf.size == FILL;  

            }; 

        }; 

    }; 

}; 

int main() {     

     // top configuration object instantiation 

     dut_conf_s dut_conf; 

     //initialize the configuration object with values generated from the scenario  

     dut_conf.input_format = IN_FMT0; 

     dut_conf.output_format = OUT_FMT0; 

     dut_conf.operation == OP_X; 

     dut_conf.size == QVGA;  

     /////// 

     //exec block code of the component 

     configure_dut(&dut_conf); 

     check_dut(); 

} 
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D. Automated Checking of PSS Tests with VP 

The PSS methodology covers mainly the specification to represent the test intent. The EDA PSS tools use this 

specification and generate the test that covers configuring and driving the stimulus to the DUT. The key part of 

asserting whether the test has passed or failed is to be decided by the user. By using ‘C’, we ensured that the 

implementation APIs are reused across verification platforms and hence are consistent by design. The similar approach 

was used to ensure the test pass criteria could be reused and is consistent across verification platforms. For this, the 

C-APIs were enhanced to perform the following checks. 

1) Interrupt Integrity: This checks that all the required interrupts are triggered. It assumes that all the interrupts will 

be enabled in the test. If there is no interrupt, the test is declared as failed. This check is applicable and realized with 

other verification platforms – simulation and emulation. In addition, it also flags if an unexpected interrupt or an 

error-condition interrupt occurs.  

2) Data Integrity: This check is used to ensure that the DUT output is as expected. Often, verification environments 

use output from a functional model as golden data. With C-APIs, the golden data is loaded in the memory at an 

address generated using PSS. At the end of the test, the C-APIs, compares the output data with the golden data to 

declare test as passed or failed. Some components also provide the CRC of the output data. In such cases, the 

comparison is made between just the CRC values from DUT with the golden CRC. With this approach, the same 

data integrity check can be performed for all verification platforms. The limitation of this approach is that the check 

is performed only at the DUT boundary. In case of failure, the data at various internal stages will have to be checked 

against golden data. Here again, VP is a better candidate as the VP model can be debugged very easily to find the 

stage which is causing the mismatch. 

 

Figure 9 C-API code for interrupt and data integrity checks 

The Figure 9 shows pseudo code for interrupt and data integrity checks in the C-APIs. Due to C-API reuse for DUT 

configuration and verification checks, it is easy to reproduce the issue across verification environments. For example 

a failure reported in the RTL simulation, can be easily reproduced in the VP. It makes it easy to identify whether the 

issue is in the PSS, verification environment or in the DUT. It saves a lot of time in reproducing the issues and 

debugging. 

unsigned int dut_end_interrupt, dut_golden_crc; 

 

//invoked from PSS exec block 

void configure_dut (volatile dut_conf* a_conf) 
{ 

    update_dut_golden_data();    //user function which updates the golden crc for the test 

    register_interrupt_handlers(); //registers interrupt handlers with interrupt controller 

    ……. 

} 
  

//interrupt handler for end interrupt 

void handle_dut_end_interrupt () 

{ 

    dut_end_interrupt = 1; 

} 

 

//invoked from PSS exec block after “configure_dut” 

int check_dut() 
{ 

    int status = 0; 

    while(!dut_end_interrupt);             //wait for end interrupt to occur 

    status = check_dut_interrupts() ;    //check all relevant interrupts are done 

    status += check_dut_crc();             //compare DUT crc with the golden crc 

    return status; 

}  



E. Capturing Golden Data with PSS 

A reference model is a key part of any verification environment. These reference models are the bit-accurate 

functional models the DUT and hence called as functional models as well. Often, these models are created in ‘C’ and 

are reused for creating the VP models. These functional models take the configuration and stimulus in form of input 

files and dump the output in files. Along with the output at the DUT’s boundary, outputs from various internal stages 

are also dumped. It makes it easy to locate the root-cause if there is any output mismatch with DUT. With PSS, these 

functional models can be reused to dump the golden data for data integrity checks as shown in Figure 10. 

The PSS specification allows users to add additional code blocks to generate various files using the PSS tools. Using 

this feature, the PSS model is updated to generate the input configuration file as needed by the functional model. The 

values from various PSS attributes are used to generate the configuration file. It ensures that both the functional model 

and the DUT use same configuration, which avoids data mismatches due to configuration differences. The PSS tools 

generates the configuration file along with the test code. The function model is executed with this configuration file 

along with the input stimulus files, for example input images for a display sub-system. This gives the golden data 

which is used by the C-APIs during the test execution. As the VP models are reusing the functional model code, the 

data integrity checks can be performed successfully on VP. In case of mismatches, which may occur due to incorrect 

configuration file generated from PSS models or incorrect configuration by C-APIs, the VP can be used to debug the 

issue in short time. 

 

Figure 10 Golden Data Flow with PSS 

F. Debugging PSS Tests with VP 

As discussed earlier, one of the key problem areas of validating PSS models is debugging issues.  

With RTL simulation, the slow simulation speed is the bottleneck – for each change to try to fix the issues iteration, 

it takes significant simulation time and causes delays. With large test cases, which may take more than 12 hours, it is 

not feasible to debug with RTL simulation. 

With emulation, there is no support to debug the RTL code or to analyze the waveforms while the test is running. 

It requires user to specify the signals to be dumped in a waveform for analysis, which considerably slows down the 

execution speed. Moreover, user has to be careful while selecting the time range for which the signals are to be 

captured. If the event of interest happens outside the selected time range, it has to be done all over again. 

With VP, a simple C++ debugger like gdb can be used to debug the issues. For ease of simulation and debugging, 

there are various tools available with additional debugging capabilities. For example, 

1) Register Trace: Captures all the read-write operations performed in the simulation. It makes it easy to analyze 

and to identify issues in the DUT configuration. The configuration issues could be due to incorrect constraints in 

the PSS models or incorrect C-APIs. It is also useful to check the error conditions reported by the DUT. 

2) ISS Debugging: Source code debuggers like gdb or Lauterbach’s Trace32 can be attached to the CPU ISS model 

to debug the test code being executed by the CPU. It allows user to put analyze the values of the variables and CPU 

registers. It also provides the support, during test execution, to change the values of variables or CPU registers to 

trigger specific behaviors. In addition, it allows users to set break-points in the API code to debug issues. 
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3) Memory View and Dump: It allows user to check the value in the memory and dump it into a file if needed.  

4) VP Model Debugging: Source code debugger like gdb can be used to debug the VP models itself. It allows users 

to look inside the model functionality to identify what is causing issues.  

With these debug features, the PSS model and APIs can be debugged easily and in very short time. 

IV.   RESULTS 

The methodology of using VP for PSS development was applied on a display sub-system. It used a smaller VP with 

only the display sub-system along with Cortex-M0 as CPU. With VP, we could achieve the following. 

1. For the display sub-system, over two thousand tests were generated using “FILL” on just four attributes, (“FILL” 

generates a test for each possible value of the given attribute(s)).  

2. Executed all the two thousand tests in just under five hours.  

3. Setup a regression framework for PSS models using VP for execution. It helped us identify any failures due to 

changes in the PSS models. 

Due to quick turn-around times with VP, we could identify many issues in the PSS models and APIs in very short 

time. It helped us qualify the PSS model fast. 

After qualification with VP, the PSS model was used for tests on other platforms. 

1) Emulation: PSS model and C-APIs were reused without any change for generating tests for emulation. It needed 

the generated test code and the C-APIs to be compiled in the emulation build framework. The interrupt and data 

integrity checks helped us identify failing tests and were fixed. 

2) Simulation: PSS model was reused without any change for simulation platform. The C-APIs were reused with 

SV using the DPI functions. For data integrity, the existing SV checkers were reused which also performed data 

integrity check at the internal stages. 

In Table 1, the difference in test execution and debug support with various verification platforms is shown. 

Considering only the test execution time and the debugging effort, we can safely deduce that VP reduced the PSS 

development effort significantly. 

Table 1 Test Execution on Verification Platforms 

Activity VP SoC RTL Simulation Emulation 

PSS Test Creation <5mins <5mins <5mins 

Test Execution Time <5mins ~7hrs ~2hrs Average 

license queue time; 

>10mins execution 

time 

Debugging Source Code Yes Yes No 

Waveforms Yes Yes Yes 

Register View Yes No Yes 

Memory View Yes No Yes 

V.   CONCLUSION 

A Virtual Platform (VP) is an ideal candidate for adopting the PSS methodology due to its early availability, 

functional accuracy, faster simulation speed and ease of debugging. The VP is available to large number of users and 

is more cost-effective than other platforms. In addition, it is not necessary for virtual platform to be complete for the 

full SoC; partial virtual platform is good enough to develop and qualify PSS model for the IPs available in virtual 

platform. The PSS models qualified using VP are more stable and available early for deployment across various 

verification platforms. 
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