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Introduction

Quantum computers is an ever growing area with new research
changing the landscape regularly. Due to the dynamic nature of
the field, and the fact that access to a quantum computer is not
easy, researchers rely on quantum computer simulators (QCS).
Simulators significantly reduce the barrier for researchers to pro-
totype and investigate new algorithms. It also enables researchers
to probe into deeper circuits that NISQ era computers struggle
with [1]. Although QCS can run any quantum program that a
real device can run, they quickly run into memory and computa-
tion time constraints [2].

Figure 1: Time to simulate various circuit sizes as a function of circuit
depth [3]

Modern CPUs offer various performance optimizations that soft-
ware can make use of. For instance, state vector updates could
use the vector processing unit, also called a SIMD unit, that allows
an operation to work on multiple data elements at once [4]. Sim-
ulators can extract additional performance in multi-node CPUs by
distributing computation across various nodes using libraries such
as OpenMP or MPI [5] [6].
GPUs, on the other hand, have been a very popular option for
large scale scientific computing since its invention by Nvidia. GPUs
offer the ability to work with extremely large vectors/matrices by
parallelly performing operations on its elements. For example, they
can multiply matrices in O(n) time since each element of a row of
the resultant matrix can be computed independently of the others.
GPUs are increasingly becoming a popular platform for QCS [7].

Quantum Simulations

Quantum simulations help explore different aspects of quantum
systems without the need for complex instruments. They are im-
portant in evaluating the performance of algorithms like QAOA,
VQE and also in understanding various quantum processes.
Quantum computer simulators also help in designing efficient error
mitigation schemes by analyzing the designs using precise noise
models through quantum simulations. They are used to tune
quantum machine learning models and debug quantum algorithms.
Qiskit Aer, Cirq, Qulacs, QuilSim, CuQuantum are a few popular
and easily available quantum computer simulation frameworks that
can be leveraged for research. Most simulators use a Schrodinger-
style simulation that models the interaction between gates and
state vectors and is the focus of our work.

Tensor Networks

Tensor network methods are most widely used methods for quan-
tum simulations and . Tensors capture the idea of multi-linear
maps and tensor networks are collection of tensors connected by
contractions. They also utilize graphical representations to under-
stand the workflow intuitively.
The main theme of these methods is approximate the quantum
state using tensor networks. They employ lossy data compres-
sion that preserves the important properties of the quantum state.
These methods enable simulation of large systems, use-cases in-
clude domains quantum chemistry, variational optimization, un-
derstanding quantum devices.

Figure 2: Tensor network methods

Some of the best known applications of tensor networks are 1D
Matrix Product States (MPS), Tensor Trains (TT), Tree Tensor
Networks (TTN), the Multi-scale Entanglement Renormalization
Ansatz (MERA), Projected Entangled Pair States (PEPS) [8].

Figure 3: Flops vs operations for different tasks

Figure 3 shows the advantage of using tensor methods. Figure 4
highlights the speedup of using hybrid architectures that leverage
both CPU and GPU vs those that only use either one of them.
This is due to trade-off between cost of loading data into the
GPUs and the parallelism offered by GPUs.

Figure 4: Speedup comparison between Hybrid Devices vs CPU, GPU Devices

The recent work [9] employed tensor networks to analyze effects of
leakage errors during quantum error correction in superconducting
systems. The work [10] on hybrid tensor networks helps to simu-
late larger systems using relatively smaller processors.

QuEST

QuEST is first open-source quantum computer simulation toolkit
that can work on multiple platforms such as a single-node CPU,
multi-node CPU, or GPU [11]. It was released by The Univer-
sity of Oxford in 2019 and can simulate generic quantum circuits
comprising of one and two-qubit and multi-qubit controlled gates
quantum circuits. It can be used with pure states (using state
vectors) and mixed states (using density matrices) under the pres-
ence of decoherence.
QuEST optimizes Schrodinger-style simulations by replacing cer-
tain gate operations with their effect. For instance, instead of
multiplying an X gate with a state vector, QuEST simply switches
the probability amplitudes of the states. It also speeds up simula-
tion by distributing the workload across CPU cores using OpenMP,
across different CPUs in a cluster using MPI, or on a GPU using
CUDA.

(a) Performance on a Single Node
(OpenMP vs CUDA)

(b) Normalized Performance on a
Distributed System (MPI)

Figure 5: QuEST: Various parallelization approaches

QCLAB++

QCLAB++ is a new simulator developed at Lawrence Berkeley
National Lab in early 2023 [1]. It is a simulator that tracks all the
amplitudes of the wavefunction and, as a result, scales exponen-
tially with an increase in the number of qubits and linearly with
gate count. The scaling, however, can be made more efficient
using tensor networks or sparse representation of wavefunctions
at the cost of accuracy. QCLAB++ uses efficient quantum gate
simulation algorithm from to calculate the effects of gates on the
state vectors.

Figure 6: CPU versus GPU for QFT circuit

Figure 7: CPU versus GPU for Hamiltonian simulation circuit

Q-GPU

Q-GPU is a new simulator from the University of Pittsburg that
aims to be a high-performance and scalable QCS that uses GPUs
to accelerate compute [12]. Existing simulators such as Qiskit [13]
statically assign all wavefunction amplitudes. This makes the GPU
compute inefficient for large qubit system simulations since data
transfer to the GPU takes up a significant time of the overall run.
Q-GPU allocates state amplitudes dynamically and maximize the
data transfer overlap with the gate operation compute. This re-
sults in a much better GPU utilization rate since the time spent idle
waiting for data to arrive is lower than before. Q-GPU also uses
dynamic zero state amplitude pruning and lossless compression of
non-zero amplitudes to reduce the data transfer time. Addition-
ally, it also performs dependency-aware quantum gate reordering
to improve the chances of pruning zero state amplitudes.

Figure 8: Comparison of Q-GPU with Google Qsim-Cirq v0.8.0 and Microsoft
QDK v0.15

Conclusions and Future work

Leveraging efficient representations and parallelism through hard-
ware can scale simulations to larger qubit systems. The hybrid
approach of using smaller sized QPUs alongside to speed up cer-
tain tasks can improve performance of classical simulation which
in-turn, along with efficient tensor network representations can
scale for larger qubit systems.
We focus mainly on simulation speedups for our work, but various
compression techniques that reduce the memory requirements are
possible too. Work such as [14] and the more recent [15] pro-
pose techniques to compress the gate and state representations.
The latter focuses on simulations that use tensor networks with
representations that are highly parallelizable and provide both sim-
ulation speedups and reduced memory usage.
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