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Abstract—Portable Stimulus Standard (PSS) is a methodology that captures the design verification intent and 

generates tests using it. The scenarios it captures can be reused across various design levels (Semiconductor Intellectual 

Property (IP), Block, System) as well as across multiple environments like simulation, emulation, virtual prototypes, 

and Silicon. A PSS model captures the test intent using an abstract representation of the design under test using high 

level attributes. However, the PSS model creation is a time intensive activity and increases in complexity with more 

sophisticated devices. The development of a PSS model for complex CPU based sub-systems involves significant time 

investment for both its creation and validation. In this paper, we demonstrate an approach to minimize the development 

time for such a complex block by making use of pre-existing firmware for the sub-system CPU written in C language 

to drive both emulation tests and RTL simulation tests 

Keywords—Portable Stimulus Standard, Simulation, Emulation, Functional C Model, Functional Model, PSS APIs 

I  INTRODUCTION 

Verification is an important part of a product’s lifecycle. Over the years, considerable investments have been 

made to verification flow/methodology to make the process of verifying IPs and Systems on Chips (SoC) less time 

consuming and more complete. However, the chips getting more complex every year presents newer verification 

challenges at each stage of the design cycle. A significant effort goes into creating and executing tests with similar 

verification intent at various levels (at the IP level, SoC level, Silicon level) with little to no reuse. Additionally, 

porting these tests from one SoC to another is time consuming and prone to errors. Using Portable Stimulus 

Standard, a recently introduced methodology, this burden on verification engineers can be reduced significantly. 

Portable Stimulus Standard is an Accellera standard that was released in 2018[1][2]. PSS is a methodology that 

helps with verification of any design across platforms. Figure 1 captures the PSS flow and its reuse across various 

verification environments, platforms, and levels [3]. 

Figure 1. PSS methodology flow 

 

PSS helps describe test intents at an abstract, test-implementation agnostic level. This test intent, also called a 

scenario, can be used later to run the same or extended configuration on various platforms like simulation, 
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emulation, bare-metal, virtual prototypes, etc. The same scenarios can also be reused to run the same configuration 

across different levels in a system on chip. These levels include IP specific tests, sub system level tests, or the entire 

chip. Using various EDA tools, these scenarios will result in tests for all these targets. Once these targets are used 

to generate tests in either C or System Verilog (SV), they need to be compiled along with the right API code to be 

able to be used in a test environment. The API code is responsible for ensuring that the Device Under Test (DUT) 

is configured correctly. 

Although reuse of tests across platforms is seamless and straightforward, adoption of PSS is not without its 

challenges. Proprietary IPs would not be part of a reusable standard library and will require both significant time 

and effort to develop. This increases with the complexity of the IP. The PSS model will need to contain a list of 

attributes that describe the configuration space of the IP and capture a set of constraints that model the dependence 

of these attributes on one another. Using the PSS models, a test scenario can be created by specifying the 

configuration of each model and its control and data flow. Using a PSS Electronic Design Automation (EDA) tool, 

the test code is generated for the given scenario. The test code can be in either C or SV language depending on 

which verification platform it needs to be run on. As the test-code is agnostic to verification platform, it needs a 

test realization layer which maps the test code to the target verification platform. This realization is done using a 

set of Application Programming Interfaces (API) which is responsible for configuring the device-under-test and the 

test-bench components. Therefore, these APIs act as driver code for the DUT. The complexity of this code depends 

on the complexity of the device under test. In the case of CPU based sub-system, there exists an additional layer of 

sophistication due to the presence of a dedicated CPU core. The APIs for these sub-systems might require multiple 

state machines where different programming sequences are executed based on the requirement. This paper presents 

the process of designing and deploying a PSS model, the challenges in developing these for CPU based sub-systems 

(a video processing sub-system in particular), how exploiting pre-existing firmware can reduce these difficulties, 

and how this will streamline testing across various levels. 

II PSS MODEL DEVELOPMENT 

 A PSS Model has three main components. It consists of a set of attributes, constraints, and APIs. The attributes 

are used to capture various configurations of the DUT that correspond to test intents for verification. PSS 

randomizes the values of these attributes, unless specified to pick a particular one, to generate scenarios that can 

cover various use-cases of the device under test. To ensure that randomization doesn’t lead to illegal scenarios, 

constraints are modelled between the attributes in the PSS model. These constraints describe the relation between 

various attributes and, thus, restrict the set of PSS generated scenarios to be within the device’s legal configuration 

space. The PSS model also consists of a set of APIs that are responsible for using the attribute values generated to 

configure the DUT and execute the test. 

The attributes and constraints in a PSS model are dependent only on the device under test and are 

straightforward to develop. The APIs, on the other hand, need to be written keeping in mind the target platform. 

This is because emulators and RTL simulators differ fundamentally in how they access both memory and register 

space. While the address can be referenced directly in the case of the former, specialized read and write functions 

written in SV are needed for the latter. The effort here can, however, be reduced by the use of Direct Programming 

Interfaces (DPIs). With DPIs the same API can be used to access memory and registers in both cases as shown in 

Figure 2. Based on what compiler is used and which flag is passed, the correct implementation is used. These APIs 

may also perform verification checks by handling the interrupts raised during processing or verifying output images 

in multimedia devices. Developing these APIs is time intensive and requires detailed knowledge of the DUT. With 

increasing complexities of IP designs the APIs get more sophisticated. While certain IPs only require a set of 

register writes before triggering them to start, others might require a certain level of decision making. In case of 

complex IPs such as video processors, the APIs are required to keep a track of the number of frames processed, the 

results of previous operations, and also maintain state machines that are responsible for driving the hardware at 

various stages of the decoding pipeline. Developing PSS models for devices similar to the latter are challenging 

and require a lot of effort during development and validation. It could also be possible that the PSS model developer 

is not wholly familiar with the requirements such a code might have. The authors of this paper worked on 
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developing a PSS model for a CPU based sub-system used for such a video processing application. Developing the 

APIs needed was not a straightforward task. The challenges involved in the task were overcome by reusing test 

bench driver code that was already in use with a functional C model of the sub system, with the PSS model. This 

generic & reusable approach and the benefits it provides are discussed in greater detail in the following sections. 

Figure 2.  

 

III PSS API DEVELOPMENT 

The video processing sub system that the PSS model was developed for is shown in Figure 3. This sub system 

consists of a CPU core that interacts with a few IPs that handle various stages in the encoding/decoding pipeline. 

The test bench is responsible for driving the CPU core. The attributes in the PSS model represent the parameters 

needed for fine tuning the encoding/decoding of the input video. 

 

III.A Usage of Firmware code in C Model 

A functional C model of a device is a high level model that is designed to be functionally accurate. It provides 

a reference as to what the core operations/algorithmic implementations of the device are supposed to be. This model 

also serves as a way of generating reference output files for the RTL model/Silicon verification engineers. Such 

output files serve as a very good test of fidelity of the core algorithm in the RTL design to what is needed. Such 

functional models usually consist of two parts – the C language model of the hardware and an accompanying test 

bench or driver firmware. 

 

// C source code 

void dut_write_register (unsgined int a_address, unsigned int a_data) 
{ 

#ifdef   EMULATION 

    *(volatile unsigned int*)(a_address) = a_data; 

#elif SIMULATION 

    sv_write_register(a_address, a_data); 

#endif 
    . . .  
} 

 

 sv_write_register(unsigned int a_address, unsigned int a_data) 

{ 

... 

invoke_write_reg(a_address, data); 

... 

} 

 

//SV source code 

export “DPI-C” task invoke_write_reg; 

task automatic invoke_write_reg(input unsigned int a_address, input unsigned int a_data) 

      ... 

      write_reg(a_address, a_data); 

      ... 

endtask 

 

task automatic write_reg(input unsigned int a_address, input unsigned int a_data) 

    ... 

    tb.axi.do_write(a_address, a_data); 

    ... 

endtask 
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Figure 3. CPU based sub-system functional model flow 

 

The functional C model of the video processor shown in figure 3  accurately captures the algorithms used in the 

IPs that make up the sub system. This model uses a set of input configuration files to generate the encoded/decoded 

image that matches the output of the actual device. To run this C model, two dependencies are to be met. First, a 

CPU firmware binary is needed to interact with the C model. Second, a pseudo-driver firmware code is needed to 

read the configuration files and interact with the CPU. While the CPU firmware source code is the same for all 

platforms as it is not run outside the core, the pseudo-driver firmware is a feature that is solely used with the C 

model setup. This driver code parses through the configuration files and extracts information it needs to drive the 

CPU. On the other hand, the CPU firmware is available early-on due to its importance in interacting with hardware. 

In simulation or emulation platforms, the test bench used is different and is developed keeping in mind the specific 

test intent, while the CPU firmware is used as it is. Figure 4 is an example configuration file that is used by the C 

model. Figure 5 is a snippet of the parser that reads and understands this configuration file and figure 6 is a snippet 

of the code that interacts with the registers in the CPU core 

Figure 4. Sample configuration file 

 

Figure 5. Configuration file parser code 

 

Figure 6. Pseudo-driver code for register access functions 
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    . . .  

void set_encoder_parameters (volatile encoder_conf_s * a_conf , char* a_param_name, int value) 
{ 
     if (!strcmp(a_param_name, “Codec”))  a_conf->codec = value; 

    else if (!strcmp(a_param_name, “InputFormat”)) a_conf->input_format = value; 

    else if (!strcmp(a_param_name, “SourceHeight”))  a_conf->source_height = value; 

else if (!strcmp(a_param_name, “SourceWidth”))  a_conf->source_width = value;” 

   ……. 
} 
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III.B Reuse of Pseudo-Driver Firmware Code in PSS 

The PSS test environment is very different to that of the C model. First, the difference in the execution platform 

itself presents challenges to the usage of the C model. In addition to that, the format of input files itself is different, 

While C models require a configuration text file with parameters and values as listed in figure 4, PSS generates the 

scenario as either C or SV files. The C generation scheme was preferred over SV when developing the PSS APIs 

and validating it as the pseudo-driver code reused from the functional model was written in C. The generated 

scenario snippet is captured in figure 7 

Figure 7. PSS generated input configuration 

 

Given that the functional model test bench is not directly reusable due to differences in platforms, changes are 

needed before it can be used. The CPU core firmware can be run unmodified and only needs to be loaded at the 

right address during test run. The pseudo-driver code, on the other hand, can be used as the APIs needed to run PSS 

generated tests after three modifications to its code. First, since the input file format is different, file parsing used 

void dut_write_register (unsgined int a_address, unsigned int a_data) 
{ 
    write_to_register_model (a_address,a_data); 
} 

 

void write_to_register_model(unsigned int a_address, unsigned int a_data) 

{ 

    switch(a_address) 

    { 

         case 0x0:    video_processor.reg0 = a_data; break; 

         case 0x4:    video_processor.reg1 = a_data; break; 

         . . .  

    } 

} 
  

unsigned int dut_read_register (unsgined int a_address) 
{ 
    return read_from_register_model (a_address); 
} 

 

unsigned int read_from_register_model(unsigned int a_address) 

{ 

    switch(a_address) 

    { 

         case 0x0:    return video_processor.reg0 ; 

         case 0x4:    return video_processor.reg1; 

         . . .  

    } 

} 

void init() 

{ 

    . . . 

      video_processor_inst_1.codec = 0; 

video_processor_inst_1.input_format = 0; 

video_processor_inst_1.source_height = 0; 

video_processor_inst_1.source_width = 0; 

. . .  

} 
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with configuration files must be replaced with the values from the generated structures themselves. This is captured 

in figure 8 

Figure 8. Parser to extract attribute values from PSS generated code 

 

Second, the register accesses need to be redefined for use in various other platforms. With the C model, these 

accesses consist of directly updating fields in a structure that describes an IP. In emulation, the register address in 

memory needs to be updated while SV simulation has its own utility. These are captured in figure 9 

Figure 9. Register access functions used with PSS 

 

Finally, the pseudo-driver code makes extensive use of memory management routines. These are used for two 

purposes. One, to create objects that will be used to store attribute information and other metadata. Two, to allocate 

spaces for image buffers in DRAM. As bare metal application environments do not support much memory 

management, these will have to be replaced by other procedures. One such way is to directly assign buffers and 

objects a region in memory. The approach used by the authors is listed in figure 10. Any similar memory 

management routine can also be used. This is, however, platform dependent as certain RTL simulation tools allow 

C/C++ memory management routines. 

 

 

void set_encoder_parameters (volatile encoder_conf_s * a_conf , volatile video_processor_conf_s * 

a_pss_conf) 
{ 
     a_conf->codec = a_pss_conf->codec; 

     a_conf->input_format = a_pss_conf->input_format; 

 a_conf->source_height = a_pss_conf->source_height; 

a_conf->source_width = a_pss_conf->source_width;” 

     . . . 
} 

void dut_write_register (unsigned int a_address, unsigned int a_data) 
{ 

#ifdef   EMULATION 

    *(volatile unsigned int*)(a_address) = a_data; 

#elif SIMULATION 

    sv_write_register(a_address, a_data); 

#else 
    write_to_register_model (a_address,a_data); 

#endif 
    . . .  
} 

unsigned int dut_read_register (unsigned int a_address) 
{ 

#ifdef  EMULATION 

    return *(volatile unsigned int*)(a_address); 

#elif SIMULATION 

    unsigned int data; 

    sv_read_register(a_address, &data); 

    return data 

#else 
    return read_from_register_model (a_address); 

#endif 
}  



 

7 

 

Figure 10. Memory allocation routine used in emulation 

 
The changes listed in this section took roughly three days to make on a source code of size 5MB with the most 

time taken to replace the input parser. The PSS model was first validated on the C model binary before it was 

successfully ported on to C based emulation and SV based RTL simulation platforms. 

IV VALIDATION OF THE MODEL 

In order to validate the PSS model, a scenario was first run with the C model binary. To do this, the generated 

scenario and APIs were compiled using the GNU C Compiler (GCC) and the output of the run matched with a 

reference output. After verifying that the PSS model was interacting with the CPU firmware binary as expected, 

the scenario was ported on to an emulation environment. Here, the scenario was compiled using a version of the 

ARM C Compiler compatible with the emulation setup. The scenario ran successfully on the emulator with minimal 

fuss and the output here was also found to match with the expected result. Finally, the scenario was ported on to an 

SV based simulation environment. Here too, the scenario completed successfully. Thus, the PSS model was ported 

seamlessly across three different platforms with no errors during execution 

V RESULTS 

Table 1 captures the number of days it took to develop a PSS model for the Video Processor Sub System the 

authors worked on. The effort for the development and validation of the APIs is listed based on the early estimates 

before reuse of pseudo-driver firmware began. As can be seen from the table, reuse helped save roughly a month’s 

worth of effort and allowed its re-investment in other tasks. 

Table I. Comparison of effort taken to develop PSS model of Video Processor with and without code reuse 

Development task for 

Video Processor PSS 

Model 

Effort (in days) 

Without pseudo-driver code 

reuse 
With pseudo-driver code reuse 

Developing the 

attribute model 
2 2 

Developing the 

constraint model 
3 3 

Developing the driver 

code 
~15 (estimate) 3  

Validating the PSS 

model 
~25 (estimate) 

5 (for all input/output data 

formats) 

 

VI CONCLUSION 

PSS Models make verification easier by allowing for reuse of scenarios across platforms and levels. The 

development of such a model, however, is time consuming. In order to reduce this effort, pre-existing pseudo-driver 

firmware that is used for verification/validation at some stage in the development (in this case, from the post-silicon 

stage) can be reused in the PSS Model. This saves a lot of time that can now be invested elsewhere. Moreover, 

redundancies that creep in because of the maintenance of different test benches for different platforms/levels can 

also be removed by using the same model. However, in most cases, this firmware is ready at a much later stage. To 

void mem_alloc (unsigned int a_address, unsigned int a_size) 

    unsigned int   return_address = region_start_address; 

     region_start_address = region_start_address + a_size 

 

     if (region_start_address >= dram_end_address) 

         region_start_address = dram_base_address; 

 

    return   return_address; 

} 
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ensure maximum reuse of code across various levels, adoption of a left-shift in pseudo-driver code/post silicon test 

bench development is needed where it starts along with the development of the PSS model. This model can then 

be ported across all verification levels. The reusability of this PSS model across various levels/platforms will result 

in significant reduction in the time spent on design verification. 
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