Predicate Abstraction and Canonical Abstraction
for Singly-Linked Lists

R. ManevicH*, E. Yaha¥, G. Ramalingarh, and M. Sagiv

! Tel Aviv University, {r unst er, nsagi v}@au. ac. i |
2 IBM T.J. Watson Research Centér,ama, eyahav }@wat son. i bm com

Abstract. Predicate abstraction and canonical abstraction are two finitary abstsastsied
to prove properties of programs. We study the relationship betweentihessbstractions
by considering a very limited case: abstraction of (potentially cyclic) sitigked lists.
We provide a new and rather precise family of abstractions for potentigatlijccsingly-
linked lists. The main observation behind this family of abstractions is thatuhwar of
shared nodes in linked lists can be statically bounded. Therefore, thieenwhpossible
“heap shapes” is also bounded. We present the new abstraction inrbdibgte abstraction
form as well as in canonical abstraction form.

As we illustrate in the paper, given any canonical abstraction, it is possibdefine a
predicate abstraction that is equivalent to the canonical abstractioneuggwwith this
straightforward simulation, the number of predicates used for the @mtedabstraction is
exponential in the number of predicates used by the canonical abstractio

An important feature of the family of abstractions we present in this piapbat the pred-
icate abstraction representation we define is far more practical as idusesber of pred-
icates that is quadratic in the number of predicates used by the cordisgaanonical
abstraction representation. In particular, for the most abstract aefistrén this family, the
number of predicates used by the canonical abstraction is linear in thieemuwhprogram
variables, while the number of predicates used by the predicate abstrectjpadratic in
the number of program variables.

We have encoded this particular predicate abstraction and correspdnatiisformers in
TVLA, and used this implementation to successfully verify safety propedieseveral list
manipulating programs, including programs that were not previouslfiac using predi-
cate abstraction or canonical abstraction.

1 Introduction

Abstraction and abstract interpretation [7] are essetgigthiniques for automatically
proving properties of programs. The main challenge in absinterpretation is to de-
velop abstractions that are precise enough to prove théreegoroperty and efficient
enough to be applicable to realistic applications.

Predicate abstraction [11] abstracts the program into déBo@rogram which con-
servatively simulates all potential executions. Evergsaproperty which holds for the
Boolean program is guaranteed to hold for the original paogr-urthermore, abstrac-
tion refinement [6, 2] can be used to refine the abstractiomlieeanalysis produces a
“false alarm”. When the process terminates, it yields a agtecgrror trace in which the
property is violated, or successfully verifies the propdrtyprinciple, the whole process
can be fully mechanized given a sufficiently powerful th@opgover. This process was
successfully used in SLAM [19] and BLAST [12] to prove safptpperties of device
drivers.

* Partially supported by the Israeli Academy of Science.

Canonical abstraction [23] is a finitary abstraction thas wpecially developed to
model properties of unbounded memory locations (inspisefilB]). This abstraction
has been implemented in TVLA [17], and successfully useddogvarious properties
of heap-manipulating programs (e.g., [21, 25, 24]).

1.1 Main Results

In this paper, we study the utility of predicate abstractiomprove properties of pro-
grams operating on singly-linked lists. We also comparesttpressive power of predi-
cate abstraction and canonical abstraction.

The results in this paper can be summarized as follows:

— We show that current state-of-the-art iterative refineneciiniques fail to prove
interesting properties of singly-linked lists such as pairequalities and absence
of null dereferences in a fully automatic manner. This me&hason many simple
programs the process of refinement will diverge when thenarags correct. This
result is inline with the experience of Blanchet et al. [4].

— We show that predicate abstraction can simulate arbitraitafi abstractions and,
in particular, canonical abstraction. This trivial resigitnot immediately useful
because of the number of predicates used. The number ofcptesirequired to
simulate canonical abstraction is, in the worst case, expiied in the number of
predicates used by the canonical abstraction (usuals/ntieians exponential in the
number of program variables).

— We develop a new family of abstractions for heaps contaiffregentially cyclic)
singly-linked lists. The main idea is to summarize list edets on unshared list seg-
ments not pointed-to by local variables. For programs maatmg singly-linked
lists, this abstraction is finitary since the number of stidis elements reachable
from program variables is bounded. Abstractions in thisiffarary in their level
of precision, which is controlled by the level of sharindat®nships recorded.

— We show that the abstraction recording only one-level sigarélationships (i.e.,
the least precise member of the family that records sharngifficient for suc-
cessfully verifying all our example programs, includingpgrams that were not
verified earlier using predicate abstraction or canonibatraction.

— We show how to code the one-level-sharing abstraction usirtly canonical ab-
straction (with a linear number of unary predicates) andipete abstraction (with
a quadratic number of nullary predicates).

1.2 Motivating Examples

/lhead points to the first element of an acyclic list
//tail points to the last elenment of the sane |ist
curr = head;
while (curr !'=tail) {

assert (curr !'=null);

curr = curr.n;

O WNPE

Fig. 1. A simple program on which counterexample-guided refinement d#gerg

Fig. 1 shows a program that traverses a singly-linked ligh @ihead-pointenead
and a tail-pointet ai | . This is a trivial program since it only uses an acyclic lidkist,

and does not contain destructive pointer updates. When e@xatmple-guided itera-
tive refinement is applied to this program to assure that $seréion at line3 is never
violated, it will diverge. At thei-th iteration it will generate an assertion of the form
curr (. n)i = nul I . However, no finite value afwill suffice. Indeed, the problem of
proving the absence of null-dereferences is undecidalele ieMprograms manipulating
singly-linked lists and even under the (non-realisticuaggtion that all control flow
paths are executable [5].

In contrast, the TVLA abstract interpreter [17] proves theence of null dererefer-
ences in this program i seconds, consumirgy6MB of memory. TVLA uses canon-
ical abstraction which generalizes predicate abstradiipmllowing first-order pred-
icates (relation symbols) that can have arguments. Thuamy0-arity) predicates
correspond to predicates in the program and in predicatesgtions. Unary predicates
(1-arity) are used to denote sets of unbounded locations araahb-arity) predicates
are used to denote relationships between unbounded Iosatio

A curious reader may ask herselfre there program properties that can be verified
with canonical abstractions but not with predicate abstiaics?

It is not hard to see that the answer is negative, since argrjnabstraction can
be simulated by a suitable predicate abstraction. For ebkaropnsider an abstraction
mappinga : C — A, from a concrete domai@' to a finite abstract domain of indexed
elementsd = {1,... ,n}. Define the predicate B[J] to hold for the set of concrete
states{c | the jth bit of a(c), in its binary representation, i§. Now, the set of predi-
cates{BIT[j]}JD;)% "1 yields a predicate abstraction that simulatesThis simulation is
usually not realistic, since it contains too many predisaléhe number of predicates
required by predicate abstraction to simulate canonicstrattion can be exponential
in the number of predicates used by the canonical abstractio

Fortunately, the only nullary predicate crucial to prove #bsence of null deref-
erences in this program is the fact thati | is reachable frontur r by a path ofn
selectors (of some length). Similar observations were sstggl independently in [15,
3, 14]. In this paper, we define a quadratic set of nullary igedds that captures the
invariants in many programs manipulating (potentiallylm)csingly-linked lists.

/'l x points to a cyclic singly-linked I|ist
/1 low and high are two integer values, |ow < high

1 t = null;

2 y =X

3 while (t !=x & y.data < low) {
4 t =y.n; y=t;

5}

6 zZ =y,

7 while (z !'= x & z.data < high) {
8 t =z.n z=t,;

9}

10 t = null

11 if (y'!=2) {

12 y.n = null;

13 y.n = z;

14 }

Fig. 2. A simple program that removes the segment between low and high frorked liist

Fig. 2 shows a simple program removing a contiguous segnantd cyclic singly-
linked list pointed-to byk. For this example program, we would like to verify that the

resulting structure pointed-to by remains a cyclic singly-linked list. Unfortunately,
using TVLAs canonical abstraction with the standard seprddicates turns out to
be insufficient. The problem stems from the fact that cararabstraction with the

standard set of predicates loses the ordering betwegr#ierence variables that point
to that cyclic singly-linked list (this is further explaidén the next section).

In this paper, we provide two abstractions — a predicatgattidn, and a canonical
abstraction — that are able to correctly determine that #selt of this program is
indeed a cyclic singly-linked list.

The rest of this paper is organized as follows: Sec. 2 previmkground on the
basic concrete semantics we are using, canonical abstraatid predicate abstraction.
Sec. 3 presents an instrumented concrete semantics tbedsdist interruptions. Sec. 4
shows a quite precise predicate abstraction for singkelinists. Sec. 5 shows a quite
precise canonical abstraction of singly-linked lists. &t 35, we show that the predicate
abstraction of Sec. 4 and the canonical abstraction of Sece ®quivalent. Sec. 7
describes our experimental results.

Proofs of claims and additional technical details can badon [18].

2 Background

In this section, we provide basic definitions that we will tiseoughout the paper. In
particular, we define canonical abstraction and predidag&action.

2.1 Concrete Program States

We represent the state of a program using a first-order Ibgiazcture in which each
individual corresponds to a heap-allocated object andigatsts of the structure corre-
spond to properties of heap-allocated objects.

Definition 1. A 2-valued logical structure over a vocabulary (set of pred&s P is
a pair S = (U,:) whereU is the universe of the-valued structure, and is the in-
terpretation function mapping predicates to their truthlwe in the structure: for every
predicatep € P of arity k, ¢(p) : U* — {0,1}.

We denote the set of all-valued logical structures over a set of predicgfeby
2-STRUCTp. In the sequel, we assume that the vocabufarng fixed, and abbreviate
2-STRUCTp to 2-STRUCT.

Table 1. Predicates used for representing concrete program states

Predicates Intended Meaning

eq(vi,v2) v1 IS equal tove

{z(v) : x € PVar} reference variablg points to the object
n(vy, v2) next field of the object; points to the object,

Table 1 shows the predicates we use to record propertiesdvidoals. A unary
predicatex(v) holds when the objeat is pointed-to by the reference variable We
assume that the set of predicates includes a unary predticaeery reference variable
in a program. We usBVar to denote the set of all reference variables in a program. A
binary predicate: (v, v2) records the value of the reference field

Y

(a) (b)

Fig. 3. The effect of the statemegt n=nul | in the concrete semantics. (a) a possible state of
the program of Fig. 2 at liné2; (b) the result of applying. n=nul | to (a)

Concrete Semantics Program statements are modelled dstionsthat specify how
statements transform an incoming logical structure int@@tgoing logical structure.
This is done primarily by defining the values of the predisatethe outgoing struc-
ture using formulae of first-order logic with transitive slore over the incoming struc-
ture [23]. The update formulae for heap-manipulating statets are shown in Table 2.
For brevity, we omit the treatment of the allocation statetmew T() , the interested
reader may find the details in [23].

To simplify update formulae, we assume that every assighitoghen field of an
object is preceded by first assigning null to it. Therefdne,statement at ling&2 of the
example program of Fig. 2 assigns nullyton before the next statement assigns it the
new valuez.

Statement Update formulae

X = null x'(’u) =0

X =t x'(v) = t(v)

X =t.n x'(v) = Jo1 : t(v1) An(v,v)

x.n = null '(vl,vg) = n(vi,v2) A —z(v1)

X.n =t (assuming x.n == nulfp’(v1,v2) = n(vi,v2) V (z(v1) A t(ve))

Table 2. Predicate-update formulae that define the semantics of heap-manigstatiements

Example 1.Applying the actiony. n = nul | to the concrete structure of Fig. 3(a),
results with the concrete structure of Fig. 3(b). Throudhhbis paper we assume that
all heaps are garbage-free, i.e., every element is reazfralbh some program variable,
and that the concrete program semantics reclaims garbageets immediately after
executing program statements. Thus, the two objects batywesnd z are collected
wheny. n is set to null, as they become unreachable.

2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representafia potentially unbounded
set of2-valued structures (representing heaps) of potentialbounded size. The ab-
stractions we use are based on 3-valued logic [23], whicanelg boolean logic by
introducing a third valué /2 denoting values that may be 0 or 1.

We represent an abstract state of a program usBgadued first-order structure.

Definition 2. A 3-valued logical structure over a set of predicatBsis a pair S =
(U,) whereU is the universe of th8-valued structure (an individual iV may rep-
resent multiple heap-allocated objects), ant the interpretation function mapping
predicates to their truth-value in the structure: for evemgdicatep € P of arity k,
(p) : U¥ — {0,1,1/2}.

An abstract state may includ&mmary nodes.e., an individual which corresponds
to one or more individuals in a concrete state representedhly abstract state. A
summary node: haseq(u,u) = 1/2, indicating that it may represent more than a
single individual.

Embedding We now formally define how states are represented usingaabsiates.
The idea is that each individual from the (concrete) statedpped into an individual
in the abstract state. More generally, it is possible to mapviduals from an abstract
state into an individual in another, less precise, absttate.

Formally, letS = (U,) andS’ = (U’, /') be abstract states. A functigh U — U’
such thatf is surjective is said tembedS into S’ if for each predicate of arity k, and
for eachuy, ... ,u; € U, one of the following holds:

Up(uss - yup)) =V (p(f(ua), o Fur))) or (p(f(ur),- ., flug))) = 1/2

We say thatS’ representsS when there exists such an embeddjhg

One way of creating an embedding functigns by usingcanonical abstraction
Canonical abstraction maps concrete individuals to arratishdividual based on the
values of the individuals’ unary predicates. All individsidaving the same values for
unary predicate symbols are mapped/bip the same abstract individual.

Table 3. Predicates used for the canonical abstraction in Fig. 4, and their meaning

Predicates Intended Meaning Defining formulae
{z(v) : x € PVar} reference variablg points tov
n(u,v) next field ofu points tov
{rz(v) : € PVar} v is reachable fromx by Fvz.2(ve) A" (Vz,v)
dereferencing fields
cn(v) v resides on a cycle of fields n™ (v,v)
is(v) v is heap-shared Juy, va.n(vy, v) A n(vz,v) A (v1 # v2)

Table 3 presents the set of predicates used in [23] to abstragy-linked lists. The
predicates . (v), ¢, (v), andis(v), referred to in [23] asnstrumentation predicates
record derived information and are used to refine the alikirac

This set of predicates has been used for successfully irggifpany programs ma-
nipulating singly-linked lists, but is insufficient for v@ring that the output of the ex-
ample program of Fig. 2 is a cyclic singly-linked list poidtt byx.

Example 2.Fig. 4(b) shows the canonical abstraction of the concrete sif Fig. 4(a),
using the predicates of Table 3. The node with double-linenbaries is ssummary
node possibly representing more than a single concrete node.dékhed edges are
1/2 edges, a dashed edge exists betwgesndv, whenn(vq, v2) = 1/2. The abstract
state of Fig. 4(b) records the fact thay, andz point to a cyclic list (using the,, (v)
predicate), and that all list elements are reachable froi ralference variables (using

Z,Cn, Tz,

n r9377'y
" " X, Cry Tz é NotNull[x]
X TysTz oy NotNullly
)) é‘ nt o NotNullz
/ 3 . n7€§§\\ EqualsNext[z, y]
C U Cn,Tay EqualsNext[y, z]
» o Ty, T, EqualsNexi[z, z]
y Y, Cny Ty, t N
Tay Tz
() (b) (©)

Fig. 4.(a) a concrete possible state of the program of Fig. 2 afiinéb) its canonical abstraction
in TVLA, (c) its predicate abstraction with the set of predicates in Table 4

the v, (v),r,(v), andr,(v) predicates). This abstract state, however, does not record
the order between the reference variables. In particdldgés not record that does

not reside between andz (the segment that is about to be removed by the program
statement at lin@2). As a result, applying the abstract effectyofn=z to this abstract
state results with a possible abstract state in which thicdiat is broken.

2.3 Predicate Abstraction

Predicate abstraction abstracts a concrete state intthaassignment for a finite set of
propositional (nullary) predicates.

A predicate abstraction is defined by a vocabul®y = {Py,..., P,,}, where
eachP; is associated with a defining formulg that can be evaluated over concrete
states. An abstract state is a truth assignment to the jatedimP. Given an abstract
stateA, we denote the value @, in A by A;.

A concrete states over a vocabulary?®, is mapped to an abstract stateby an
abstraction mapping: 2-STRUCTP¢] — 2-STRUCTP4]. The abstraction mapping
evaluates the defining formulae of the predicateBhover.S and sets the appropriate
values to the respective predicatestinFormally, for everyl <i < m, A; = [¢i]5.

Table 4. Predicates used for the predicate abstraction in Fig. 4, and their meblutggthat the
maximal tracked lengtli is fixed a priori

Predicates Intended meaning Defining formulae

{NotNulllz]: € PVar} x is not null Fvg.x(ve)

{EqualsNext[z, y] the node pointed-to by Fvg, ..., vg.z(vo) A y(vi)A
: x,y € PVar, is reachable by n fields No<icr (i, Vit1)
0<k<K} from the node pointed-to by

Table 4 shows an example set of predicates similar to theusesbin [1, 8].

Example 3.Fig. 4(c) shows the predicate abstraction of the concretie sthown in
Fig. 4(a) using the predicates of Table 4. A predicate of thenNotNull[z] records the
fact thatx is not null. In Fig. 4(c), all three variablesy,andz are not null. A predicate
of the form EqualsNe%‘t[w, y] records that the node pointed-to pyis reachable by:

steps over tha fields from the node pointed-to by(Note thatK’, the maximal tracked

length, is fixed a priori). For example, in Fig. 4(c), the B&ment pointed-to by is
reachable from the list element pointed-toxbin 2 steps over the field, and therefore
EqualsNext[z, y] holds.

3 Recording List Interruptions

In this section, we instrument the concrete semantics trdexrdesignated set of nodes,
calledinterruptions in singly-linked lists. The instrumented concrete sericanpre-
sented in this section serves as the basis for the predioateation and the canonical
abstraction presented in the following sections.

3.1 The Intuition

The intuition behind our instrumented concrete is that dage-free heap, containing
only singly-linked lists, is characterized by two facto(®:the “shape” of the heap,
i.e., the connectivity relations between a set of desighateles (interruptions); and
(i) the length of “simple” list segments connecting intgstions, but not containing
interruptions themselves. This intuition is similar to pf® of small model properties
(e.g., [22)).

Considering this characterization, we observe that thebmurof shapes that are
equivalent, up to lengths of simple list segments, is bodntlée therefore instrument
our concrete semantics to record interruptions, which aresaential ingredient of the
sharing patterns.

The abstractions presented in the next sections, abstrademngths of simple list
segments into a fixed set of abstract lengths (thereby dbtpinfinite representation).
These abstractions retain the general shape of the heagsbuwry correlations between
the actual lengths of different simple list segments. Ouregience indicates that the
correctness of program properties usually depends on Hpestf heap, rather than on
the lengths of simple list segments.

In the rest of this section, we formally define the notionsméiruptions and sim-
ple list segments, and formally define the information rdedrby our instrumented
concrete semantics.

3.2 Basic Definitions

We say that a list node is aninterrupting node or simply aninterruption if it is
pointed-to by a program variable or it is heap-shared. Figh&vs a heap with in-
terruptions: (i) the node pointed-to by (ii) the node pointed-to by, (iii) the node
pointed-to byx, ; andy, ,, and (iv) the node pointed-to by » andy; ,.

Definition 3 (Uninterrupted Lists). We say that there is aminterrupted lisbetween
list nodew and list nodev, denoted by ULigt:, v), when there is a non-empty path
between them, such that, every node on the path betweeniteemdt including: and

v) is non-interrupting.

We also say that there is an uninterrupted list between bslien and null, denoted
by UListNULL(v), when there is a non-empty path frento null, such that, every node
on the path, except possiblyis non-interrupting.

Table 5 formulates ULigt:, v) and UListNULL(v) as formulae infOT¢.

Given a heap, we are actually interested in a subset of ilgenmipted lists. We say
that an uninterrupted list imaximalwhen it is not contained in a longer uninterrupted
list.

The heap in Fig. 5 contairlsmaximal uninterrupted lists: (i) from the node pointed-
to by x and the node pointed-to by ; andy, ,, (i) from the node pointed-to by and
the node pointed-to by, ; andy; ,, (iii) from the node pointed-to by, ; andy, ; to
the node pointed-to by; » andy; ,, and (iv) from the node pointed-to by » andy; ,
to itself.

Table 5. Shorthand notations used throughout this paper

Shorthand Meaning Formula
HeapSharetb) |v is heap-shared da,b.n(a,v) An(b,v) A (a # b)
PtByVar(v) v is pointed-to by some variahle \/ var(v)
varePVar

Interruption(v) |v is an interrupting list node |HeapSharefv) Vv PtByVar(v)
UList; (u, v) there is an uninterrupted list dfn(u, v)

lengthl fromu tow
UListz (u, v) there is an uninterrupted Im.—Interruption(m)A

list of length2 from u to v n(u, m) A n(m,v)
ULists2(u,v) [thereis an uninterrupted Imai, ma : n(u,mi) A n(ma,v)A

list of length> 2 fromutov |(TCa,b : n(a,b) A —Interruption(a)A
—lInterruption(b)) (m1, m2)
UList(u, v) there is an uninterrupted list ofUList; (u, v) V UListz (u, v)V
some length fromu to v OVUUListﬂ(u, v)
UListNULL; (v) [there is an uninterrupted list ofvw.—n (v, w)
length1 from v to null

UListNULLz(v) [there is an uninterrupted Im.n(v, m) A —Interruption(m)A
list of length2 from v to null ULIistNULL; (m)

UListNULL 2 (v) [there is an uninterrupted Imi, ma : n(v,m1) A ULIStNULL; (m2)
list of length> 2 from v (TCa,b : n(a,b) A —Interruption(a)A
to null —lInterruption(b)) (m1, m2)

UListNULL(v) |there is a list of some length |UListNULL; (v) V ULiStNULL: (v)V
from v to null UListNULL>2(v)

y% Q)
X90 n n /’\ n n On8

Xs,1,Ys 1 Xs,2,Ys 2

Fig. 5. Two lists sharing the same tail, and their representation in the instrumentettore-
mantics

3.3 Statically Naming Heap-Shared Nodes

We now explain how to use a quadratic number of auxiliaryalgds to statically name
all heap-shared nodes. This will allow us to name all maxiomahterrupted lists us-
ing nullary predicates for the predicate abstraction, asidgiunary predicates for the
canonical abstraction.

Proposition 1. A garbage-free heap, consisting of only singly-linkedslistth n pro-
gram variables, contains at mostheap-shared nodes and at mastinterruptions.

Corollary 1. In a garbage-free heap, consisting of only singly-linkeisliwithn pro-
gram variables, list node is reachable from list node if and only if it is reachable by
a sequence df < n uninterrupted lists. Similarly, there is a path from nod#o null if
and only if there is a path from to null by a sequence @&f < n uninterrupted lists.

Proof. By Proposition 1, every simple path (fromto v or from v to null) contains at
mostn interruptions, and, therefore, at maesimaximal uninterrupted lists.

For every program variablg, we define a set of auxiliary variablds; |k =
1...n— 1}. Auxiliary variablex, ; points to a heap-shared nodevhen there exists a
simple path consisting df maximal uninterrupted lists from the node pointedabio
to u, such that all of the interrupting nodes on the path are niott@d-to by program
variables (i.e., they are heap-shared). Formally, we défi@eset of auxiliary variables
derived for program variabbeby using the following set of formulae iIRO”C.

Xs1(v) = Fug.z(vy) A UList(v,, v) A HeapSharefy) A —PtByVar(v),

Xs k+1(v) = Jug.Xs (Vi) A UList(vg, v) A HeapShare) A
ﬁPtByVaI(’U) A _‘(\/771,:1...’6 stm(v)) :

We denote the set of auxiliary variables ByxVarand the set of all (program and
auxiliary) variables byar = PVaru AuxVar.

Proposition 2. Every heap-shared node is pointed-to by a variable in VasoAk ;. (v)
holds for at most one node, for every reference variatéad .

3.4 Parameterizing the Concrete Semantics

Let n denote the number of (regular) program variables. Notieg tHuxVar| =
O(n?). Inthe following sections, we will see that using the full stauxiliary variables
yields a canonical abstraction with a quadrafi¢?)) number of unary predicates, and
a predicate abstraction with a bi-quadratit{*)) number of predicates.

We use a parametérto define different subsets dar as follows:Var, = PVaru
{Xs,;(v)|x € PVar,i < k}. By varying the “heap-shared depth” parametemwe are
able to distinguish between different sets of heap-shacetksi We discovered that,
in practice, heap-shared nodes with depthl rarely exist (they never appear in our
examples), and, therefore, restrictihdo 1 is usually enough to capture all maximal
uninterrupted lists. Usinyar; as the set of variables to record, we obtain a canonical
abstraction with a linear number of unary predicdt@$n)) and a predicate abstraction
with a quadratidO(n?)) number of variables.

Fig. 5 shows a heap containing a heap-shared node of ddpttinted byx, » and
Y, 5). By setting the heap-shared depth paramétéo 1, we are able to record the
following facts about this heap: (i) there is a list of lengtitom the node pointed-to by
X to a heap-shared node, (ii) there is a list of lengfhom the node pointed-to byto
a heap-shared node, (iii) the heap-shared node mentiorfgdaimd (ii) is the same (we

record aliasing between variables), and (iv) there is aagyrcyclic list (i.e., a non-
cyclic list connected to a cyclic list) from the heap-shamede mentioned in (iii). We
know that the list from the first heap-shared node does nehreall (since we record
lists from interruptions to null) and it is not a cycle fronetfirst-heap shared node to
itself (otherwise there would be no second heap-shared andehe cycle would be
recorded). The information lost, due to the fact tkat andy, , are not recorded, is
that the list from the first heap-shared node to second hathémand the cycle from
the second heap-shard node to itself is also of leAgth

The Instrumented Concrete SemanticsThe instrumented concrete semantics oper-
ates by using the update formulae presented in Table 2 amdutsiag the defining
formulae of the auxiliary variables to update their values.

4 A Predicate Abstraction for Singly-Linked Lists

We now describe the abstraction used to create a finite (lmal)répresentation of

a potentially unbounded set @fvalued structures (representing heaps) of potentially
unbounded size.

4.1 The Abstraction

We start by defining a vocabula®g of nullary predicates, which we use in our ab-
straction. The predicates are shown in Table 6.

Table 6. Predicates used for the predicate abstraction and their meaning

Predicates Defining formulae and intended meaning
{Aliasedz, y] : z,y € Var} Jv : z(v) A y(v)
variablesx andy point to the same object
{UListi[z,y] : z,y € Var} Fua,vy : z(va) A y(vy) A n(ve, vy)
then field of the object pointed-to by and the variable
point to the same object
{UListz[z,y] : x,y € Var} Jua, vy : (vs) A y(vy) A UListz (v, vy)
there is an uninterrupted list of leng2Hfrom the
object pointed-to by to the object pointed-to by
{UList[z,y] : z,y € Var} Fug,vy : z(vz) A y(vy) A UList(vg, vy)
there is an uninterrupted list of lengttor more from the
object pointed-to by to the object pointed-to by
{UList;[z,null] : z € Var} Jv, : x(vy) A ULIStNULL; (vs)
theren field of the object pointed-to by points to null
{UListz[z,null] : z € Var} Fvg.xz(v,) A ULIStNULL; (v,)
there is an uninterrupted list of leng2Hfrom the
object pointed-to by to null
{UList[z,null] : z € Var} Jvz.x(vs) A ULIStNULL(v)
there is an uninterrupted list of lengthor more from the
object pointed-to by to null

Intuitively, the heap is partitioned into a linear numberuwiinterrupted list seg-
ments and each list segment is delimited by some variables pfedicates in Table 6
abstract the path length of list segments into one of thevialig abstract length$: (via
the Aliasedz, y] predicates)] (via theUList; [z, y] predicates)?2 (via theUListy[x,]

predicates), or any length 1 (via theUList[z, y| predicates), and infinity (i.e., there is
no uninterrupted path and thus all of the previously memtibpredicates ar@.

The abstraction functiofipredans: 2-STRUCTPC] — 2-STRUCT P“] operates as
described Sec. 2.3 where! is the set of predicates in Table 6.

Aliasedz, z], Aliasedy, y], Aliasedz, z]

Aliasedz, =], Aliasedy, y], Aliasedz, z| UList [y, null
1Y,

UListy[z, y], UList[z, a] UListz [z, y], UListz [z, z]

UListz, y], UListly, 2], UListz, o] UList(z, y], UList(z, 2], UListy, null
@) (b)

Fig. 6. The abstract effect of. n=nul | under predicate abstraction. (a) predicate abstraction of

the state of Fig. 3(a); (b) result of applying the abstract transforiingr n=nul | to (a)

Example 4.Fig. 6(a) shows an abstract state abstracting the conc¢eted Fig. 3(a).
The predicated\liasedz, x],Aliasedy, y], Aliasedz, z] represent the fact that the ref-
erence variables, y, andz are not null. The predicatdList;[z, y] represents the fact
that there is an uninterrupted list of length exa&lfrom the object pointed-to by

to the object pointed-to by. This adds on the information recorded by the predicate
UList[x, y], which represents the existence of a list of lengibr more. Similarly, the
predicateUListy [z, z] records the fact that a list of exactly lengtlexists fromz to x.
Note that the uninterrupted list betwegndz is of length3, a length that is abstracted
away and recorded as a uninterrupted list of an arbitranytleby UList[y, z].

4.2 Abstract Semantics

Rabin [20] showed that monadic second-order logic of thesoniith one function sym-
bol is decidable. This immediately implies that first-orttagic with transitive closure
of singly-linked lists is decidable, and thus the best tiamser can be computed as sug-
gested in [22]. Moreover, Rabin also proved that every faltile formula has a small
model of limited size, which can be employed by the abstactior simplicity and
efficiency, we directly define the abstractions and the abstransformer. The reader
is referred to [13] which shows that reasonable extensibtisi®logic become unde-
cidable. We believe that our techniques can be employed fevamdecidable logics
but the precision may vary. In particular, the transformer provide here is thbest
transformerand operates in polynomial time.

Example 5.In order to simplify the definition of the transformer fgrn = nul |,
we split it to 5 different cases (shown in [18]) based on classification efrtbxt list
interruption. The abstract state of Fig. 6(a) falls into taese in which the next list
interruption is a node pointed-to by some regular variablim this case) and not heap-
shared (cas®). The update formulae for this case are the following:

UList; [Zl, Zz]l = UList; [Zl, 22] AN _\Aliaseqzl, y}

UList; [z1, null)’ = UList; [z1, null] v Aliasedzy, Y]
UListy [21, 2’2]/ = UListy [21, 2’2] AN ﬁAIiasec{zl, y}
UList[z1, 22)" = UList[zq, 23] A —Aliasedzy, Y]

UList[z1, null] = UList[zy, null] v Aliasedz1, Y]

Applying this update to the abstract state of Fig. 6(a) wWelie abstract state of
Fig. 6(b).

In [18], we show that these formulae are produced by manusdtoaction of the
best transformer.

5 Canonical Abstraction for Singly-Linked Lists

In this section, we show how canonical abstraction, with pprepriate set of predi-
cates, provides a rather precise abstraction for (potgntigclic) singly-linked lists.

5.1 The Abstraction

As in Sec. 4, the idea is to partition the heap into a linear memof uninterrupted
list segments, where each segment is delimited by a pairr@hlas (possibly includ-
ing auxiliary variables). The predicates we use for caredrabstraction are shown in
Table 7. The predicates of the foronl[z]|(v), for z € Var, record uninterrupted lists
starting from the node pointed-to by

Table 7. Predicates used for the canonical abstraction and their meaning. Weeusieorthand
UList(u, v) as defined in Def. 3

Predicates Intended Meaning Defining Formulae

{x(v) : x € Var} objectw is pointed-to byx

{cullz](v) : = € Var} there exists an uninterrupted list&p v, : z(ve) A UList(vz, v)
starting from the node pointed-to by

cullz] z cully] cullz] =z
cul[z] n - -
}_\
cul[z] ~eully]
culz] Y

cullz] Y
G (b)

Fig. 7. The abstract effect of. n=nul | under canonical abstraction. (a) canonical abstraction
of the state of Fig. 3(a); (b) result of applying the abstract transfoafhg. n=nul | to (a)

Example 6.Fig. 7(a) shows an abstract state abstracting the condedtedcs Fig. 3(a).
The predicatesul[x](v),cully](v), and cul[z](v) record uninterrupted list segments.
Note that, in contrast to the abstract state of Fig. 4(b) ¢vhises the standard TVLA
predicates), the abstract configuration of Fig. 7(a) rextind order between the refer-
ence variables, and is therefore able to observextiimhot pointing to an object on the
listfromy toz.

6 Discussion

Equivalence of the Canonical Abstraction and the Predicaté\bstraction We first
show that the two abstractions — the predicate abstracfi®®o. 4, and the canonical
abstraction of Sec. 5 — are equivalent. That is, both obgee/eame set of distinctions
between concrete heaps.

Theorem 1. The abstractions presented in Section 4 and in Section Scarvalent.

Proof (Sketch)We prove the equivalence of the two abstractions by showhiad t
for any two concrete heags;, andC, (2-valued structures), we hay&redandC1) =
ﬁPredAb{CQ) if and Only if BCanonic(Cl) = 6Canonic(c2)-

Denote the result of applying the predicate abstractiorhéodoncrete heaps by
AV = BpredandC1) and AS = Bpredand C2), and the result of applying the canonical
abstraction to the concrete heapsAly = Bcanonid C1) and AS = Bcanonid C2)-

When AY and A} have different values for some predicatefrt, we show that:
(i) there exists an individual in A$ that does not existid$ (i.e., there is no individual
in AS with the same values for all unary predicatesaas inA%), or (ii) there exist
corresponding pairs of individuals (i.e., with same valt@sall unary predicates) in
AS and AS such that the value of between them is different fod$ and AS. This is
done by considering every predicate frd in turn.

Finally, when all predicates i#*“ have the same values for bo#t{ and A%, we
show that there is a bijection between the universgipfand the universe ofi§ that
preserves the values of all predicates.

The Number of Predicates Used by the Abstractiondn general, the number of pred-
icates needed by a predicate abstraction to simulate a gaeanical abstraction is
exponential in the number of unary predicates used by thenteal abstraction. It is
interesting to note that, in this case, we were able to sitauke canonical abstraction
using a sub-exponential number of nullary predicates.

We note that there exist predicate abstractions and caacalistractions that are
equivalent to the most precise member of the family of abtmas presented in the
previous sections (i.e., with the full set of auxiliary \&rlies) but require less predicates.
We give the intuition to the principles underlying thosetedxstions and refer the reader
to [18] for the technical details.

In heaps that do not contain cycles, the predicates in Taate 3ufficient for keep-
ing different uninterrupted lists from being merged. We taaduce” general heaps to
heaps without cycles by considering only interruptions ttaur on cycles:

Interruption, (v) = Interruption(v) A OnCyclév) |,

and use these interruptions to break cycles by redefininfpthaulae for uninterrupted
lists to uselnterruption, instead ofinterruption Now, a linear number of auxiliary
variables can be used to syntactically capture those ugtons. For every reference
variablex, we add an auxiliary variable., which is captured by the formula

z.(v) = z(v) A OnCyclév)V
Juy, va.2(v1) An*(v1,v2) A =ONCyCl€va) A n(ve,v) .

The set of all variables is defined bar' = PVaruU {z. | z € PVar}, and the
predicates in Table 8 define the new canonical abstraction.

Table 8. Predicates used for the new canonical abstraction with linear numbegditptes. The
shorthandJList. denotes an uninterrupted list where interruptions are defindudtegruption,

Predicates Intended Meaning Defining Formulae

{x(v) : z € Var' } objectv is pointed-to byx

{culc[z](v) : © € Var' } there exists an uninterrupted listdp Jv, : x(ve) A UList(vs, v)
starting from the node pointed-to by

is(v) u is heap-shared HeapSharet)

Recording Numerical Relationships We believe that our abstractions can be general-
ized along the lines suggested by Deutsch in [9], by cagunimerical relationships
between list lengths. This will allow us to prove propertiégrograms which traverse
correlated linked lists, while maintaining the ability tonduct strong updates, which
could not be handled by Deutsch. Indeed, in [10] numericdl@monical abstractions
were combined in order to handle such programs.

7 Experimental Results

We implemented in TVLA the analysis based on the predicatdsaastract transform-
ers described in Section 2.3. We applied it to verify varispsacifications of programs
operating on lists, described in Table 9. For all exampleschecked the absence of
null dereferences. For the running example and reveysbc we also verified that the
output list is cyclic and partially cyclic, respectively.

The experiments were conducted using TVLA version 2, rupmiith SUN’s JRE
1.4, on a laptop computer with7@6 MHZ Intel Pentium Processor witts6 MB RAM.

The results of the analysis are shown in Table 9. In all of #@reles, the analysis
produced no false alarms. In contrast, TVLA, with the alstoa predicates in Table 1,
is unable to prove that the output of reverselic is a partially cyclic list and that the
output of removeSegment is a cyclic list.

The dominating factor in the running times and memory corgion is the loading
phase, in which the predicates and update formulae areedréand explicitly repre-
sented). For example, the time and space consumed durirapdoic iteration of the
mer ge example i8 seconds an@.4 MB, respectively.

Acknowledgements

The authors wish to thank Alexey Loginov, Thomas Reps, arahiNBinetzky for their
contribution to this paper.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicastrabtion of C
programs. IrProc. Conf. on Prog. Lang. Design and Implages 203-213, June 2001.

2. T.Ball and S. Rajamani. Generating abstract explanations of sguwrtaunterexamples in ¢
programs. Report MSR-TR-2002-09, Microsoft Research, MiofoRedmond, Jan. 2002.
http://research.microsoft.com/slam/.

3. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describimgd data structures.
In Proceedings of the 1999 European Symposium On Programpéggs 2—19, Mar. 1999.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, M. MinéMonniaux, and
X. Rival. A static analyzer for large safety-critical software. In J..F-&wick and C. Norris,

Table 9. Time, space and number of errors measurements. Rep. Err. is mhigenwf errors
reported by the analysis, and Act. Err. is the number of real errors

10.

11.

12.

13.

14.

15.

Benchmark [Description Time|SpaceRep. Err./
(sec) (MB) | Act. Err.
create Dynamically allocates a new linked list 3 |18 0/0
delete Removes an element from a list 7 191 0/0
deleteAll Deallocates a list 3 | 27 0/0
getLast Retrieves the last element in a list 4 4 0/0
insert Inserts an element into a sorted list 9 | 135 0/0
merge Merges two sorted lists into a single list 15 | 29.6 0/0
removeSegmeiithe running example 7 | 84 0/0
reverse Reverses an acyclic list in-place 5 6 0/0
reversecyclic |reverse, applied to a partially cyclic list 2 171 0/0
rotate Moves the first element after the last element6 | 7.9 0/0
search Searches for an element with a specified valug | 2.1 0/0
searchnullderefErroneous implementation of searchthat | 3 | 2.4 1/1
dereferences a null pointer
swap Swaps the first two elements in a list 6 | 8.8 0/0

editors, Proceedings of the ACM SIGPLAN 2003 Conference on Programminguzae
Design and Implementation (PLDI-Q3)olume 38, 5 oACM SIGPLAN Noticepages 196—
207, New York, June 9-11 2003. ACM Press.

. V. T. Chakaravarthy. New results on the computability and complexippfts—to analysis.

In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Prin@pf@®gram-
ming languagespages 115-125. ACM Press, 2003.

. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Countergkaxguided abstraction

refinement. IProc. Computer Aided Verificatippages 154-169, 2000.

. P. Cousot and R. Cousot. Systematic design of program analysisvixarks. InProc. Symp.

on Principles of Prog. Languagepages 269-282, New York, NY, 1979. ACM Press.

. D. Dams and K. S. Namjoshi. Shape analysis through predicatectlsirand model check-

ing. InProceedings of the 4th International Conference on Verification, MGtdetking, and
Abstract Interpretationpages 310-324. Springer-Verlag, 2003.

. A. Deutsch. Interprocedural may-alias analysis for pointersoBak-limiting. In Proc.

Conf. on Prog. Lang. Design and Imphages 230-241, New York, NY, 1994. ACM Press.
D. Gopan, F. DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric dm® with summarized
dimensions. IfTools and Algs. for the Construct. and Anal. of Sysiges 512-529, 2004.
S. Graf and H. Saidi. Construction of abstract state graphs with BMES 1254:72-83,
1997.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy alistnacln Symposium on
Principles of Programming Languaggsages 58—70, 2002.

N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yor3he boundary between
decidability and undecidability for transitive closure logi€soc. Computer Science Logic
2004. to appear.

S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion languageuabie data structures.
ACM SIGPLAN Notices36(3):14-26, Mar. 2001.

J. Jensen, M. Joergensen, N.Klarlund, and M. Schwartzb&eliomatic verification of
pointer programs using monadic second-order logicProc. Conf. on Prog. Lang. Design
and Impl, 1997.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

N. Jones and S. Muchnick. Flow analysis and optimization of Lisp-likectires. In
S. Muchnick and N. Jones, editoRrogram Flow Analysis: Theory and Applicatigrchap-
ter 4, pages 102-131. Prentice-Hall, Englewood Cliffs, NJ, 1981.

T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene basstatic analysis. IfProc.
Static Analysis Sympvolume 1824 o NCS pages 280-301. Springer-Verlag, 2000.

R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predidmteaction and canonical
abstraction for singly-linked lists. Technical Report TR-2005-012121 Tel Aviv Univer-
sity, 2005.

Microsoft Research. The SLAM project. http://research.mictasmh/slam/, 2001.

M. Rabin. Decidability of second-order theories and automata ontéfires.Trans. Amer.
Math. So¢141(1):1-35, 1969.

G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. SaBeriving specialized
program analyses for certifying component-client conformancePrat. Conf. on Prog.
Lang. Design and Implvolume 37, 5, pages 83-94, June 2002.

T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of thetkassformer. IrProc.
Verification, Model Checking, and Abstract Interpretatipages 252—-266. Springer-Verlag,
2004.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis viugd logic. ACM
Transactions on Programming Languages and Systems (TOPRAS):217-298, 2002.

R. Shaham, E. Yahay, E. K. Kolodner, and M. Sagiv. Establidbireg temporal heap safety
properties with applications to compile-time memory managementPrdg. of the 10th
International Static Analysis Symposium, SAS 200Bime 2694 of NCS June 2003.

E. Yahav and G. Ramalingam. Verifying safety properties usingraéipn and heteroge-

neous abstractions. Proceedings of the ACM SIGPLAN 2004 conference on Programming

language design and implementatigrages 25-34. ACM Press, 2004.

