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ABSTRACT
We are concerned with the problem of staticallycertifying (verify-
ing) whether the client of a software component conforms to the
component’s constraints for correct usage. We show how confor-
mance certification can be efficiently carried out in astaged fashion
for certain classes offirst-order safety (FOS) specifications, which
can express relationship requirements among potentially unbounded
collections of runtime objects. In the first stage of the certifica-
tion process, we systematically derive an abstraction that is used to
model the component state during analysis of arbitrary clients. In
general, the derived abstraction will utilize first-orderpredicates,
rather than the propositions often used by model checkers. In the
second stage, the generated abstraction is incorporated into a static
analysis engine to produce acertifier. In the final stage, the resulting
certifier is applied to a client to conservatively determine whether
the client violates the component’s constraints. Unlike verification
approaches that analyze a specification and client code together, our
technique can take advantage of computationally-intensive sym-
bolic techniques during the abstraction generation phase, without
affecting the performance of client analysis. Using as a running ex-
ample theConcurrent Modification Problem (CMP), which arises
when certain classes defined by the Java Collections Framework are
misused, we describe several different classes of certifiers with vary-
ing time/space/precision tradeoffs. Of particular note are precise,
polynomial-time, flow- and context-sensitive certifiers for certain
classes of FOS specifications and client programs. Finally, we eval-
uate a prototype implementation of a certifier for CMP on a variety
of test programs. The results of the evaluation show that our ap-
proach, though conservative, yields very few “false alarms,” with
acceptable performance.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs; F.3.2 [Logics and Meanings
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of Programs]: Semantics of Programming Languages—program
analysis

General Terms
Verification, Algorithms, Theory, Experimentation, Languages

Keywords
Abstract interpretation, model checking, software components, pred-
icate abstraction, static analysis

1. INTRODUCTION
A fundamental impediment to effective use of software compo-

nents or libraries is ensuring that client code satisfies theconstraints
that the component imposes as a prerequisite to correct usage. The
Canvas1 project at IBM Research and Tel-Aviv University [4] aims
to ease the use of software components by

• Allowing the component designer to specify componentcon-
formance constraints, which describe correct component us-
age by a client program in a natural (yet still formal) way.

• Providing the client code developer with automated software
certification tools to determine whether the client satisfies the
component’s conformance constraints.

For the purposes of this paper, we consider a “component” to be any
object-oriented software library, and focus on components written
in Java.

1.1 The Concurrent Modification Problem
The Concurrent Modification Problem (CMP), which arises in

the context of the Java Collections Framework (JCF) [5], is a typ-
ical conformance constraint problem that we will use as a running
example in the sequel. JCFIterators are used to iterate over
the contents of an underlying collection (e.g., aHashSet, which
implements theSet interface). A fundamental constraint on the
use of iterators is that once an iterator objectoi is created for a
collectionoc, it may be used only as long as the collectionoc is
not modified,not counting modifications made via oi. This restric-
tion ensures that the internal state invariants ofoi are not corrupted
by another iterator, or by direct update to the collection. JCF col-
lections detect violations of this constraintdynamically, and throw

1ComponentANnotation,Verification,And Stuff



class Make {
private Worklist worklist;
public static void main (String[] args) {

Make m = new Make();
m.initializeWorklist(args);
m.processWorklist(); }

void initializeWorklist(String[] args) {
...; worklist = new Worklist(); ... }

void processWorklist() {
HashSet s = worklist.unprocessedItems();
for (Iterator i = s.iterator(); i.hasNext()){
Object item = i.next(); // CME may occur here
if (...) processItem(item);

} }
void processItem(Object i) { ...; doSubproblem(...); }
void doSubproblem(...) {

... worklist.addItem(newitem); ... }
}
public class Worklist {

HashSet s;
public Worklist() { s = new HashSet(); ... }
public void addItem(Object item) { s.add(item); }
public HashSet unprocessedItems() { return s; }

}

Figure 1: An erroneous Java program fragment throwing CME.

ConcurrentModificationException (orCME) when it oc-
curs (note that the name of the exception is misleading, since it often
occurs in single-threaded programs). We will use “CMP” to refer
to the problem ofstatically determining whether a JCF client may
causeCME to be thrown.

Consider the Java code fragment in Fig. 1. Here, an iterator is cre-
ated on aworklist, which is implemented using aHashSet, a
JCF collection class. The iterator is then used to process each item on
the worklist in succession. We observe thatCME can be thrown dur-
ing item processing, since the nested call todoSubproblem(. . .)
causesworklist.addItem(newitem) to be called, which
will in turn update the underlyingHashSet while the iterator is
still active. On the next iteration, the call toi.next() would
causeCME to be thrown.

1.2 First Order Safety Constraints
In Section 2, we will see that CMP is an instance of a class of

conformance constraint problems where the component’s dynamic
state can be characterized (for specification purposes) by afirst-
order structure. A first-order structure consists of a finite collection
of predicates ranging over a potentially unbounded universe ofindi-
viduals. Using first-order structures to model component state per-
mits, e.g., dynamic memory allocation or dynamic thread creation
in the component to be modeled in a natural way [34, 40]. State up-
dates in the component are modelled by updates to predicate values;
in addition, the universe of individuals may also evolve—expand
and contract—as a consequence of dynamic resource allocation or
deletion in the component.

In the sequel, we will develop static certification techniques for
certain classes offirst-order safety (FOS) constraints. In its most
general form, an FOS constraint is simply a first-order logical for-
mulaϕover the set of predicates characterizing the component state.
A client is said tosatisfy ϕ if, for any input to the client, every com-
ponent state encountered during the client’s execution satisfiesϕ.
Note that FOS constraints can be trivially used to specify finite
state properties of a component, as well as constraints involving
dynamically-allocated resources.

In Section 2, we will show how CMP and other FOS constraints
can be formally, yet naturally, specified as an abstract program in a
language calledEasl2.

1.3 Staged Certification
Our approach to static component certification is based on ab-

stract interpretation [11] of the client program and is conservative,
which ensures that every potential violation of the component’s con-
formance constraints is detected. However, a potential drawback of
a conservative approach is the possibility of “false alarms”: spuri-
ous reporting of conformance violations that do not actually occur.
For an abstract interpretation to yield acceptable results, it is critical
to use a static abstraction of the runtime state that is precise enough
to avoid excessive false alarms, without yielding an analysis that
is computationally intractable. In this paper, we address this issue
by systematically generating component-specific abstractions from
a formal specification of a component’s conformance constraints in
the followingstaged manner:

1. First, the component designer or implementer writes a spec-
ification describing both the component’s conformance con-
straints and those aspects of the component’s behavior that are
pertinent to the component state referred to by the constraints.

2. The component’s conformance specification is used to sys-
tematically derive a component-specific state abstraction. This
abstraction utilizesinstrumentation predicates defined by first-
order logical formulae over the first-order structure underly-
ing the component specification. We refer to such an abstrac-
tion as afirst-order predicate abstraction, since it generalizes
thenullary predicate abstractions (i.e., proposition) tradition-
ally used in model checking.

3. The generated abstraction is combined with a static analysis
engine to yield acertifier specific to the component’s con-
formance specification. By choosing between different anal-
ysis engines, it is possible to obtain certifiers with various
time/space/precision tradeoffs.

4. The certifier is used to analyze the client to conservatively
determine whether possible violations of the conformance
constraints can occur.

The separation of component-specific abstraction derivation from
client analysis is a distinguishing feature of our approach. Since the
abstraction derivation process is carried out only at “certifier genera-
tion time,” resource-intensive symbolic analysis may be used during
the abstraction derivation phase without affecting the efficiency of
client analysis.

1.4 Overview
In the remainder of the paper, we present the following results:
In Section 2, we show by example how FOS properties such as

CMP can be naturally specified asabstract programs in Easl.
In Section 3, we show how a simple form of conformance certi-

fication can be carried out by applying classical abstract interpreta-
tion or dataflow analysis to a composite program formed by inlining
the component’s behavior specification at every component method
call site in the client. For CMP, this certification approach can
be viewed as an application of generic heap analysis. However,
we show through examples that generic heap analysis (or similar
generic program analysis) applied to a composite program tend to
be imprecise and/or expensive, since the abstractions used by the
2ExecutableAbstractionSpecificationLanguage



generic analysis are oblivious to the details of the constraint speci-
fication.

In Section 4, we show how to remedy the imprecision of the
generic certification technique using the staged approach outlined
in Section 1.3. This process is illustrated for a single CMP client
method in which references to collections and iterators are stored
only in local or static variables (rather than in object fields). We
will refer to this restricted version of CMP as SCMP (“shallow”
CMP). We show that this approach yields a simple polynomial-
time certifier for SCMP that isprecise: i.e., the certifier computes
the precise meet-over-all-paths solution, and any imprecision in the
certifier arises solely from the imprecision in the abstraction used
for theclient’s state.

Section 5 shows how to handleunrestricted clients of CMP by
using a more general version of the abstraction generation process
described in Section 4.

Section 6 shows that the staged certification process generates
precise certifiers for any member of a class ofmutation-restricted
constraint specifications

In Section 7, we measure the precision and running times of a pro-
totype implementation of our algorithm for the unrestricted CMP
problem on a suite of test cases, including both “real-world” pro-
grams that use JCF and contrived test cases representing “difficult”
instances of CMP. We discuss several configuration options for the
core TVLA analysis engine that yield different time/space/precision
tradeoffs for CMP analysis. The resulting analysis produces mini-
mal “false alarms” on the test cases, with reasonable speed.

Section 8 shows how the intraprocedural analysis for SCMP pre-
sented in Section 4 can be extended to yield a precise, context-
sensitive, polynomial-timeinterprocedural analysis for SCMP.

Finally, a detailed comparison to related work is given in Sec-
tion 9.

2. ABSTRACT PROGRAMSAS SPECIFICA-
TIONS

Easl specifications take the form ofabstract Java programs (sim-
ilar facilities are found in JML [24]), which serve both to describe
critical aspects of the component’s behavior, and to indicate con-
straints that must be satisfied by any well-behaved client.Easl
combines a restricted subset of Java statements (assignments, con-
ditionals, loops, and heap allocation), a restricted set of primitive
types (booleans and object references), built-in set and map types,
and arequires statement (which describes a constraint that must be
satisfied at a particular point in the component’s execution). These
constructs are sufficient to simulate conventional pre- and post-
conditions, as well as various forms of finite state specifications.
Most importantly,Easl allows a natural expression of component
behaviors that determine the relationships among potentially un-
bounded numbers of component objects.

2.1 Specifying CMP
Fig. 2 contains anEasl specification of CMP. In this specifica-

tion, every modification of a collection creates a distinct version of
that collection, identified by a uniqueVersion object. Every iter-
ator records which version of which collection it is associated with.
Every use of an iterator is checked for correctness by comparing the
version of the iterator with the version of the underlying collection.
Note that an update to a collection through an iterator updates both
the collection’s and the iterator’s version, thus ensuring that that
particular iterator may continue to be used safely.

class Version { /* represents distinct versions of a Set */ }
class Set {

Version ver;
Set() { ver = new Version(); }
boolean add(Object o) { ver = new Version(); }
Iterator iterator() { return new Iterator(this); }

}
class Iterator {

Set set;
Version defVer;
Iterator (Set s){ defVer = s.ver; set = s; }
void remove() {

requires (defVer == set.ver);
set.ver = new Version();
defVer = set.ver;

}
Object next() { requires (defVer == set.ver); }

}

Figure 2: An Easl specification of CMP.

The dynamic check for CMP implemented in JCF uses integer-
typed versions, rather than heap-allocated version objects, but is
otherwise similar to theEasl specification.

We will use the Java code fragment in Fig. 3 as a running example
of a CMP client. As explained by the comments in the figure,CME
may be thrown during the execution of lines6 or 9, but not during
the execution of line7. An analysis that misses the errors in lines6
or9 is unsound, while a report of a possible error in line7 constitutes
a false alarm.

2.2 Other FOS Conformance Problems
The following conformance constraint problems are similar to

CMP in that they can be naturally modelled by FOS specifica-
tions constraining the relationship among instances of dynamically-
allocated component objects. All of these problems are members of
the class ofmutation-restricted conformance constraint problems
described in Section 6, and admit precise analysis using our staged
certification techniques.

Grabbed Resource Problem (GRP): Consider a graph library
that provides graph traversal utilities. An implementation of graph
traversals where state is stored in vertices (e.g., to record if the vertex
has been already visited) does not allow for multiple simultaneous
traversals of a graph. Initiating a new traversal of a graphinvalidates
prior traversals of thesame graph, which may not later be resumed.
This is an instance of a general resource-sharing protocol where a
resource may be preemptively acquired, which places the constraint
that the prior holder may no longer use the resource.

Implementation Mismatch Problem (IMP): Interfaces of mod-
ules consisting of multiple interacting types often utilize methods
with multiple arguments, with an implicit requirement that the ac-
tual arguments all belong to thesame module implementation. This
is the case with the well-knownFactory design pattern [16].

Alien Object Problem (AOP):A compound object (e.g., a graph)
may have a method (e.g., to add an edge) with a restriction that
the actual parameters (e.g., of type vertex) “belong” to the graph.
Passing a vertex of one graph as an argument to another graph’s
method could have unintended consequences.

3. GENERIC CERTIFICATION
Since theEasl specification of CMP in Fig. 2 models the compo-

nent behavior via manipulation of an “abstract heap,” it is natural to
consider whether certification of this or similar problems could be
carried out using generic heap analysis. Indeed, this is the case. In
general, one approach to carrying out certification would be as fol-
lows: (a) Create a composite program by combining the client code



/* 0 */ Set v = new Set();
/* 1 */ Iterator i1 = v.iterator();
/* 2 */ Iterator i2 = v.iterator();
/* 3 */ Iterator i3 = i1;
/* 4 */ i1.next();
// The following update via i1 invalidates the
// iterator referred to by i2.
/* 5 */ i1.remove();
/* 6 */ if (...) { i2.next(); /* CME thrown */ }
// i3 refers to the same, valid, iterator as i1
/* 7 */ if (...) { i3.next(); /* CME not thrown */ }
// The following invalidates all iterators over v
/* 8 */ v.add("...");
/* 9 */ if (...) { i1.next(); /* CME thrown */ }

Figure 3: A Java program fragment illustrating CMP.

and the component specification, treating the specification as the
componentimplementation. This is particularly simple to do with
Easl specifications, since they take the form of abstract programs.
(b) Apply a suitable analysis algorithm to the resulting composite
program and verify that whenever anyrequires clause in the
specification is executed, the expression in the clause will evaluate
to true. In the case of CMP, we could carry out Step (b) using any
existing algorithm formust-alias analysis, since therequires
clauses of the CMP specification all entail equality comparisons of
two pointer-valued expressions. (This approach can be generalized
to arbitrary Easl specifications using a generic analysis engine.
See [29] for details.)

Let us now consider how well certification based on generic alias
analysis works for CMP. Consider, for example, anallocation-site
based analysis [6] which does not distinguish between different ob-
jects allocated at the same program point.

Set s = new HashSet();
while (...) {

s.add(...);
for (Iterator i = s.iterator(); i.hasNext(); ) {

Object o = i.next();
}

}

An allocation-site based alias analysis will be unable to certify that
this fragment is free of CMP errors, because the analysis will be
unable to distinguish between the differentversions of sets inside
the loop. Similar problems occur when other generic heap analyses
are applied to CMP; e.g., see Section 4.4.

We note that SCMP (CMP restricted to client programs in which
references to collections and iterators are stored only in static or
local variables) can be seen as a must-alias problem with 3-level
pointers—a problem for which precise analysis is in generalPSPACE-
hard in the intraprocedural andEXPTIME-hard in the interproce-
dural case [27]. This is one reason to suspect that even SCMP is
likely to be resistant to most generic heap analysis algorithms, and
that any generic heap analysis algorithm of sufficient accuracy to be
useful for SCMP would likely be quite inefficient.

4. STAGED CERTIFICATION
The problem with using any generic analysis engine for certifica-

tion is that such an engine must use abstractions based on program
properties unrelated to the component conformance constraints of
interest. In this section, we show how to remedy this problem by
using a component’s conformance constraint specification to derive

a specialized abstraction of the components’ state. This abstraction
technique will yield more precise and efficient certifiers than the
generic abstractions used in Section 3.

We illustrate the staged abstraction process using CMP. We will
restrict our attention in this section to CMP clients in which refer-
ences to collections and iterators are stored only in local or static
variables (rather than in object fields). We will refer to this spe-
cial case of CMP as SCMP. We will also assume in this section
that the client contains no calls to other client methods (i.e., that
the client analysis is intraprocedural). We will show that the gener-
ated abstraction yields a polynomial time certifier that computes the
precise meet-over-all-paths solution for (intraprocedural) SCMP.

This section is intended to convey the essential ideas of our ap-
proach without excessive formalism. Section 5 fills in most of the
formal details, and extends the results to arbitrary client programs
by describing how component references in the client heap are han-
dled, and how constructs such as client method calls are treated. In
addition, Section 8 describes a precise, polynomial-timeinterpro-
cedural certifier for the special case of SCMP.

Our component abstraction process will consist of: (a)compo-
nent state abstraction, which characterizes those aspects of the com-
ponent state (more precisely, the state of all component object in-
stances) that are relevant to the certification process, and (b)compo-
nent method abstraction, which identifies how the component state
abstraction is updated as a result of a component method call.

4.1 Deriving Component State Abstraction
We will represent the relevant state of a component usinginstru-

mentation predicates [34], which can be viewed as refining the com-
ponent’s state with derived information specific to the certification
problem. Given the SCMP restriction, the abstraction derivation
process yields anullary predicate abstraction, i.e., a collection of
nullary predicates (or propositions, or boolean variables). In Sec-
tion 5, we will describe a more general abstraction derivation process
that can yield predicates of arbitrary arity (afirst-order predicate ab-
straction). For the sake of simplicity, we will assume that the com-
ponent specification containsrequires clauses only at method
entry. Component specifications that containrequires clauses
at points other than at method entry may be handled by suitably
generalizing the approach below.

We identify instrumentation predicates by iteratively performing
a symbolic, backward weakest-precondition [14] computation over
every possible sequence of component method calls, using the fol-
lowing rules:

1. If any component method has a “requires ϕ” clause at
method entry, then¬ϕ is a candidate instrumentation for-
mula.

2. Ifϕ1∨. . .∨ϕk is a candidate instrumentation formula (where
none of theϕi is a disjunct of the formα ∨ β), then eachϕi

is a candidateinstrumentation predicate.

3. If ϕ is a candidate instrumentation predicate, andS is the
body of a component method, then the weakest precondition
of ϕ with respect toS, WP(S, ϕ), is acandidate instrumen-
tation formula. (WP(S, ϕ) is a formula that holds before the
execution ofS iff ϕ holds after the execution ofS.)

The motivation for rules 1 and 3 should be clear. The motivation
for rule 2 is slightly more complex. The specific form of rule 2 is
intended to enable the use of an efficientindependent attribute [28, p.
247] analysis without losing the precision ofrelational analysis [28,
p. 248]. Ifϕ1 ∨ϕ2 is a candidate instrumentation formula, tracking
the values ofϕ1 andϕ2 separately does not lead to a loss of precision.



Predicate Meaning (in Easl)
stalei i.defVer != i.set.ver
iterof i,v i.set == v
mutxi,j (i.set == j.set) && (i!= j)

samev,w v == w

Figure 4: The instrumentation predicates used for component
state abstraction in CMP.

In contrast, ifϕ1 ∧ϕ2 is a candidate instrumentation formula, then
we create asingle instrumentation predicateϕ1 ∧ϕ2 since tracking
the values ofϕ1 andϕ2 separately may lead to imprecision when
used with an independent attribute analysis. This is related to the
notion of disjunctive completion [10, 17] and distributivity in static
analysis.

Component State Abstraction for CMP
We now illustrate the process above by applying it to the specifica-
tion of CMP.

Step 1: We are interested in determining at every call-site to
methodsIterator::next() andIterator::remove()),
say, on anIterator variablei, if the precondition of the methods
may fail, that is, ifi.defVer != i.set.vermay be true. We
therefore introduce a new predicatestalei to represent the formula
i.defVer != i.set.ver.

Step 2: Next, we consider how the execution of differentSet
andIteratormethods affect the value of predicatestalei. Con-
sider the execution of a method callv.add(), wherev is of type
Set. stalei is true after the execution ofv.add() iff the con-
dition (stalei || (i.set == v)) is true before the execution of
the statement. This suggests maintaining the value of the expres-
sioni.set == v in order to precisely update the value ofstalei.
Hence, we introduce a second instrumentation predicateiterof i,v,
representing the conditioni.set == v.

Step 3: Consider the effect of executingj.remove() (where
j is an iterator variable) on predicatestalei. It can be verified
thatstalei is true after execution ofj.remove() iff the condi-
tion (stalei || ((i.set == j.set) && (i != j))) is true
before the execution of the statement. We introduce the instrumen-
tation predicatemutxi,j, representing the condition(i.set ==
j.set) && (i != j).

Step 4: It can be verified thatiterof i,v is true after the execution
of i = w.iterator() iff v == w before the execution of the
statement. We introduce the instrumentation predicatesamev,w,
representing the conditionv == w.

We have now reached a fixed point: applying the rules for iden-
tifying instrumentation predicates will not produce any more pred-
icates. Fig. 4 presents the definitions of the instrumentation predi-
cates identified.

Predicate Families
Our earlier description of the rules for identifying instrumentation
predicates omitted certain details for the sake of clarity. An expres-
sion identified as a candidate instrumentation predicate by these
rules will, in general, contain free variables. As an example, the ex-
pressioni.defVer != i.set.ver identified as being a can-
didate instrumentation predicate contains a free variablei. Such
an expression really identifies afamily of instrumentation predi-
cates for a given client program which contains one predicate for
every variable in the client program whose type is the same as that

of the free variable (here,Iterator). Specifically, letI andV
denote respectively the set ofIterator variables and the set of
Set variables in an SCMP client. The set of predicates we use for
analysis of the client is

{ stalei | i ∈ I } ∪ { iterof i,v | i ∈ I ,v ∈ V } ∪
{ mutxi,j | i,j ∈ I } ∪ { samev,w | v,w ∈ V }.

4.2 Deriving Component Method Abstraction
Having described how to derive a component state abstraction, we

must now identify the corresponding abstraction of the component’s
collection of methods. Each abstracted method will define how a
call to that method affects the values of instrumentation predicates
comprising the state abstraction.

The iterative rules of Section 4.1 for deriving a component’s state
abstraction can also be seen to generate the method abstractions, as
follows: Let ϕ0 be a candidate instrumentation predicate, and let
the weakest precondition ofϕ with respect to component methodM
beϕ1∨. . .∨ϕk. Each candidateϕi is represented in the abstraction
by a corresponding (boolean-valued)Easl variablepi. We define
theupdate formula for p0 for methodM to be “p0 := p1 ∨ . . .∨pk”.
The abstraction of methodM consists of an update formula for every
instrumentation predicate, as well as the precondition of the method
(expressed as arequires clause).

The method abstractions obtained from the CMP specification are
shown in Fig. 5. (These abstractions have been optimized by elim-
inating update formulae of the formp0 := p0, which correspond
to instrumentation predicates whose values are not affected by the
method call.) The method abstractions have been presented in a
form that reflects the intended use of these abstractions during certi-
fication of a given client. In particular, during certification, calls to
component methods in the client code (the left column of the table)
will be replaced by the corresponding method abstraction (the right
column of the table). The same table also presents abstractions of
copy assignments of component references, which serve the same
purpose as the method abstractions.

The table in Fig. 5 is parametrized byI and V, which denote
respectively the set ofIterator variables and the set ofSet
variables in a client program. The method abstractions utilize a
macro mechanism, indicated by the∀ quantifier. In particular, a
macro-based update of the form “lhs(z) := rhs(z) ∀ z ∈
S” represents a whole set of updates, one for eachz ∈ S.

4.3 Specialized Certification
Let us now see how the component and method abstractions are

used in certification of a client program. The first step in the certi-
fication process is totransform the client program by (a) replacing
variables in the program that are references to the component by
boolean variables corresponding to the identified instrumentation
predicates, and (b) replacing calls to component methods by a cor-
responding instantiation of the identified method abstraction. (The
part of the transformed client program that relates to the component
resembles aboolean program [2].)

To determine whether the inlined component method precondi-
tions will always be satisfied, we use standard program analysis
techniques. We note that the transformed program has a very special
form: each assignment statement is of the formp0 := p1 ∨ . . .∨pk

or p := 0 or p := 1. As a result, any fixed point computation for a
set of distributive equations over values in the set of subsets of{0, 1}
(e.g., finite distributive subset (FDS) analysis [30]) can be used to
compute the possible values of each variable at every program point
in the transformed program.



Statement Specialized Abstraction
v = new Set() samev,v := 1

samev,z := 0 ∀z∈V−{v}
samez,v := 0 ∀z∈V−{v}
iterof k,v := 0 ∀k∈I

v.add() stalek := stalek ∨ iterof k,v ∀k∈I
i = v.iterator() iterof i,z := samev,z ∀z∈V

mutxi,i := 0
mutxi,k := iterof k,v ∀k∈I−{i}
mutxk,i := iterof k,v ∀k∈I−{i}
stalei := 0

i.remove() requires¬ stalei
stalej := stalej ∨ mutxj,i ∀j∈I

i.next() requires¬ stalei
v = w samev,z := samew,z ∀z∈V−{v}

samez,v := samez,w ∀z∈V−{v}
iterof k,v := iterof k,w ∀k∈I

i = j iterof i,z := iterof j,z ∀z∈V
mutxi,k := mutxj,k ∀k∈I−{i}
mutxk,i := mutxk,j ∀k∈I−{i}
stalei := stalej

Figure 5: The component method abstraction for CMP. Here,
i, j, and k denote variables of type Iterator, while v, w, and
z denote variables of type Set.

Since everyrequires clause in the transformed program takes
the special form “requires ¬v”, this information is sufficient to
perform the certification.

We now illustrate this process for SCMP. The code fragment in
Fig. 6 illustrates how selected statements of the CMP example of
Fig. 3 are transformed. Note that the declarations of theIterator
andSet variables are replaced by the declaration of corresponding
sets of boolean variables representing the nullary predicate abstrac-
tion derived in Section 4.1. The transformation of Statement 5 of
the example is particularly notable. Here, we see that the condition
in the specification’srequires clause, which checks the validity
of iteratori1, is satisfied. However, as a result of executing state-
ment, the value of variablestalei2 becomes1, which will prevent
therequires clause corresponding to the use ofi2 in Statement
6 (translation omitted) from being satisfied.

The next step is to analyze this transformed program to deter-
mine the possible values of the boolean variables mentioned in the
requires clauses in the transformed program. In the intraproce-
dural case, the precise (meet-over-all-paths) solution to this problem
can be computed in timeO(EB2) time using FDS analysis [30],
whereB denotes the number of iterator and collection variables
in the original program andE denotes the number of edges in the
control-flow graph of the program. We address the interprocedural
version of the problem in Section 8 and show how the meet-over-
all-valid-paths solution can also be computed in polynomial time.

4.4 Specialized vs. Generic Abstraction
Fig. 7(a) and Fig. 7(b) depict theconcrete state of the program of

Fig. 3 before and after execution of Statement 5. Fig. 8 depicts the
abstract states computed by the staged certifier that correspond to
those concrete states.

It is interesting to compare the abstract state used by our spe-
cialized certifer with that computed by a sophisticated heap analy-
sis based onstorage shape graphs [37, 33]. These analyses merge

// variables representing values of nullary predicate abstraction
// used for certification
booleanstalei1, stalei2, stalei3;
booleaniterof i1,v, iterof i2,v, iterof i3,v;
booleanmutxi1,i1, mutxi1,i2, mutxi1,i3, mutxi2,i1, mutxi2,i2;
booleanmutxi2,i3, mutxi3,i1, mutxi3,i2, mutxi3,i3;
booleansamev,v;
. . .
// 0: Set v = new Set();
samev,v := 1;
iterof i1,v := 0;
iterof i2,v := 0;
iterof i3,v := 0;

// 1: Iterator i1 = v.iterator();
iterof i1,v := samev,v;
mutxi1,i1 := 0;
mutxi1,i3 := iterof i3,v; mutxi3,i1 := iterof i3,v;
mutxi1,i2 := iterof i2,v; mutxi2,i1 := iterof i2,v;
stalei1 := 0;

// 2: Iterator i2 = v.iterator();
iterof i2,v := samev,v;
mutxi2,i2 := 0;
mutxi2,i1 := iterof i1,v; mutxi1,i2 := iterof i1,v;
mutxi2,i3 := iterof i3,v; mutxi3,i2 := iterof i3,v;
stalei2 := 0;

. . .
// 5: i1.remove();

requires¬stalei1; // requires statement is satisfied
stalei1 := stalei1 ∨ mutxi1,i1;
stalei2 := stalei2 ∨ mutxi2,i1; // stalei2 becomes 1
stalei3 := stalei3 ∨ mutxi3,i1;

. . .

Figure 6: A fragment of the transformed client program of Fig. 3

nodes in a storage shape graph together if and only if they are pointed
to by the same set of variables. Let us see what happens at State-
ment 5 of Fig. 3 when we apply the analysis based on shape graphs.
The two concrete nodes for the two version objectso4 ando5 are
merged together because there are no pointer variables that point to
either object. As a result ofmerging togethero4 ando5, we have
lost information: in the abstract state, we will have to conservatively
assume that each ofi1, i2, andi3 may beeither valid or invalid.
Hence, the analysis will produce a false alarm at statement 7.

Note that the state representation in Fig. 8 is much more com-
pact, yet more precise, than the state representation in Fig. 7(c). In
particular, it enables the staged certifier to determine that iterator
i3 is valid after statement 5 and avoid producing a false alarm at
statement 7.

4.5 The Derivation Process: Details
We have seen that the derivation procedure for identifying instru-

mentation predicates converges quickly for CMP. In Section 6, we
show that the process converges with a finite set of instrumenta-
tion predicates for a class ofEasl specifications calledmutation-
restricted specifications. The corresponding abstraction produced
for the components is afinite but precise abstraction: i.e., any im-
precision in a certifier that uses the derived component abstraction is
solely due to the imprecision in the abstraction used for theclient’s
state. In the general case, however, there is no guarantee that the
derivation procedure will terminate. In other words, for some exam-
ples, there may be no finite bound on the number of instrumentation
predicates generated by this procedure. However, in the general
case, heuristics may be used to stop the generation of new instru-
mentation predicates at some point during the derivation process.
This will, in turn, require introducing approximate but conserva-
tive method abstractions (since some of precise update formulae
required for a method abstraction may not be expressible in terms
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Figure 7: (a) and (b) are storage shape graphs representing the concrete state before and after execution of line 5. (c) is a storage shape
graph that abstracts the concrete state depicted by (b). A solid edge denotes a “must” point-to relation and a dotted edge denotes a
“may” point-to relation.

of the generated instrumentation predicates). Identifying suitable
heuristics to ensure termination of the derivation procedure is be-
yond the scope of this paper.

The abstraction derivation process entails checking whether a
newly generated instrumentation predicate is equivalent to any of the
instrumentation predicates already generated. While simple conser-
vative equality checks (such as converting the predicates to a normal
form, e.g. disjunctive normal form, and comparing them for syn-
tactic equality) are sufficient to ensure termination of the derivation
procedure in examples such as CMP, more powerful decision pro-
cedures can be used to make the derivation procedure more effective
and to reduce the number of generated instrumentation predicates.
While the use of alternative decision procedures for equality has an
impact on the set of generated instrumentation predicates, it does
not affect the correctness of the approach.

4.6 Relation to Predicate Abstraction
The approach described in this section is closely related to the no-

tion of predicate abstraction [18]. The term “predicate abstraction”
has been used in the literature to denote both the approximation of
a program’s state by a collection of boolean variables (nullary pred-
icates), as well as the approximation of a program’s statements by
statements that refer only to these boolean variables. Recent work
on counterexample-driven abstraction refinement focuses on im-
proving predicate abstraction based verification by “discovering”
predicates that are relevant to the particular verification problem
instance [1, 35, 7]. While our goals are similar, our approach is or-
thogonal to previous approaches. Our predicate discovery algorithm
is applied only to a component/library specification, to determine
a suitable abstraction of the component. This allows us tostage
the whole process, as the component specification can be analyzed
before any client program is available, and the results (re)used for
checking any possible client program. This can serve as the basis
for a moremodular and scalable predicate discovery based verifi-
cation, and avoid or reduce the need for expensive symbolic anal-
ysis during analysis of the client program. In contrast, predicate
discovery in prior work is done lazily, during the analysis of a com-
plete program/system, over a single execution path. This, however,
has the advantage that it can produce better abstractions. The two
approaches are complementary and can be employed together to
improve efficiency, while retaining flexibility.

A second difference between our approach and prior work based
on predicate abstraction is in how the abstracted program is sub-
sequently analyzed. While prior work relies on model checking
techniques whose complexity is exponential (they correspond to
relational analysis), our approach is not restricted to using an ex-

State before the execution of statement5.
stalei1 = 0 stalei2 = 0 stalei3 = 0
iterof i1,v = 1 iterof i2,v = 1 iterof i3,v = 1
mutx i1,i2 = 1 mutx i1,i3 = 0 mutx i2,i3 = 1

State after the execution of statement5.
stalei1 = 0 stalei2 = 1 stalei3 = 0
iterof i1,v = 1 iterof i2,v = 1 iterof i3,v = 1
mutx i1,i2 = 1 mutx i1,i3 = 0 mutx i2,i3 = 1

Figure 8: An illustration of the abstract state maintained by
our specialized certifier for SCMP. Note that the state repre-
sentation has been simplified using the facts that for all x,y
samex,x = 1, mutx x,x = 0, and mutxx,y = mutx y,x.

ponential relational analysis. In fact, our predicate discovery is
intended to enable the use of more efficient independent attribute
analysis without losing the precision of relational analysis. This is
what enables our technique to produce a polynomial time SCMP
certifier that computes the precise meet-over-all-paths solution.

A third difference between our approach and prior work is the
subject of the next section.

5. FIRST ORDER PREDICATE ABSTRAC-
TION

In Section 4, we saw how a component specification can be used
to derive a specialized abstraction which can in turn serve as the
basis for more precise certification. For SCMP, the relevant com-
ponent state was described by anullary predicate abstraction. In
the general case, we will utilizefirst-order predicate abstraction,
where both nullary and non-nullary predicates may be used to de-
scribe the relevant program state. The component abstraction pro-
cess for SCMP was described in terms of operations on Java-style
statements and predicates. However, to describe the first-order ab-
straction derivation process for arbitrary client programs, we will
require a more expressive intermediate language. We will use the
TVP [26] intermediate language for this purpose.

In the remainder of this section, we give an overview of the TVP
language, show how client programs may be translated into TVP,
and generalize the component abstraction process of Section 4 to
clients where component references may be stored in the heap. As
before, we describe the abstraction process by example using CMP.
Finally, we present a brief overview of the TVLA system [26], a
configurable abstract interpreter for TVP. We use TVLA as a cer-



tification engine for TVP programs formed by combining the TVP
translation of a client program with the first-order abstractions gen-
erated for the component.

5.1 An Overview of TVP
TVP is an imperative programming language built around an ex-

pression sub-language based on first-order logic. The only type of
variables allowed in TVP are predicate variables. Program states
are represented in TVP by2-valued logical structures. A 2-valued
structure over a set of predicate variablesP is a pair〈U, ι〉, where
U is a set referred to as the universe, andι is a function that maps
predicate variables to their values: for every predicatep ∈ P of
arity k, ι(p) : Uk → {0, 1}.

A TVP program is a control-flow graph, each edge annotated with
anaction, consisting of:

(a) An optionalprecondition (a first-order logic formula), which
is used to model conditional branches.

(b) Zero or moreallocation bindings of the form “let id =
new() in”, which adds a new element to the universe. The newly-
added element may be referred to asid in the following assignment;
the value of any predicatep(v1, . . . , vk), where at least one of the
vi represents a newly-added element, is defined to be false.

(c) Zero or more predicate updates of the formp(v1, . . . , vm) :=
ϕ(v1, . . . , vm, n1, . . . , nk), where eachni is a variable bound by
an allocation binding, which assigns a new value to predicate vari-
ablep. We use the notationguard � lhs := rhs as shorthand for
“ lhs := (guard ∧ rhs) ∨ (¬guard ∧ lhs)”.
5.2 Standard Translation of Client Programs

We now present a standard way of modelling the state of an arbi-
trary Java program using a 2-valued structure:

• Every heap-allocated object is modelled by an element of the
universe.

• Every (static) reference variablevar is represented by a unary
predicateptvar; the value ofptvar(o) is true iffvar refers
to (“points to”) the objecto.

• Every fieldfld of a reference type is represented by a binary
predicatervfld; the value ofrvfld(o1, o2) is true iff the
field fld of objecto1 refers to objecto2.

• TVP provides no explicit support for procedures. Procedures
are modelled [31] by explicitly modelling a stack of activation
records. In particular, an activation record is modelled by an
element of the universe, and local variables of procedures are
modelled just like fields: the value ofrvlv(o1, o2) is true iff
the variablelv of activation recordo1 refers to objecto2.

Fig. 9 illustrates how typical Java heap manipulation statements
will be translated into TVP actions under the above model. (Note
that the translation forx = new C()models only allocation; ini-
tialization of the object by the constructor is modelled separately.)
Generic certification (see Section 3) is done by translating both the
client program and the component specification into a composite
TVP program in this fashion, and by applying abstract interpreta-
tion to this composite program. (We will soon explain the specific
abstract interpretations we use for TVP.) Code manipulating primi-
tive (non-reference) types is abstracted away (i.e., is not modelled)
by the translation.

The above approach, effectively, analyzes the composite program
using the heap analysis algorithm described in [37, 33]. Simple vari-
ations on the scheme described above for translating Java programs
into TVP can be used to utilize several other well known heap anal-
ysis techniques for certification (see ([34]).

Java Statement TVP Translation
x = new C() let n = new() inptx(o) := (o = n)
x = y ptx(o) := pty(o)
x = y.fld ptx(o) := ∃o1 : pty(o1) ∧ rvfld(o1, o)
x.fld = y ptx(o1) � rvfld(o1, o2) := pty(o2)

Figure 9: Translating the pointer manipulation statements of
Java into TVP.

5.3 Specialized Component Abstraction
As explained in Section 4, our approach is to derive a special-

ized abstraction from the component specification, which serves as
the basis for more precise certification. This specialized abstraction
takes the form of a set of instrumentation predicates. An instrumen-
tation predicate [34] is defined by a formulae over the predicates of
the standard abstraction.

The derivation procedure described in Section 4 produces an ab-
straction consisting of a set of instrumentation predicatefamilies,
parametrized over references to the relevant components. (E.g.,
stale is a predicate family parametrized overIterator refer-
ences.) The actual set of instrumentation predicates used for certi-
fication of a given client is obtained by instantiating these families
for the given client. We saw in Section 4 how this instantiation is
done for a simple case, namely client programs where component
references are stored only in static variables (rather than in object
fields). We now show how the abstraction is instantiated and used
in the general case.

Consider an instrumentation predicateφ(x1, · · · , xk) with free
variablesx1 throughxk of typeC, derived from a specification for
componentC. LetCF denote the set of object fields of typeC in a
given client program. The family ofφpredicates used for analysis of
this client consists of ak-ary predicateφf1,··· ,fk for everyk-tuple
(f1, · · · , fk) in CFk. The value ofφf1,··· ,fk (o1, · · · , ok) is true
iff the k component instances pointed to by fieldf1 of objecto1,
through fieldfk of objectok, satisfy the propertyφ. (This scheme
can also be used to deal with local variables of typeC by treating a
local variable to be a field of an “activation record object”.)

As an example, consider thestale family of predicates used for
CMP, which is defined by the formulai.defVer != i.set.ver
with one free variablei. For certification of a CMP client, we will
use aunary predicatestalef(o) for every iteratorfield f in the client
program to track whether the iterator referenced by thef field of the
objecto is in an invalid state. (In contrast, the SCMP analysis uses a
nullary predicatestalex for every iterator variablex to track whether
the iterator referenced byvariable x is invalid.) Fig. 10 illustrates
the set of instrumentation predicates used for CMP certification, as
well as the definition of these predicates in TVP. (The defining TVP
formulae can be obtained from the correspondingEasl formulae
presented in Fig. 4 using the standard translation from Java to TVP
described earlier in this section.)

Next, we consider component method abstraction. Each method
abstraction takes the form of a collection of TVP actions. Fig. 11
presents the method abstractions for some of theSetandIterator
methods for CMP. These are obtained by generalizing the simpler
method abstractions presented in Fig. 5 for SCMP. Abstractions for
the remaining methods can be obtained similarly.

5.4 SpecializedTranslation of Client Programs
The specialized component abstraction is used in the translation

of a client program into TVP. In particular, component method calls
in the client program are translated using the corresponding method



Predicate Defining TVP formula
stalei(e) ∃o, s, v : rvi(e, o) ∧ rvset(o, s) ∧ rvdefVer(o, v) �⇔ rvver(s, v)
iterof i,v(e1, e2) ∃o1, o2 : rvi(e1, o1) ∧ rvv(e2, o2) ∧ rvset(o1, o2)
mutxi,j(e1, e2) ∃o1, o2, o : rvi(e1, o1) ∧ rvj(e2, o2) ∧ o1 �= o2 ∧ rvset(o1, o) ∧ rvset(o2, o)
samev,w(e1, e2) ∃s : rvv(e1, s) ∧ rvw(e2, s)

Figure 10: The modified instrumentation predicates used for HCMP. Note that i, j, v, and w now range over fields of type Iterator
or Set as appropriate.

Method Call TVP Translation
x.v = new Set() ptx(e1) ∨ pty(e2) � samev,v(e1, e2) := (e1 = e2)

ptx(e1) � samev,z(e1, e2) := 0 ∀z ∈ VF − {v}
ptx(e2) � samez,v(e1, e2) := 0 ∀z ∈ VF − {v}
ptx(e2) � iterof z,v(e1, e2) := 0 ∀z ∈ I

x.v.add() (∃e2 : ptx(e2) ∧ iterof i,v(e1, e2)) � stalei(e1) := 1 ∀i ∈ IF
x.i.remove() (∃e2 : ptx(e2) ∧ mutxj,i(e1, e2)) � stalej(e1) := 1 ∀j ∈ IF

Figure 11: Update formulae for the instrumentation predicates of HCMP shown in Fig. 10.

abstractions. Statements in the client program that do not invoke
component methods or manipulate component references are, how-
ever, translated using a suitable standard abstraction, such as the one
in Fig. 9. As explained earlier, the choice of the standard abstrac-
tion depends on the kind of heap analysis desired for analyzing the
client’s heap.

Thus, the specialized component abstraction leads to a certifica-
tion algorithm that is parametric with respect to the heap analysis
used for theclient’s heap. We refer to the parametric certification
algorithm obtained for CMP as HCMP.

5.5 Abstract Interpretations For TVP
We now present a brief overview of how the generated TVP pro-

gram is analyzed using TVLA. TVLA is an abstract interpretation
system for TVP based on 3-valued logic, which extends boolean
logic by introducing a third value1/2 denoting values which may
be1 or 0. A 3-valued structure over a set of predicate variablesP
is a pair〈U, ι〉 whereU is the universe, andι is a function mapping
predicate variables to their values: for every predicatep ∈ P of
arity k, ι(p) : Uk → {0, 1/2, 1}.

3-valued structures (as well as 2-valued structures, which are just
special cases of 3-valued structures) can beabstracted into smaller
3-valued structures by merging multiple individuals into one, and
by approximating the predicate values appropriately.

TVLA users can control this abstraction process by identifying
a subsetA of unary predicates to be theabstraction predicates.
TVLA’s abstraction mechanism merges all individuals having the
same value for all abstraction predicates into one individual. The
maximum size of the universe in a structure produced by abstraction
is3|A|. TVLA implements a standard iterative algorithm to compute
the set of all abstract structures that can arise at every program point
(a relational analysis). TVLA also implements a corresponding
independent attribute analysis that computes a single structure at
every program point, which approximates all structures that may
arise at that point. While this distinction was irrelevant for SCMP,
it does in principle have a bearing on the precision of the analysis for
CMP, since it affects the accuracy of the generic analysis of theclient
heap. Somewhat surprisingly, our empirical results (see Section 7)
showed that the relational version of the TVLA certification engine
had no precision advantage over the independent attribute version
for the benchmark clients we studied. This seems to provide further

evidence of the role that specialized component abstractions play in
yielding precise results. We refer the reader to [26] for more details.

6. MUTATION-RESTRICTED SPECIFICA-
TIONS

We now show that for the class ofmutation-restricted specifica-
tions, our derivation procedure terminates, producing a finite, pre-
cise abstraction for the component. This class includes all the exam-
ples presented in Section 2.2. Our result also implies that the results
in Section 4 and Section 5 for CMP also apply to all problems in this
class. Thus, for problems in this class, precise meet-over-all-paths
certification can be done in polynomial time for client programs that
do not use heap-based component-references. The results estab-
lished in this section also imply that the precise meet-over-all-paths
solution for certain restricted classes of alias analysis problems is
computable in polynomial time, a result that is interesting in its own
right. Proofs have been omitted due to space constraints.

Note that our abstraction derivation approach can produce finite
precise abstractions even for specifications that are not mutation-
restricted. A prominent example is CMP. Finding a better charac-
terization of the class of specifications for which the approach is
guaranteed to yield finite precise abstractions is an open problem.

We first introduce some terminology. A component specification
is said to bealias-based if all its preconditions are alias conditions
(i.e., of the form “requiresα = β”). A component fieldf is said
to be immutable if the field f of a component is assigned a value
only when the component is constructed; otherwise, it is said to be
a mutable field. A component specification ismutation-free if all
components in the specification have only immutable fields. (Note
that these definitions are with respect to theEasl specification of the
component, not any underlying implementation, which may freely
use mutable fields.)

Let TG denote a set of component types. Assume that TG is
closed: i.e., if typeT1 in TG has a field of type (pointer to)T2, then
T2 is also assumed to be in TG. We define the type graph of TG to
be the graph consisting of a node for each type in TG, and an edge
T1 → T2 labelledf for every fieldf in typeT1 of type pointer
to T2. Let ||TG|| denote the number of different paths in the type
graph of TG.



Theorem 1.For any mutation-free, alias-based, straight-line
component specification over TG, the component abstraction al-
gorithm will produce a disjunctive abstraction consisting of at most
||TG||2 predicate families.

We note that the above theorem applies to problems IMP and
AOP described in Section 2.2. We now consider a class of compo-
nent specifications that utilize a restricted form of destructive heap
update. Destructive heap update statements are statements of the
form “α.f := rhs”. A specification is said to have the restricted
heap update property if the right-hand side of every destructive heap
update statement in the specification is a newly constructed object
(or a “tree” of newly constructed objects, where each object has
pointers only to other newly constructed objects).

A specification with restricted heap update is said to have mutation
depthk if there are at mostk mutable fields in any path in the type
graph of the specification.

Theorem 2.For any alias-based, straight-line component spec-
ification over TG of mutation depth 1, the component abstraction
algorithm will produce a disjunctive abstraction consisting of at
most ||TG||4 predicate families.

We note that the above theorem applies to problem GRP described
in Section 2.2.

The above results focus on the component abstraction problem.
However, these results also imply the following upper bounds for
certain alias analysis problems, if the concept of mutation depth
is generalized to whole programs in the obvious way. These re-
sults qualify the well known results that alias queries of depth 2 are
hard [23, 27].

Theorem 3.(a) Must-alias and may-alias queries of mutation
depth 0 can be precisely answered in polynomial time (treating the
type graph size as fixed). (b) Must-alias queries of mutation depth
1 can be precisely answered in polynomial time for programs with
restricted heap update (treating the type graph size as fixed).

We now present some lower bounds. These are adaptations of
well-known intractability results of alias analysis [27] that focus on
the restricted classes of alias analysis problems that can be expressed
in terms of mutation depth and restricted heap update and can be
proved using a simple adaptation of the proofs in [27].

Theorem 4.(a) May-alias and must-alias queries of mutation
depth 1 are PSPACE-hard. (b) May-alias queries of mutation depth
1 is PSPACE-hard even for programs with restricted heap update.
(c) Must-alias queries of mutation depth 2 is PSPACE-hard even for
programs with restricted heap update.

7. EMPIRICAL RESULTS
We have prototyped several variants of the HCMP algorithm using

Soot [36] and TVLA [26]. We wished both to evaluate the precision
of the algorithm (i.e., the number of false alarms produced), and to
understand the cost/precision tradeoffs in the analysis design space.

The implementation is still at an early stage, and currently does
not address multithreading or recursion (since our benchmark pro-
grams did not require it). However, both can be handled in TVLA
using existing techniques [40, 31].

7.1 Engineering Aspects
Our Soot-based translator from Java to TVP uses liveness infor-

mation to reduce the number of predicates required for the analysis

and to restrict their scope. We take advantage of Soot’s implemen-
tation ofClass Hierarchy Analysis [12] to conservatively construct
a method call graph. In addition, Soot treats exceptions by con-
structing a control flow edge from each statement that may throw
an exception to all potential corresponding handlers.

7.2 Analysis Design Tradeoffs
We experimented with eight variants of HCMP, obtained by con-

sidering all possible points in the following design space for client
code analysis:

(i) Using a relational versus independent attribute approach for
modelling TVLA structures at every program point.

(ii) Context-sensitive versus context-insensitive treatment of client
method calls.

(iii) Using allocation sites versus variables names to distinguish
client heap cells. The variable names approach [37, 33] merges two
heap nodes if the set of variables and fields pointed to them are the
same. The allocation site approach merges two nodes if they are
allocated at the same allocation site in the client program [6, 21].

Our empirical observations were as follows:
(i) The independent attribute approach yielded an implementation

that wasas precise as the relational one, and faster. We believe that
the precision of the independent attribute approach is due to the
disjunctive abstractions we use as instrumentation predicates.

(ii) The context-sensitive algorithms performed better than the
corresponding context-insensitive ones with respect toboth effi-
ciency and precision.

(iii) The variables names approach yielded more precise results
than the allocation site approach.

In the interest of space, we give benchmark results only for
the context-sensitive, variables-names based, independent attribute
variant of the algorithm.

7.3 Results
Our experimental results indicate that our analysis is quite fast and

precise, producing only one false alarm over the test suite. (The false
alarm was produced by a conservative modelling of calls to Java li-
braries outside the scope of the analysis.) Fig. 12 displays the results
of the experiments. The test programs, which use JCF intensively,
are available at [38]. TheKernelSuite, designed to "stress test"
the analysis, includes numerous examples illustrating various dif-
ficult aspects of CMP.MapTest is from [22]. IteratorTest
andMapDemo are examples from [39].JFE is our own implemen-
tation’s front-end. The experiments were performed on a machine
with a 1 Ghz Pentium 4 processor, 1 Gb of memory, running JDK 1.3
Standard Edition on Windows 2000. (Note that the actual memory
used by the algorithm ranged from 1 Mb to 50 Mb.)

7.4 Future Enhancements
We are currently improving our implementation to allow analysis

of significantly larger programs. The improvements from which
we expect to derive the most benefits are (i) slicing away portions
of the program irrelevant to the component, and (ii) improving the
representation of first-order structures.

8. INTERPROCEDURAL SCMP
The class of certifiers described in Section 4 yields precise meet-

over-all-paths solutions forsingle-method clients in polynomial time.
The class of TVLA-based certifiers described in Section 5 handles
interprocedural CMP clients, (i.e., which contain calls among mul-
tiple client methods); however, the resulting solution will not be
precise in general. In this section, we show that the SCMP certifier
of Section 4 can be extended to compute the preciseinterprocedural



Benchmark # Classes # Methods # Lines # CFG # Errors # False Analysis Analysis # TVLA
of Code Nodes Reported Alarms Time (s) Space (Mb) Structures

KernelSuite 5 27 683 2150 15 0 60.09 18.66 4363
MapTest 2 9 335 424 1 0 61.20 19.87 4937
IteratorTest 3 10 126 154 0 0 0.23 4.18 208
MapDemo 1 3 33 32 0 0 0.01 1.13 26
JFE 1 45 2396 2896 1 1 236.34 49.10 9878

Figure 12: An empirical evaluation of HCMP.

meet-over-all-valid-paths solution for multi-method SCMP clients
in polynomial time. Unlike the techniques described in Sections 4
and 5, the methods in this section pertain only to SCMP; deriving
precise interprocedural analyses for more general classes of com-
ponent specifications is an open problem.

In the absence of recursive procedures with local variables, pre-
vious techniques [30] can be used to solve interprocedural SCMP.
Recursive procedures with local variables, however, complicate is-
sues as illustrated by the following example:

/* */ void P (Set S) {
/* 1 */ Iterator i = S.iterator();
/* 2 */ if (...) {
/* 3 */ P(S);
/* 4 */ i.next(); // will throw CME
/* */ } else {
/* 5 */ i.next(); // will not throw CME
/* 6 */ i.remove();
/* 7 */ i.next(); // will not throw CME
/* */ } }

Consider the execution path1, 2, 3, 1, 2, 5, 6, 7, 4, wherej denotes
the execution of line j in a recursive invocation of P. The modifica-
tion of the collection in line6 does not make the iterator created in
line 1 invalid, but it does make the iterator created in line 1 (i.e.,
in the earlier invocation of procedure P) invalid. Consequently, the
execution of line 7 willnot throw CME, but when the recursive invo-
cation terminates, the execution of line 4 in the original invocation
will throw CME.

The example illustrates two points: (a) The analysis has to distin-
guish between instrumentation predicates corresponding to different
recursive instances of the same local variable to avoid imprecision,
and (b) The analysis of a procedure cannot ignore instrumentation
predicates corresponding to local variable instances of procedures
up the call chain, even if “hidden” by subsequent recursive invo-
cations, because the values of these instrumentation predicatescan
change during the execution of the procedure (even though the val-
ues of the hidden local variables themselves can not change). This
complicates matters since the number ofinstances of local variables
of recursive procedures is unbounded.

We now show how we can handle these issues. We assume, for
now, that no global variables are used. For any procedureQ, let
Formals(Q) denote the set of formal parameters of procedureQ of
typeSet or Iterator. Define MayMod(Q) to be the subset of
Formals(Q) such that: a collection variableS is in MayMod(Q)
iff the execution ofQ may modify the collectionS and an iterator
variableI is in MayMod(Q) iff the execution ofQ may modify the
collection underlying the iteratorIvia iteratorI, assuming that there
are no aliases between any of the formal parameters. The informa-
tion MayMod(Q) is very similar to the quantity DMOD defined by
Banning [3] and can be computed very efficiently [8].

The intraprocedural SCMP algorithm can now be extended to
analyze a procedureP, utilizing only the summary information for
any procedure thatP calls. In particular, assume that MayMod(Q) is
{FC1, · · · , FCi, FI1, · · · , FIj}, where everyFCx is of typeSet and

everyFIx is of typeIterator. In effect, any call to a procedure
Q in procedureP may be replaced by the following code, where
ACx andAIy denote the actual parameters corresponding to formal
parametersFCx andFIy respectively:

if (...) AC1.add(""); ... ; if (...) ACi.add("");
if (...) AI1.remove(); ... ; if (...) AIj.remove();

Standard techniques can be used to analyze the whole program
using the above method for analyzing a single procedure. We refer
the reader to [29] for more details.

Interaction between local and global variables: In the presence
of both local and global variables, the information MayMod(Q) is
not sufficient to handle calls to procedureQ. The problem is that
a procedure call may modify the value of a global variable, sayg.
This can have the effect of changing the value of an instrumentation
predicate such asmutx g,l, wherel is a local variable of the calling
procedure. Modelling a procedure call to account for such effects
requires summary information similar to that required for precise
interprocedural slicing, which can be computed efficiently [30]. We
refer the reader to [29] for more details.

9. RELATED WORK
In addition to the verification techniques based on predicate ab-

straction discussed in Section 4.5, several other research efforts have
goals that are similar, to varying degrees, to ours.

Abstraction without predicate discovery Bandera [9] differs from
our work in that it does not use predicate discovery. Instead, it
relies on program slicing and user-provided abstractions to abstract
programs into finite state models.

Verification without abstraction ESC-Java [25] relies on theorem-
proving and program invariants to do verification. Traditionally,
users provided the invariants, but recent work has focused on auto-
matically “discovering” invariants [15] by generating candidate in-
variants heuristically, then eliminating those that are not irrefutable.
However, ESC-Java’s overall approach to verification is quite dif-
ferent from our approach. Also, unlike ESC-Java, our approach is
conservative.

Interprocedural ShapeAnalysis Noam Rinetzky [32] proposes im-
proving the efficiency of interprocedural shape analysis of programs
manipulating abstract data types by defining a special, hand-crafted
semantics for a linked-list abstract data type.

Type Checking Other approaches to improved static checking in-
cludes languages with advanced type systems (e.g., [13]). We are
not aware of any type system that can check for the kind of properties
we have looked at in this paper.

Incomplete Concrete State-Space Exploration Jackson and Fekete [19]
address the Concurrent Modification Problem bypartially exploring



the concrete state space of the program [20]. While this approach
never produces false alarms, it is inherently incomplete.

We refer the reader to [29] for more discussion on related work.
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