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We are concerned with the problem of staticaiéytifying (verify-

ing) whether the client of a software component conforms to the
component’s constraints for correct usage. We show how confor- General Terms
mance certification can be efficiently carried out staged fashion

for certain classes dirst-order safety (FOS) specifications, which
can express relationship requirements among potentially unboundedK

collections of runtime objects. In the first stage of the certifica- K EyWOr ds

tion process, we systematically derive an abstraction that is used toabstract interpretation, model checking, software components, pred-
model the component state during analysis of arbitrary clients. In jcate abstraction, static analysis

general, the derived abstraction will utilize first-orgeedicates,

rather than the propositions often used by model checkers. In the

second stage, the generated abstraction is incorporated into a statiél" INTRODUCTION

analysis engine to produceertifier. In the final stage, the resulting A fundamental impediment to effective use of software compo-
certifier is applied to a client to conservatively determine whether Nents or libraries is ensuring that client code satisfiesshstraints

the client violates the component's constraints. Unlike verification that the componentimposes as a prerequisite to correct usage. The
approaches that analyze a specification and client code together, ouffanvas* project at IBM Research and Tel-Aviv University [4] aims
technique can take advantage of computationally-intensive sym- to ease the use of software components by

bolic techniques during the abstraction generation phase, without
affecting the performance of client analysis. Using as a running ex-
ample theConcurrent Modification Problem (CMP), which arises
when certain classes defined by the Java Collections Framework are
misused, we describe several different classes of certifiers with vary-
ing time/space/precision tradeoffs. Of particular note are precise,
polynomial-time, flow- and context-sensitive certifiers for certain
classes of FOS specifications and client programs. Finally, we eval-
uate a prototype implementation of a certifier for CMP on a variety For the purposes of this paper, we consider a “component” to be any
of test programs. The results of the evaluation show that our ap- object-oriented software library, and focus on components written
proach, though conservative, yields very few “false alarms,” with in Java.

acceptable performance.
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e Allowing the component designer to specify comporemk
formance constraints, which describe correct component us-
age by a client program in a natural (yet still formal) way.

e Providing the client code developer with automated software
certification tools to determine whether the client satisfies the
component’s conformance constraints.

1.1 TheConcurrent Modification Problem

; ; ; The Concurrent Modification Problem (CMP), which arises in
Categor_les and SL_JbJ ect DESCFIDIOI’S o _ the context of the Java Collections Framework (JCF) [5], is a typ-
F.3.1 Logicsand Meanings of Programs]: Specifying and Veri- ical conformance constraint problem that we will use as a running
fying and Reasoning about Programs; F.2.8dicsand M eanings example in the sequel. JAR er at or s are used to iterate over

the contents of an underlying collection (e.gHashSet , which

implements theSet interface). A fundamental constraint on the

use of iterators is that once an iterator objects created for a
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republish, to post on servers or to redistribute to lists, requires prior specific PY another iterator, or by direct update to the collection. JCF col-
permission and/or a fee. lections detect violations of this constradynamically, and throw
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class Make {
private Worklist worklist;
public static void nain (String[] args) {
Make m = new Make();
minitializewrklist(args);
m processWorklist(); }
void initializeWrklist(String[] args) {
; worklist = new Worklist(); }
voi d processWorklist() {
HashSet s = worklist.unprocessedltens();
for (Iterator i = s.iterator(); i.hasNext()){
oject item=i.next(); // CME may occur here
if (...) processliten(item;
}}
void processltenm(Object i) { ...;
voi d doSubproblen{...) {
. worklist.addltem(newitem; ... }

doSubproblen(...); }

}

public class Worklist {
HashSet s;
public Worklist() { s = new HashSet(); . }
public void addlten{Object item { s.add(item; }
public HashSet unprocessedltens() { return s; }

Figure 1. An erroneous Java program fragment throwing CVE.

In Section 2, we will show how CMP and other FOS constraints
can be formally, yet naturally, specified as an abstract program in a
language callegasl®.

1.3 Staged Certification

Our approach to static component certification is based on ab-
stract interpretation [11] of the client program and is conservative,
which ensures that every potential violation of the component’s con-
formance constraints is detected. However, a potential drawback of
a conservative approach is the possibility of “false alarms”: spuri-
ous reporting of conformance violations that do not actually occur.
For an abstract interpretation to yield acceptable results, it is critical
to use a static abstraction of the runtime state that is precise enough
to avoid excessive false alarms, without yielding an analysis that
is computationally intractable. In this paper, we address this issue
by systematically generating component-specific abstractions from
a formal specification of a component’s conformance constraints in
the followingstaged manner:

1. First, the component designer or implementer writes a spec-
ification describing both the component’s conformance con-
straints and those aspects of the component’s behavior that are
pertinent to the component state referred to by the constraints.

Concurrent Mobdi fi cati onExcepti on(or CVE)whenitoc-
curs (note that the name of the exception is misleading, since it often
occurs in single-threaded programs). We will use “CMP” to refer
to the problem oftatically determining whether a JCF client may
causeCMVE to be thrown.

Consider the Java code fragmentin Fig. 1. Here, aniterator is cre-
ated on anor kil i st , which is implemented usingldashSet , a

. The component’s conformance specification is used to sys-

tematically derive acomponent-specific state abstraction. This
abstraction utilizemstrumentation predicatesdefined by first-
order logical formulae over the first-order structure underly-
ing the component specification. We refer to such an abstrac-
tion as dirst-order predicate abstraction, since it generalizes

thenullary predicateabstractions(i.e., proposition) tradition-
ally used in model checking.

JCFcollectionclass. Theiteratoristhenusedto process eachitemon
the worklistin succession. We observe tB&E can be thrown dur-

ing item processing, since the nested callé@ubpr obl ent .. .)
causesnor kl i st. addl tenm(newi t en) to be called, which

will in turn update the underlyingfashSet while the iterator is

still active. On the next iteration, the call ta next () would
causeCME to be thrown.

1.2 First Order Safety Constraints

In Section 2, we will see that CMP is an instance of a class of
conformance constraint problems where the component’s dynamic
state can be characterized (for specification purposes) fingta

order structure. A first-order structure consists of a finite collection  The separation of component-specific abstraction derivation from
of predicatesranging over a potentially unbounded universgndf- client analysis is a distinguishing feature of our approach. Since the
viduals. Using first-order structures to model component state per- apstraction derivation process is carried out only at “certifier genera-
mits, e.g., dynamic memory allocation or dynamic thread creation on time,” resource-intensive symbolic analysis may be used during

in the component to be modeled in a natural way [34, 40]. State Up- the apstraction derivation phase without affecting the efficiency of
dates in the component are modelled by updates to predicate valuesgjignt analysis.

in addition, the universe of individuals may also evolve—expand .
and contract—as a consequence of dynamic resource allocation orl.4 Overview

deletion in the component. ) - ) In the remainder of the paper, we present the following results:
In the sequel, we will develop static certification techniques for In Section 2, we show by example how FOS properties such as
certain classes dirst-order safety (FOS) constraints. In its most  cpmP can be naturally specified alsstract programs in Easl.
general form, an FOS cor_lstraint is simply a first-order logical for- In Section 3, we show how a simple form of conformance certi-
mulay over the set of predicates characterizing the component state fication can be carried out by applying classical abstract interpreta-
A clientis said tosatisfy ¢ if, for any input to the client, every com- o, or dataflow analysis to a composite program formed by inlining
ponent state encountered during the client’s execution satisfies  pe component’s behavior specification at every component method
Note that FOS constraints can be trivially used to specify finite 4| sjte in the client. For CMP, this certification approach can
state p.roperties of a component, as well as constraints involving pe viewed as an application of generic heap analysis. However,
dynamically-allocated resources. we show through examples that generic heap analysis (or similar
generic program analysis) applied to a composite program tend to
be imprecise and/or expensive, since the abstractions used by the

3. The generated abstraction is combined with a static analysis
engine to yield ecertifier specific to the component’s con-
formance specification. By choosing between different anal-
ysis engines, it is possible to obtain certifiers with various
time/space/precision tradeoffs.

4. The certifier is used to analyze the client to conservatively
determine whether possible violations of the conformance
constraints can occur.

2ExecutabledbstractionSpecificationLanguage



generic analysis are oblivious to the details of the constraint speci-

fication.
In Section 4, we show how to remedy the imprecision of the

generic certification technique using the staged approach outlined

in Section 1.3. This process is illustrated for a single CMP client

class Version { /* represents distinct versions of a Set */ }
class Set {

Versi on ver;

Set () { ver = new Version(); }

bool ean add(Object o) { ver = new Version(); }

Iterator iterator() { return new lterator(this); }

}

method in which references to collections and iterators are storedc! ass Iterator {

only in local or static variables (rather than in object fields). We
will refer to this restricted version of CMP as SCMP (“shallow”
CMP). We show that this approach yields a simple polynomial-
time certifier for SCMP that iprecise: i.e., the certifier computes

the precise meet-over-all-paths solution, and any imprecision in the

certifier arises solely from the imprecision in the abstraction used
for theclient’s state.
Section 5 shows how to handlmrestricted clients of CMP by

Set set;
Ver si on def Ver;
Iterator (Set s){ defVer = s.ver;
void remove() {
requires (defVer set.ver);
set.ver = new Version();
def Ver = set.ver;

set = s; }

Obj ect next() { requires (defVer == set.ver); }

}

using a more general version of the abstraction generation process

described in Section 4.

Figure 2: An Easl specification of CMP.

Section 6 shows that the staged certification process generates

precise certifiers for any member of a classretation-restricted
constraint specifications

In Section 7, we measure the precision and running times of a pro-

totype implementation of our algorithm for the unrestricted CMP
problem on a suite of test cases, including both “real-world” pro-

The dynamic check for CMP implemented in JCF uses integer-
typed versions, rather than heap-allocated version objects, but is
otherwise similar to th&asl specification.

We will use the Java code fragment in Fig. 3 as a running example

grams that use JCF and contrived test cases representing “difficult” of a CMP client. As explained by the comments in the fig@ie:
instances of CMP. We discuss several configuration options for the may be thrown during the execution of lin@®r 9, but not during

core TVLA analysis engine that yield different time/space/precision
tradeoffs for CMP analysis. The resulting analysis produces mini-
mal “false alarms” on the test cases, with reasonable speed.

Section 8 shows how the intraprocedural analysis for SCMP pre-
sented in Section 4 can be extended to yield a precise, context-

sensitive, polynomial-timenter procedural analysis for SCMP.
Finally, a detailed comparison to related work is given in Sec-
tion 9.

2. ABSTRACT PROGRAM SASSPECIFICA-
TIONS

Easl specifications take the form abstract Java programs (sim-
ilar facilities are found in IML [24]), which serve both to describe

critical aspects of the component’s behavior, and to indicate con-

straints that must be satisfied by any well-behaved cligbasl

the execution of ling. An analysis that misses the errors in liftes
or9isunsound, while areport of a possible error in heonstitutes
a false alarm.

2.2 Other FOS Conformance Problems

The following conformance constraint problems are similar to
CMP in that they can be naturally modelled by FOS specifica-
tions constraining the relationship among instances of dynamically-
allocated component objects. All of these problems are members of
the class oimutation-restricted conformance constraint problems
described in Section 6, and admit precise analysis using our staged
certification techniques.

Grabbed Resource Problem (GRP): Consider a graph library
that provides graph traversal utilities. An implementation of graph
traversals where state is stored in vertices (e.g., to record if the vertex
has been already visited) does not allow for multiple simultaneous

combines a restricted subset of Java statements (assignments, coniraversals of agraph. Initiating a new traversal of a giaphiidates

ditionals, loops, and heap allocation), a restricted set of primitive

prior traversals of theame graph, which may not later be resumed.

types (booleans and object references), built-in set and map typesiThis is an instance of a general resource-sharing protocol where a
and arequires statement (which describes a constraint that must be resource may be preemptively acquired, which places the constraint
satisfied at a particular point in the component's execution). These that the prior holder may no longer use the resource.

constructs are sufficient to simulate conventional pre- and post- | mplementation Mismatch Problem (IMP): Interfaces of mod-
conditions, as well as various forms of finite state specifications. yles consisting of multiple interacting types often utilize methods

Most importantly,Easl allows a natural expression of component

behaviors that determine the relationships among potentially un-

bounded numbers of component objects.

2.1 Specifying CMP

Fig. 2 contains arkasl specification of CMP. In this specifica-
tion, every modification of a collection creates a distinct version of
that collection, identified by a unigier si on object. Every iter-
ator records which version of which collection it is associated with.

with multiple arguments, with an implicit requirement that the ac-
tual arguments all belong to tlsame module implementation. This
is the case with the well-knowiRactory design pattern [16].

Alien Object Problem (AOP): Acompound object (e.g., agraph)
may have a method (e.g., to add an edge) with a restriction that
the actual parameters (e.g., of type vertex) “belong” to the graph.
Passing a vertex of one graph as an argument to another graph’'s
method could have unintended consequences.

Every use of an iterator is checked for correctness by comparing the3_ GENERIC CERTIFICATION

version of the iterator with the version of the underlying collection.
Note that an update to a collection through an iterator updates bot
the collection’s and the iterator’s version, thus ensuring that that
particular iterator may continue to be used safely.

h Since theEasl specification of CMP in Fig. 2 models the compo-

nent behavior via manipulation of an “abstract heap,” it is natural to
consider whether certification of this or similar problems could be
carried out using generic heap analysis. Indeed, this is the case. In
general, one approach to carrying out certification would be as fol-
lows: (a) Create a composite program by combining the client code



| *
/*
/*
/*
| *
11
I

*/
*/
*/

Set v = new
Iterator i1l
Iterator i2
*/ lterator i3
*/ il.next();
The follow ng update via il invalidates the
iterator referred to by i2.

Set ();
v.iterator();
v.iterator();
il;

A WNEFO

/* 5 * il.renmove();

/* 6 * if (...) { i2.next(); /* CME thrown */ }

/Il i3 refers to the same, valid, iterator as il

/* 7% if (...) { i3.next(); /* CVE not thrown */ }
/1 The following invalidates all iterators over v

/* 8 */ v.add("...");

/* 9 */ if (...) { il.next(); /* CME thrown */ }

Figure 3: A Java program fragment illustrating CMP.

and the component specification, treating the specification as the
componenimplementation. This is particularly simple to do with
Easl specifications, since they take the form of abstract programs.
(b) Apply a suitable analysis algorithm to the resulting composite
program and verify that whenever angqui r es clause in the
specification is executed, the expression in the clause will evaluate
to true. In the case of CMP, we could carry out Step (b) using any
existing algorithm formust-alias analysis, since theequi r es
clauses of the CMP specification all entail equality comparisons of

aspecialized abstraction of the components’ state. This abstraction
technique will yield more precise and efficient certifiers than the
generic abstractions used in Section 3.

We illustrate the staged abstraction process using CMP. We will
restrict our attention in this section to CMP clients in which refer-
ences to collections and iterators are stored only in local or static
variables (rather than in object fields). We will refer to this spe-
cial case of CMP as SCMP. We will also assume in this section
that the client contains no calls to other client methods (i.e., that
the client analysis is intraprocedural). We will show that the gener-
ated abstraction yields a polynomial time certifier that computes the
precise meet-over-all-paths solution for (intraprocedural) SCMP.

This section is intended to convey the essential ideas of our ap-
proach without excessive formalism. Section 5 fills in most of the
formal details, and extends the results to arbitrary client programs
by describing how component references in the client heap are han-
dled, and how constructs such as client method calls are treated. In
addition, Section 8 describes a precise, polynomial-finter pro-
cedural certifier for the special case of SCMP.

Our component abstraction process will consist of: c@jpo-
nent state abstraction, which characterizes those aspects of the com-
ponent state (more precisely, the state of all component object in-
stances) that are relevant to the certification process, aedrtipp-
nent method abstraction, which identifies how the component state
abstraction is updated as a result of a component method call.

two pointer-valued expressions. (This approach can be generalized4, 1  Deriving Component State Abstraction

to arbitrary Easl specifications using a generic analysis engine.
See [29] for details.)

Let us now consider how well certification based on generic alias
analysis works for CMP. Consider, for example,aiocation-site
based analysis [6] which does not distinguish between different ob-
jects allocated at the same program point.

Set s = new HashSet ();
while (...) {
s.add(...);
for (lterator i = s.iterator(); i.hasNext(); ) {
Object o = i.next();
}
}

An allocation-site based alias analysis will be unable to certify that
this fragment is free of CMP errors, because the analysis will be
unable to distinguish between the differ@mtsions of sets inside

the loop. Similar problems occur when other generic heap analyses
are applied to CMP; e.g., see Section 4.4.

We note that SCMP (CMP restricted to client programs in which
references to collections and iterators are stored only in static or
local variables) can be seen as a must-alias problem with 3-level
pointers—a problem for which precise analysisis in gerreR8BACE-
hard in the intraprocedural arEXPTIME-hard in the interproce-
dural case [27]. This is one reason to suspect that even SCMP is
likely to be resistant to most generic heap analysis algorithms, and
that any generic heap analysis algorithm of sufficient accuracy to be
useful for SCMP would likely be quite inefficient.

4. STAGED CERTIFICATION

The problem with using any generic analysis engine for certifica-

We will represent the relevant state of a component uisistgu-
mentation predicates[34], which can be viewed as refining the com-
ponent’s state with derived information specific to the certification
problem. Given the SCMP restriction, the abstraction derivation
process yields aullary predicate abstraction, i.e., a collection of
nullary predicates (or propositions, or boolean variables). In Sec-
tion 5, we will describe a more general abstraction derivation process
that can yield predicates of arbitrary arityfifst-order predicate ab-
straction). For the sake of simplicity, we will assume that the com-
ponent specification contaimsequi r es clauses only at method
entry. Component specifications that contagqui r es clauses
at points other than at method entry may be handled by suitably
generalizing the approach below.

We identify instrumentation predicates by iteratively performing
a symbolic, backward weakest-precondition [14] computation over
every possible sequence of component method calls, using the fol-
lowing rules:

1. If any component method has e€qui res ¢” clause at
method entry, them is a candidate instrumentation for-
mula.

. Ifp1V...Vyy is acandidate instrumentation formula (where
none of thep; is a disjunct of the forma vV 3), then eachp;
is a candidaténstrumentation predicate.

. If ¢ is a candidate instrumentation predicate, & the
body of a component method, then the weakest precondition
of o with respect td5, WP(S, ), is acandidate instrumen-
tation formula. (WP(S, ¢) is a formula that holds before the
execution ofSiff  holds after the execution &.)

The motivation for rules 1 and 3 should be clear. The motivation
for rule 2 is slightly more complex. The specific form of rule 2 is

tion is that such an engine must use abstractions based on progranmntended to enable the use of an efficignlependent attribute[28, p.
properties unrelated to the component conformance constraints 0f247] analysis without losing the precisionrefational analysis [28,

interest. In this section, we show how to remedy this problem by

p. 248]. Ifp1 V 2 is a candidate instrumentation formula, tracking

using a component’s conformance constraint specification to derive the values of; andy- separately does notlead to aloss of precision.



‘ of the free variable (herd,t er at or). Specifically, letl andV
denote respectively the set bf er at or variables and the set of

Predicate [ Meaning (in Easl)

stalej i . def V‘Er_ '=1i.set.ver Set variables in an SCMP client. The set of predicates we use for
iterofj y |1 .set == v analysis of the client is

mutzj (i.set ==j.set) && (il=1]) ) ) .

samevw |V == W { stalej |i €I}uU{iterofj y|i €l,veV}U

{ mutz; i |i,j eI}U{samevw]|v,we V }.

Figure 4: Theinstrumentation predicates used for component 4.2 Deriving Component M ethod Abstraction

state absiraction in CMP. Having described how to derive a component state abstraction, we
must now identify the corresponding abstraction of the component’s
collection of methods. Each abstracted method will define how a
call to that method affects the values of instrumentation predicates
comprising the state abstraction.

The iterative rules of Section 4.1 for deriving a component’s state
abstraction can also be seen to generate the method abstractions, as
follows: Let o be a candidate instrumentation predicate, and let
the weakest precondition gfwith respect to component methtl

; beyp, V... Vyi. Each candidate; is represented in the abstraction
Component State Abstraction for CMP by a corresponding (boolean-valudgisl variablep;. We define
We now illustrate the process above by applying it to the specifica- theupdate formula for po for methodMto be “pg := p1 V...V p”.

In contrast, ifp1 A @2 is a candidate instrumentation formula, then
we create a@ngleinstrumentation predicate; A 2 since tracking

the values ofp; andy, separately may lead to imprecision when
used with an independent attribute analysis. This is related to the
notion of disjunctive completion [10, 17] and distributivity in static
analysis.

tion of CMP. The abstraction of methddconsists of an update formula for every
Siep 1: We are interested in determining at every call-site to instrumentation predicate, as well as the precondition of the method
methodd terat or::next () andlterator::renove()), (expressed asraequi r es clause).
say,onan t er at or variablei , if the precondition of the methods The method abstractions obtained from the CMP specification are
may fail, thatis, ifi . def Ver !=i.set.ver maybetrue. We  shown in Fig. 5. (These abstractions have been optimized by elim-
therefore introduce a new predicatalej to representthe formula  inating update formulae of the formy := po, which correspond
i.defVer !=i.set.ver. to instrumentation predicates whose values are not affected by the
Sep 2: Next, we consider how the execution of differeSet method call.) The method abstractions have been presented in a
andl t er at or methods affect the value of predicatele; . Con- form that reflects the intended use of these abstractions during certi-
sider the execution of a method call add( ) , wherev is of type fication of a given client. In particular, during certification, calls to
Set . stale; is true after the execution of. add() iff the con- component methods in the client code (the left column of the table)
dition (stalej || ( . set == v)) is true before the execution of  will be replaced by the corresponding method abstraction (the right
the statement. This suggests maintaining the value of the expres-column of the table). The same table also presents abstractions of
sioni . set == v inorder to precisely update the valuesile; . copy assignments of component references, which serve the same
Hence, we introduce a second instrumentation predicatef; ,,, purpose as the method abstractions.
representing the conditidn set == v. The table in Fig. 5 is parametrized byandV, which denote
Sep 3. Consider the effect of executijg r enmove() (where respectively the set of t er at or variables and the set det
j is an iterator variable) on predicatéalej . It can be verified  variables in a client program. The method abstractions utilize a
that stalej is true after execution of . r emove() iff the condi- macro mechanism, indicated by thequantifier. In particular, a
tion (stalej || (i.set == j.set) && (i !=j)))is true macro-based update of the forintfs(z) := rhs(z) V z €

before the execution of the statement. We introduce the instrumen-S” represents a whole set of updates, one for eaehS.
tation predicatenutz; ; , representing the conditiqi . set ==

j.set) && (i '=7). 4.3 Specialized Certification

Step 4: It can be verified thatterof, , is true after the execution Let us now see how the component and method abstractions are
ofi = w.iterator() iff v == wbefore the execution ofthe  used in certification of a client program. The first step in the certi-
statement. We introduce the instrumentation predisateev w, fication process is ttransform the client program by (a) replacing
representing the condition == w. variables in the program that are references to the component by

_ We have now reached a fixed point: applying the rules for iden- boolean variables corresponding to the identified instrumentation
tifying instrumentation predicates will not produce any more pred- predicates, and (b) replacing calls to component methods by a cor-
icates. Fig. 4 presents the definitions of the instrumentation predi- responding instantiation of the identified method abstraction. (The

cates identified. part of the transformed client program that relates to the component
. . resembles &oolean program[2].)
Predicate Families To determine whether the inlined component method precondi-

Our earlier description of the rules for identifying instrumentation tions will always be satisfied, we use standard program analysis
predicates omitted certain details for the sake of clarity. An expres- techniques. We note that the transformed program has a very special
sion identified as a candidate instrumentation predicate by theseform: each assignment statement is of the fpgm=p1 V... V pi

rules will, in general, contain free variables. As an example, the ex- OF p := 0 orp := 1. As aresult, any fixed point computation for a

pression . def Ver = i.set. ver identified as being a can- set of distributive equations over values in the set of subséts af
didate instrumentation predicate contains a free variabl&uch (-9, finite distributive subset (FDS) analysis [30]) can be used to
an expression really identifiesfamily of instrumentation predi- ~ compute the possible values of each variable at every program point

cates for a given client program which contains one predicate for in the transformed program.
every variable in the client program whose type is the same as that



| Statement | Specialized Abstraction |

/I variables representing values of nullary predicate abstraction

v = new Set () samey v =1 /I used for certification
samey z =0 Yz € V—{V} boolean;talei 1, sta.lei 2, stale; 3;
samez v =0 Vze V—{v} Egg:gzzmmf.ilfv’nemfiz’.v’“emf.ia’.v; o .
3 ’ mutzi i1, mutxiiiz, mutzii iz, mutziz i1, mutxizz;
ZteTOfk vV = 0 vkel booleanmutz;i i 3, mutziz,i 1, mutzis,i2, mutzis,is;
v. add() staleg := staleg V iterofy VKeT booleansamey,v;
i = v.iterator()| iterofj ; := samev,z VzeV 70: Set v = new Set();
mut:ri i =0 samey,y = 1;
o L iterofiy , 1= 0;
mutzj = z'terofk’v vkel {I } iterof .y = 0:
mutzy j = zteroka vkel-{i} iterofig = 0;
F— /' 1: lterator il = v.iterator();
stalej =0 .
i .remove() requires— stale; iterofiyy i= samey.y;
. mutzigii = 0;
Stalej = Stalej v mUth i Vi el mutzi i3 = iterofi;; mulzizii = iterofis ;
i.next() requires— stale; mutzi iz := dterofip ;. mutzizii = dterofip y;
stalejq := 0;
v=w samev z := samewz Vz€V—-{v} /2 lterator i2 = v.iterator();
samez v = samezw Vz € V—{v} iterofi, , 1= samey v;
itero, 1= itero vkel muttiz iz := 0;
- - - fk v . fk w € mutxi2i1 := iterof; 1y MutTiviz = iterof; 15
=] Zterofi zZ = ZtETij z VzeV mutziz,i3 = iterofis,; mutzig,iz = iterofis ;
mulzj = mulzj k vkel-{i} staleiz = 0;
mutzy j = mutTy | vkel-Hi} II'5: il.remove();
stalej = stalej requires—stalej1; I/ requi r es statement is satisfied
stalej1 = stalej1 V mutzij1;
stalejz := stalej2 V mutzizi1; /Il stalej 2 becomes1
stalej 3 := stalejz V mutziz,i1;

Figure 5: The component method abstraction for CMP. Here,
i,j,andk denotevariablesof typel t er at or , whilev, w, and
z denote variables of type Set .

Figure6: A fragment of thetransfor med client program of Fig. 3

Since every equi r es clause in the transformed program takes
the special formfequi res —v", thisinformation is sufficient to nodes in a storage shape graph together if and only if they are pointed
perform the certification. to by the same set of variables. Let us see what happens at State-
We now illustrate this process for SCMP. The code fragment in ment 5 of Fig. 3 when we apply the analysis based on shape graphs.
Fig. 6 illustrates how selected statements of the CMP example of The two concrete nodes for the two version objeetsindo5 are
Fig. 3 are transformed. Note that the declarations of ther at or merged together because there are no pointer variables that point to
andSet variables are replaced by the declaration of corresponding either object. As a result ofierging togethero4 ando5, we have
sets of boolean variables representing the nullary predicate abstraclostinformation: in the abstract state, we will have to conservatively
tion derived in Section 4.1. The transformation of Statement 5 of assume that each ofL, i 2, andi 3 may beeither valid or invalid.
the example is particularly notable. Here, we see that the condition Hence, the analysis will produce a false alarm at statement 7.

in the specification’s equi r es clause, which checks the validity Note that the state representation in Fig. 8 is much more com-
of iteratori 1, is satisfied. However, as a result of executing state- pact, yet more precise, than the state representation in Fig. 7(c). In
ment, the value of variabletale;2 becomesl, which will prevent particular, it enables the staged certifier to determine that iterator
ther equi r es clause corresponding to the use @ in Statement i 3 is valid after statement 5 and avoid producing a false alarm at
6 (translation omitted) from being satisfied. statement 7.

The next step is to analyze this transformed program to deter-
mine the possible values of the boolean variables mentioned in the4.5 The Derivation Process. Details
requi r es clauses in the transformed program. In the intraproce-  \we have seen that the derivation procedure for identifying instru-
dural case, the precise (meet-over-all-paths) solution to this problemmentation predicates converges quickly for CMP. In Section 6, we
can be computed in tim@&(EB?) time using FDS analysis [30],  show that the process converges with a finite set of instrumenta-
where B denotes the number of iterator and collection variables tion predicates for a class @&asl specifications callednutation-
in the original program and’ denotes the number of edges in the  regtricted specifications. The corresponding abstraction produced
control-flow graph of the program. We address the interprocedural for the components is finite but precise abstraction: i.e., any im-
version of the problem in Section 8 and show how the meet-over- precision in a certifier that uses the derived component abstraction is
all-valid-paths solution can also be computed in polynomial time.  sglely due to the imprecision in the abstraction used foctteat's

- . . state. In the general case, however, there is no guarantee that the

4.4 SDECI alized vs. Generic Abstraction derivation procedure will terminate. In other words, for some exam-

Fig. 7(a) and Fig. 7(b) depict thencrete state of the program of  ples, there may be no finite bound on the number of instrumentation
Fig. 3 before and after execution of Statement 5. Fig. 8 depicts the predicates generated by this procedure. However, in the general
abstract states computed by the staged certifier that correspond to case, heuristics may be used to stop the generation of new instru-
those concrete states. mentation predicates at some point during the derivation process.

It is interesting to compare the abstract state used by our spe-This will, in turn, require introducing approximate but conserva-
cialized certifer with that computed by a sophisticated heap analy- tive method abstractions (since some of precise update formulae
sis based ostorage shape graphs [37, 33]. These analyses merge required for a method abstraction may not be expressible in terms
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(a) Concrete and abstract state before executi¢in) Concrete state after execution of statemefit) Abstract state after execution of statement 5.
of statement 5. 5.

Figure7: (a) and (b) arestorage shapegraphsrepresenting the concrete state before and after execution of line5. (c) isastorage shape
graph that abstractsthe concrete state depicted by (b). A solid edge denotes a “must” point-to relation and a dotted edge denotes a
“may” point-torelation.

of the generated instrumentation predicates). Identifying suitable State before the execution of statemént

heuristics to ensure termination of the derivation procedure is be-
yond the scope of this paper.

The abstraction derivation process entails checking whether a
newly generated instrumentation predicate is equivalent to any of the
instrumentation predicates already generated. While simple conser-
vative equality checks (such as converting the predicates to a normal
form, e.g. disjunctive normal form, and comparing them for syn-
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mutziiiz2 =1

mutziiiz =0
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State after the execution o

f statemBnt

stalej1 =0

stalei, =1

stalejz =0

iterofiy =1

iterofi,y =1

iterofizy =1

mutziijz2 =1

mutzi1iz =0

mutzi2iz =1

tactic equality) are sufficient to ensure termination of the derivation
procedure in examples such as CMP, more powerful decision pro-
cedures can be used to make the derivation procedure more effectiveFigure 8: An illustration of the abstract state maintained by
and to reduce the number of generated instrumentation predicatesour specialized certifier for SCMP. Note that the state repre-
While the use of alternative decision procedures for equality has ansentation has been simplified using the facts that for all x,y
impact on the set of generated instrumentation predicates, it doeSsamey x = 1, mutzx x = 0, and mutzx y = mutzy x.

not affect the correctness of the approach.

4.6 Relation to Predicate Abstraction ponential relational analysis. In fact, our predicate discovery is
The approach described in this section is closely related to the no-intended to enable the use of more efficient independent attribute
tion of predicate abstraction [18]. The term “predicate abstraction” analysis without losing the precision of relational analysis. This is
has been used in the literature to denote both the approximation ofwhat enables our technique to produce a polynomial time SCMP
a program’s state by a collection of boolean variables (nullary pred- certifier that computes the precise meet-over-all-paths solution.
icates), as well as the approximation of a program’s statements by A third difference between our approach and prior work is the
statements that refer only to these boolean variables. Recent workSubject of the next section.
on counterexample-driven abstraction refinement focuses on im-

proving predicate abstraction based verification by “discovering” 5. FIRST ORDER PREDICATE ABSTRAC-

predicates that are relevant to the particular verification problem
instance [1, 35, 7]. While our goals are similar, our approach is or- TION
thogonal to previous approaches. Our predicate discovery algorithm  In Section 4, we saw how a component specification can be used
is applied only to a component/library specification, to determine to derive a specialized abstraction which can in turn serve as the
a suitable abstraction of the component. This allows ustdge basis for more precise certification. For SCMP, the relevant com-
the whole process, as the component specification can be analyzeghonent state was described bywlary predicate abstraction. In
before any client program is available, and the results (re)used for the general case, we will utilizérst-order predicate abstraction,
checking any possible client program. This can serve as the basiswhere both nullary and non-nullary predicates may be used to de-
for a moremodular and scalable predicate discovery based verifi-  scribe the relevant program state. The component abstraction pro-
cation, and avoid or reduce the need for expensive symbolic anal-cess for SCMP was described in terms of operations on Java-style
ysis during analysis of the client program. In contrast, predicate statements and predicates. However, to describe the first-order ab-
discovery in prior work is done lazily, during the analysis of acom- straction derivation process for arbitrary client programs, we will
plete program/system, over a single execution path. This, however,require a more expressive intermediate language. We will use the
has the advantage that it can produce better abstractions. The twd'VP [26] intermediate language for this purpose.
approaches are complementary and can be employed together to In the remainder of this section, we give an overview of the TVP
improve efficiency, while retaining flexibility. language, show how client programs may be translated into TVP,
A second difference between our approach and prior work basedand generalize the component abstraction process of Section 4 to
on predicate abstraction is in how the abstracted program is sub-clients where component references may be stored in the heap. As
sequently analyzed. While prior work relies on model checking before, we describe the abstraction process by example using CMP.
techniques whose complexity is exponential (they correspond to Finally, we present a brief overview of the TVLA system [26], a
relational analysis), our approach is not restricted to using an ex- configurable abstract interpreter for TVP. We use TVLA as a cer-



tification engine for TVP programs formed by combining the TVP

. . . ) . Java Statement TVP Trandation
translation of a client program with the first-order abstractions gen- — I — . —
erated for the component x = new () etn = new() inpty (o) := (0 =n)
_ ' X =y ptx (0) == pty (o)
51 AnOverview of TVP x =y.fld ptx (0) := 3o1 : pty (01) A rog | g(01,0)
TVP is an imperative programming language built around an ex- | X-f1d = ¥y pix (01) B> rvf | d(01,02) := pty (02)

pression sub-language based on first-order logic. The only type of
variables allowed in TVP are predicate variables. Program states
are represented in TVP I®valued logical structures. A 2-valued
structure over a set of predicate variabless a pair(U, ¢), where

U is a set referred to as the universe, arisla function that maps

predicate variables to their values: for every predigate P of 5.3 Specialized Component Abstraction

arity k, «(p): U* — {0, 1}. o . . ) .
ATVP program is a control-flow graph, each edge annotated with . AS explalngd in Section 4, our approac_h_ IS FO derlv_e a special-
anaction, consisting of: ized abstractlon from the comppnent speglflcatlon, yvhlch serves as

() An optionalprecondition (a first-order logic formula), which the basis for more precise certification. This specialized abstraction
: " takes the form of a set of instrumentation predicates. An instrumen-
's used to model conditional branches. tation predicate [34] is defined by a formulae over the predicates of
(b) Zero or moreallocation bindings of the form et id = P - Y P
the standard abstraction.

new() in" whichaddsanewelementtotheuniverse. The newly- The derivation procedure described in Section 4 produces an ab-
added element may be referred té asn the following assignment; . on p : ; produc
straction consisting of a set of instrumentation predicanelies,

Figure 9: Trandating the pointer manipulation statements of
Javainto TVP.

the value of any predicate(vs, ... , vx), where at least one of the arametrized over references to the relevant components. (E

v; represents a newly-added element, is defined to be false. paj . dicate famil trized ovet tp f'_ 9
(c) Zero or more predicate updates of the fortm, . .. , v,,) 1= staleis a predicate amy parametrized ovet erat or reter ;

(Vs Uy, . 1n), Where eachy; is a variable bound by ences.) The actual set of instrumentation predicates used for certi-

fication of a given client is obtained by instantiating these families

for the given client. We saw in Section 4 how this instantiation is

done for a simple case, namely client programs where component

references are stored only in static variables (rather than in object

5.2 Standard Trandation of Client Pr ograms fields). We now show how the abstraction is instantiated and used
We now present a standard way of modelling the state of an arbi- in the general case.

; : Consider an instrumentation predicatér:, - - - ,xx) with free
trary Java program using a 2-valued structure: : . TR
y prog g variablesr; throughzy, of type C, derived from a specification for

e Every heap-allocated object is modelled by an element of the component. Let CF denote the set of object fields of typein a

universe. given client program. The family af predicates used for analysis of
this client consists of &-ary predicatepy, .... s, for everyk-tuple
(f1, -+, fr) in CF*. The value of¢y, ... f, (01, ,0k) iS true
iff the k£ component instances pointed to by figld of objecto,
through fieldf: of objecto, satisfy the property. (This scheme
e Everyfieldf | d of areference type is represented by a binary can also be used to deal with local variables of tgply treating a

an allocation binding, which assigns a new value to predicate vari-
ablep. We use the notatiogruard > lhs := rhs as shorthand for
“lhs := (guard A rhs) V (—guard A lhs)”.

e Every (static) reference variablar isrepresented by aunary
predicatepty gy ; the value oty 5y (o) istrueiffvar refers
to (“points to”) the objecb.

predicaterv | o; the value ofrvf | (o1, 02) is true iff the local variable to be a field of an “activation record object”.)
fieldf | d of objecto; refers to objecb,. As an example, consider ttgale family of predicates used for
CMP, whichisdefined by the formuila def Ver != i .set.ver

e TVP provides no explicit support for procedures. Procedures
are modelled [31] by explicitly modelling a stack of activation
records. In particular, an activation record is modelled by an
element of the universe, and local variables of procedures are
modelled just like fields: the value o) \, (o1, 02) is true iff
the variabld v of activation recora; refers to objecb..

with one free variablé . For certification of a CMP client, we will
use aunary predicatestales (o) for every iteratofield f in the client
program to track whether the iterator referenced by tfield of the
objectoisin an invalid state. (In contrast, the SCMP analysis uses a
nullary predicatestaley for every iterator variable to track whether
the iterator referenced byariable x is invalid.) Fig. 10 illustrates

Fig. 9 illustrates how typical Java heap manipulation statements the set of instrumentation predicates used for CMP certification, as
will be translated into TVP actions under the above model. (Note well as the definition of these predicates in TVP. (The defining TVP
that the translation fax = new C() models only allocation; ini- formulae can be obtained from the correspondias! formulae
tialization of the object by the constructor is modelled separately.) presented in Fig. 4 using the standard translation from Java to TVP
Generic certification (see Section 3) is done by translating both the described earlier in this section.)
client program and the component specification into a composite  Next, we consider component method abstraction. Each method
TVP program in this fashion, and by applying abstract interpreta- abstraction takes the form of a collection of TVP actions. Fig. 11
tion to this composite program. (We will soon explain the specific presentsthe method abstractions for some dbétteand! t er at or
abstract interpretations we use for TVP.) Code manipulating primi- methods for CMP. These are obtained by generalizing the simpler
tive (non-reference) types is abstracted away (i.e., is not modelled) method abstractions presented in Fig. 5 for SCMP. Abstractions for
by the translation. the remaining methods can be obtained similarly.

The above approach, effectively, analyzes the composite program - . .
using the heap analysis algorithm described in [37, 33]. Simple vari- 54 Spe(:| alized Translation of Client Pr ograms
ations on the scheme described above for translating Java programs The specialized component abstraction is used in the translation
into TVP can be used to utilize several other well known heap anal- of a client program into TVP. In particular, component method calls
ysis techniques for certification (see ([34]). in the client program are translated using the corresponding method



Predicate | Defining TVP formula |
stalej (e) do, s, v : rvj (e,0) A ruget (0, s) A rvdef Ver (0,v) & rover (s,v)

iterofj y(e1,e2) | Jo1,02 : rvj (e1,01) Aoy (e2,02) A ruset (01,02)

mulzj j (e1,e2) | Jo1,02,0: rvj (e1,01) Arvj (e2,02) A o1 # 02 A ruset (01,0) A ruset (02,0)
samev w(ei,e2) | ds:ruy(er,s) A row(es, s)

Figure10: Themodified instrumentation predicatesused for HCMP. Notethat i ,j , v, and wnow rangeover fieldsof typel t er at or
or Set asappropriate.

[ Method Call | TVP Trandation |
X.v = new Set () | pt,(e1)V pt,(e2) > samev v (e1,e2) = (e1 = e2)
pt,(e1) > samey . (e1,e2) :==0 Vz € VF — {v}
pt,(e2) > same v (e1,e2) :==0 Vz € VF — {v}
pt,(e2) > iterof .y (e1,e2) :=0 Vzel
X. v.add() (3ez : pty (e2) N iterofj (e, ez2)) > stalej (e1) :=1 Vi € IF
X.1.renove() (Jez : ptx (e2) A mulzj j (e1,e2)) > stalej (e1) :=1 Vj e IF

Figure 11: Update formulaefor theinstrumentation predicates of HCM P shown in Fig. 10.

abstractions. Statements in the client program that do not invoke evidence of the role that specialized component abstractions play in

component methods or manipulate component references are, howyielding precise results. We refer the reader to [26] for more details.

ever, translated using a suitable standard abstraction, such as the one

in Fig. 9. As explained earlier, the choice of the standard abstrac-g, MUTATION-RESTRICTED SPECIFICA-

tion depends on the kind of heap analysis desired for analyzing the TIONS

client’s heap.
Thus, the specialized component abstraction leads to a certifica- We now show that for the class oiutation-restricted specifica-

tion algorithm that is parametric with respect to the heap analysis tions, our derivation procedure terminates, producing a finite, pre-

used for theclient’s heap. We refer to the parametric certification ~ Cise abstraction for the component. This class includes all the exam-

algorithm obtained for CMP as HCMP. ples presented in Section 2.2. Our result also implies that the results
] in Section 4 and Section 5 for CMP also apply to all problems in this
5.5 Abstract Interpretations For TVP class. Thus, for problems in this class, precise meet-over-all-paths

We now present a brief overview of how the generated TVP pro- certification can be done in polynomial time for client programs that
gram is analyzed using TVLA. TVLA is an abstract interpretation d0 not use heap-based component-references. The results estab-
system for TVP based on 3-valued logic, which extends boolean lished in this section also imply that the precise meet-over-all-paths
logic by introducing a third valué /2 denoting values which may solution for certain restricted classes of alias analysis problems is
bel or 0. A 3-valued structure over a set of predicate variatites computable in polynomial time, a result that is interesting in its own
is a pair(, «) wherel is the universe, andis a function mapping right. Proofs have been omitted due to space constraints.

predicate variables to their values: for every predigate P of Note that our abstraction derivation approach can produce finite
arity k, «(p): U* — {0,1/2,1} precise abstractions even for specifications that are not mutation-
1 . ) ) . . . . . .
3-valued structures (as well as 2-valued structures, which are just™estricted. A prominent example is CMP. Finding a better charac-
special cases of 3-valued structures) caaltsiracted into smaller terization of the class of specifications for which the approach is
3-valued structures by merging multiple individuals into one, and guaranteed to yield finite precise abstractions is an open problem.
by approximating the predicate values appropriately. We first introduce some terminology. A component specification
TVLA users can control this abstraction process by identifying i_s said to bealias—basec_i if all its preconditions are alias co_nditi_ons
a subsetd of unary predicates to be thabstraction predicates. (ie., oftheformt equi r es a = 37). Acomponentfield is said

TVLAs abstraction mechanism merges all individuals having the 0 Peimmutable if the field f of a component is assigned a value
same value for all abstraction predicates into one individual. The Ny when the component is constructed; otherwise, itis said to be
maximum size of the universe in a structure produced by abstraction@ Mutable field. A component specification rsutation-free if all
is314l. TVLA implements a standard iterative algorithm to compute  €0mponents in the specification have only immutable fields. (Note
the set of all abstract structures that can arise at every program pointhat these definitions are with respect to#s| specification of the

(a relational analysis). TVLA also implements a corresponding COMponent, not any underlying implementation, which may freely
independent attribute analysis that computes a single structure at/S€ mutable fields.) _
every program point, which approximates all structures that may L€t TG denote a set of component types. Assume that TG is
arise at that point. While this distinction was irrelevant for SCMp, Cl0sed: i.e., iftypeT} in TG has afield of type (pointer td), then

it does in principle have a bearing on the precision of the analysis for 12 IS &lS0 assumed to be in TG. We define the type graph of TG to
CMP, since it affects the accuracy of the generic analysis af terat be the graph consisting of a node for each type in TG, and an edge
heap. Somewhat surprisingly, our empirical results (see Section 7)1 — T2 labelled  for every field / in type 71 of type pointer
showed that the relational version of the TVLA certification engine © 72- Let||T'G|| denote the number of different paths in the type
had no precision advantage over the independent attribute versiondraph of TG.

for the benchmark clients we studied. This seems to provide further



Theorem 1.For any mutation-free, alias-based, straight-line
component specification over TG, the component abstraction al-
gorithmwill produce a disjunctive abstraction consisting of at most
|ITG||? predicate families.

We note that the above theorem applies to problems IMP and
AOP described in Section 2.2. We now consider a class of compo-
nent specifications that utilize a restricted form of destructive heap

and to restrict their scope. We take advantage of Soot’s implemen-
tation of Class Hierarchy Analysis [12] to conservatively construct

a method call graph. In addition, Soot treats exceptions by con-
structing a control flow edge from each statement that may throw
an exception to all potential corresponding handlers.

7.2 Analysis Design Tradeoffs

We experimented with eight variants of HCMP, obtained by con-

update. Destructive heap update statements are statements of thsidering all possible points in the following design space for client

form “a.f := rhs". A specification is said to have the restricted

code analysis:

heap update property if the right-hand side of every destructive heap (i) Using a relational versus independent attribute approach for
update statement in the specification is a newly constructed objectmodelling TVLA structures at every program point.

(or a “tree” of newly constructed objects, where each object has
pointers only to other newly constructed objects).

A specification with restricted heap update is said to have mutation
depthk if there are at most mutable fields in any path in the type
graph of the specification.

Theorem 2.For any alias-based, straight-line component spec-
ification over TG of mutation depth 1, the component abstraction
algorithm will produce a digunctive abstraction consisting of at
most ||TG||* predicate families.

(i) Context-sensitive versus context-insensitive treatment of client
method calls.

(iii) Using allocation sites versus variables names to distinguish
client heap cells. The variable names approach [37, 33] merges two
heap nodes if the set of variables and fields pointed to them are the
same. The allocation site approach merges two nodes if they are
allocated at the same allocation site in the client program [6, 21].

Our empirical observations were as follows:

(i) The independent attribute approach yielded an implementation
that wasas precise as the relational one, and faster. We believe that
the precision of the independent attribute approach is due to the

We note that the above theorem applies to problem GRP describeddisjunctive abstractions we use as instrumentation predicates.

in Section 2.2.

The above results focus on the component abstraction problem.

However, these results also imply the following upper bounds for
certain alias analysis problems, if the concept of mutation depth
is generalized to whole programs in the obvious way. These re-
sults qualify the well known results that alias queries of depth 2 are
hard [23, 27].

Theorem 3.(a) Must-alias and may-alias queries of mutation
depth 0 can be precisely answered in polynomial time (treating the
type graph size as fixed). (b) Must-alias queries of mutation depth
1 can be precisely answered in polynomial time for programs with
restricted heap update (treating the type graph size as fixed).

(i) The context-sensitive algorithms performed better than the
corresponding context-insensitive ones with respedidtt effi-
ciency and precision.

(iii) The variables names approach yielded more precise results
than the allocation site approach.

In the interest of space, we give benchmark results only for
the context-sensitive, variables-names based, independent attribute
variant of the algorithm.

7.3 Results

Our experimental results indicate that our analysis is quite fastand
precise, producing only one false alarm over the test suite. (The false
alarm was produced by a conservative modelling of calls to Java li-
braries outside the scope of the analysis.) Fig. 12 displays the results

We now present some lower bounds. These are adaptations ofof the experiments. The test programs, which use JCF intensively,

well-known intractability results of alias analysis [27] that focus on

are available at [38]. Thker nel Sui t e, designed to "stress test”

the restricted classes of alias analysis problems that can be expresseghe analysis, includes numerous examples illustrating various dif-
in terms of mutation depth and restricted heap update and can beficult aspects of CMPMapTest is from [22]. | t er at or Test

proved using a simple adaptation of the proofs in [27].

Theorem 4.(a) May-alias and must-alias queries of mutation
depth 1 are PSPACE-hard. (b) May-alias queries of mutation depth
1 is PSPACE-hard even for programs with restricted heap update.
(c) Must-alias queries of mutation depth 2 is PSPACE-hard even for
programs with restricted heap update.

7. EMPIRICAL RESULTS

We have prototyped several variants of the HCMP algorithm using
Soot [36] and TVLA [26]. We wished both to evaluate the precision
of the algorithm (i.e., the number of false alarms produced), and to

andMapDeno are examples from [39]J FE is our own implemen-
tation’s front-end. The experiments were performed on a machine
witha 1 Ghz Pentium 4 processor, 1 Gb of memory, running JDK 1.3
Standard Edition on Windows 2000. (Note that the actual memory
used by the algorithm ranged from 1 Mb to 50 Mb.)

7.4 Future Enhancements

We are currently improving our implementation to allow analysis
of significantly larger programs. The improvements from which
we expect to derive the most benefits are (i) slicing away portions
of the program irrelevant to the component, and (ii) improving the
representation of first-order structures.

understand the cost/precision tradeoffs in the analysis design space,

The implementation is still at an early stage, and currently does 8.

not address multithreading or recursion (since our benchmark pro-
grams did not require it). However, both can be handled in TVLA
using existing techniques [40, 31].

7.1 Engineering Aspects

Our Soot-based translator from Java to TVP uses liveness infor-

INTERPROCEDURAL SCMP

The class of certifiers described in Section 4 yields precise meet-
over-all-paths solutions faingle-method clients in polynomial time.
The class of TVLA-based certifiers described in Section 5 handles
interprocedural CMP clients, (i.e., which contain calls among mul-
tiple client methods); however, the resulting solution will not be
precise in general. In this section, we show that the SCMP certifier

mation to reduce the number of predicates required for the analysisof Section 4 can be extended to compute the preéntegrocedural



Benchmark # Classes # Methods| # Lines | # CFG || # Errors | # False|| Analysis | Analysis #TVLA

of Code | Nodes || Reported| Alarms || Time (s) | Space (Mb)| Structures
Kernel Suite |5 27 683 2150 15 0 60.09 18.66 4363
MapTest 2 9 335 424 1 0 61.20 19.87 4937
IteratorTest | 3 10 126 154 0 0 0.23 4.18 208
MapDeno 1 3 33 32 0 0 0.01 1.13 26
JFE 1 45 2396 2896 1 1 236.34 | 49.10 9878

Figure 12: An empirical evaluation of HCMP.

meet-over-all-valid-paths solution for multi-method SCMP clients everyFI, is of typel t er at or . In effect, any call to a procedure
in polynomial time. Unlike the techniques described in Sections 4 Qin procedureP may be replaced by the following code, where
and 5, the methods in this section pertain only to SCMP; deriving AC, andAI, denote the actual parameters corresponding to formal
precise interprocedural analyses for more general classes of comparameter8C, andFI, respectively:
ponent specifications is an open problem. _ - _ .

_In the absence of recursive procedures with local variables, pre- : I E: : :; 2?1: fgﬁévez; o ; ; : {f('(: : ?)Aiil.f(rji(rmv)e;();
vious techniques [30] can be used to solve interprocedural SCMP.

Recursive procedures with local variables, however, complicate is-  Standard techniques can be used to analyze the whole program

sues as illustrated by the following example: using the above method for analyzing a single procedure. We refer

/*  */ void P (Set S) { the reader_to [29] for more details. '

/* 1 */ lterator i = S.iterator(); I nteraction between local and global variables: Inthe presence

; g ; 'fPE 5 R of both local and global variables, the information MayM®yis

IRy i next(): [/ will throw CMVE not sufficient to handle ca]ls to procedu@e The problem is that

I* %/} else { _ a procedure call may modify the value of a global variable,gay

;: 2 :; i.next(); [/ will not throw CVE This can have the effect of changing the value of an instrumentation

aa eSOt i not throw o predicate such asutzg,1, wherel is a local variable of the calling

/I*x/ )} procedure. Modelling a procedure call to account for such effects
) ) ) requires summary information similar to that required for precise

Consider the execution path2, 3, 1,2,5,6,7, 4, wherej denotes  jnterprocedural slicing, which can be computed efficiently [30]. We

the execution of line j in a recursive invocation of P. The modifica- refer the reader to [29] for more details.
tion of the collection in ling does not make the iterator created in

line 1 invalid, but it does make the iterator created in line 1 (i.e.,

in the earlier invocation of procedure P) invalid. Consequently, the 9. RELATED WORK

execution of line 7 wilhot throw CME, but when the recursive invo- In addition to the verification techniques based on predicate ab-
ca_mon terminates, the execution of line 4 in the original invocation straction discussed in Section 4.5, several other research efforts have
will throw CME. goals that are similar, to varying degrees, to ours.

The example illustrates two points: (a) The analysis has to distin-
guish between instrumentation predicates corresponding to differentAbstraction without predicate discovery Bandera [9] differs from
recursive instances of the same local variable to avoid imprecision, our work in that it does not use predicate discovery. Instead, it
and (b) The analysis of a procedure cannot ignore instrumentationrelies on program slicing and user-provided abstractions to abstract
predicates corresponding to local variable instances of proceduresprograms into finite state models.
up the call chain, even if “hidden” by subsequent recursive invo- o ) . )
cations, because the values of these instrumentation prediaates ~ Verification without abstraction ESC-Java [25] relies on theorem-
change during the execution of the procedure (even though the val-Proving and program invariants to do verification. Traditionally,
ues of the hidden local variables themselves can not change). ThisUSers provided the invariants, but recent work has focused on auto-

complicates matters since the numbeinsfances of local variables matically “discovering” invariants [15] by generating candidate in-
of recursive procedures is unbounded. variants heuristically, then eliminating those thgt_ are no‘g wrefptab_le.

We now show how we can handle these issues. We assume, fofHowever, ESC-Java’s overall approach to verification is quite dif-
now, that no global variables are used. For any proce@uiet ferent fro_m our approach. Also, unlike ESC-Java, our approach is
Formals(Q) denote the set of formal parameters of procedpio# conservative.

typeSet or |t erat or. Define MayMod(Q) to be the subset of
Formals(Q) such that: a collection variabt is in MayMod(©
iff the execution ofQ may modify the collectiors and an iterator
variablel is in MayMod(@ iff the execution ofQ may modify the
collection underlying the iteratdrviaiterator , assumingthatthere

are no aliases between any of the formal parameters. The informa-Type Checking Other approaches to improved static checking in-
tion MayMod(Q) is very similar to the quantity DMOD defined by  ¢ludes languages with advanced type systems (e.g., [13]). We are

Banning [3] and can be computed very efficiently [8]. not aware of any type system that can check for the kind of properties
The intraprocedural SCMP algorithm can now be extended to e have looked at in this paper.

analyze a procedut®, utilizing only the summary information for
any procedure th& calls. In particular, assume that MayMal{s IncompleteConcrete State-SpaceExplor ation Jackson and Fekete [19]
{FCy,--- ,FC;,FIq,--- ,FI;}, whereever§c, isoftypeSet and address the Concurrent Modification Problenpbstially exploring

I nter procedur al ShapeAnalysisNoam Rinetzky [32] proposesim-
proving the efficiency of interprocedural shape analysis of programs
manipulating abstract data types by defining a special, hand-crafted
semantics for a linked-list abstract data type.



the concrete state space of the program [20]. While this approach[19] D. Jackson and A. Fekete. Lightweight analysis of object
never produces false alarms, it is inherently incomplete.
We refer the reader to [29] for more discussion on related work.
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