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ABSTRACT

There has been an explosion of hyperlinked dataamy domains,
e.g., the biological Web. Expressive query langsaged effective
ranking techniques are required to convert thisadeitto browsable
knowledge. We propose the Graph Information Disgo\(&ID)
framework to support sophisticated user queriesaornch web of
annotated and hyperlinked data entries, where quergwers need
to be ranked in terms of some customized rankinigria, e.g.,
PageRank or ObjectRank. GID has a data model thaludes a
schema graph and a data graph, and an intuitiverygjueterface.
The GID framework allows users to easily formulajaeries
consisting of sequences of hard filters (selecticedicates) and soft
filters (ranking criteria); it can also be combinedith other
specialized graph query languages to enhance thainking
capabilities. GID queries have a well-defined setitanand are
implemented by a set of physical operators, eaawhi¢h produces
a ranked result graph. We discuss rewriting oppwitias to provide
an efficient evaluation of GID queries. Soft fiteare a key feature
of GID and they are implemented using authoritywfloanking
techniques; these are query dependent rankingsaaméxpensive to
compute at runtime. We present approximate optimoiza
techniques for GID soft filter queries based on firteperties of
random walks, and using novel path-length-bound amedph-
sampling approximation techniques. We experimagntallidate our
optimization techniques on large biological and limigraphic
datasets. Our techniques can produce high qualigp(K) answers
with a savings of up to an order of magnitude, émparison to the
evaluation time for the exact solution.
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H.3.3 [Information Search and Retrieval

General Terms
Algorithms, Performance, Experimentation.
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1. INTRODUCTION

Consider a rich web of annotated data entries ¢tdjjein
Internet accessible sources with hyperlinks to iestrin other
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sources. Examples include the biological Web, @#sasets and
their metadata, bibliographic data sources, heafthdata, desktop
files and Intranets. Such graphs have signific#ferénces from the
general Web graph. Each of the data entries ourdents contains
some specific typed knowledge, e.g., information genes and
proteins for the biological Web. Thus, this grams lan underlying
schema graph. Users of sutyfped websvant answers to queries
that are meaningful to them and go beyond tradifidnformation
Retrieval (IR) keyword queries. These users havphisticated
information needs, which require both customizaticand
personalization, when ranking query results. FangXe, a biologist
may only want to retrieve protein data entries filewissProt, or she
may be interested in discovering the associatioesvden a
particular drug and a disease by following the dinemong
publications that are linked to proteins and vieesa..
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The challenges to query answering in this rich wélentities
include supporting users to retrieve meaningfulnaans, given the
user’s preferences, rather than just retrievingvaht data entries.
The Graph Information Discovery (GID) framework mgspport a
simple yet flexible query interface where a usem easily pose a
complex query. Ranking of answers must reflectsgmmantics of this
rich Web and the user’s personal perspective. GliErigs must be
interactive and support the exploratory discovergcpss. Hence,
they must support formal semantics so that queaesbe optimized
and evaluated efficiently.

The limitations of many prior solutions are thaeyhtypically
converge on the extremes of query complexity, pin keyword or
complex queries, with few solutions in between, tbey fail to
consider ranking. Web search [11, 12, 14, 22, 2®)leys excellent
ranking techniques but have limited search capgbilihe keyword
search paradigm of Web search has also been ad@apstdictured
databases [3, 5, 6, 16, 29]. On the other hande thee a variety of
extensions of SQL for Web graphs (WebSQL [21], W3{20],
WebOQL [4], StruQL[12]) and RDF graphs (SPARQL [R8]
However, none of these languages provide customizedking
techniques. The approach in [24] is an excelleait stowards
incorporating ranking in structured Web querieseytprovide an
underlying algebra and optimization; however, tldeynot support
an interface that allows users (scientists in theeoof the scientific
Web) to intuitively write useful complex queriesrrdo they support
powerful ranking techniques like authority flow bds ranking.
NAGA [19] implements reasoning tasks on RDFS doaisjeand
supports complex queries and ranking. NAGA targgted graphs
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keep up-to-date. It does not support query-custetnianking. That
is, a fixed confidence-based ranking function ipliagal to the final
results. In contrast, GID allows the user to speevhat ranking



GN-PR EntrezProtein
EntrezGene /D= “7916",
Name="HLA-B-Associated
transcript 27, Organism=
“HomoSapiens”,

transcript 2",

ID="179339”, Definition =
”"HLA-B-associated

Organism="HomoSapiens”
, Features="region...”.

OMIM /D = “142590 7,
Description = “HLA-B-Associated
transcript 3. By chromosome
walking with overlapping.......”

J OM-PM

Description = “A cluster of

A
PR-PM

transcript 57, Organism=
“HomoSapiens”,

Description = “A cluster of "HomoSapiens”,

- .. GN-PM PubMed PMID = “2156268”,
eI NI GN-PR Authors="J. Banerji, A. J. Sands,
EntrezGene /D= “7920” J.L. Strominger, T. Spies” Title="A
Name="HLA-B-Associated EntrezProtein gene pair from the human major

ID="4337110", Definition =
"BAT2", Organism =

histocompatibility complex...”
Descrr'ptr’orl= “A large number of ...”

PRPM P

genes, BAT1- Features="source..region...”
BATS5....TNF....human”
GN-NUS OMIM OMID = “142580 7,

EntrezNucleotide /D=
“4337095”, Defintion
=“Homo sapiens MSH55
gene..”, Organism=
“HomoSapiens”,
Description = “Major ..... 7

Description = “HLA-B-
Associated transcript 2. From
cDNA clones, determined the
complete seq.......”

PubMed PMID = “14656967”
Authors=" T. Xie, L. Rowen, B.
Aquado, M.E. Ahearn..”
y Title="Analysis of the gene-dense
major histocompatibility
complex...” Description="In
mammals, the Major

NU-PM

Histocompatibility....”

Figure. 1 Sample Data Graph for a Biological Datage

mechanism (if any) should be used for each leghef query.
Furthermore, NAGA uses expensive reasoning algosgthwhich
may not scale to very large datasets like PubMédtkereas GID
relies on a suite of scalable approximation andindpation
techniques. We show in Section 4 that our framewoak
complement such prior research and extend it wighpert for
sophisticated queries and ranking.

This paper addresses the challenges of expressidg a
answering sophisticated user queries on typed grapte focus
on a web of annotated data entries from biologitzth sources
for our running examples and experiments. Howether,generic
GID framework is applicable in multiple domains; wese
bibliographic data as a second evaluation domain our
experiments. The GID framework has the followingtfees and
capabilities:

«  Given atyped graph, GID provides a user interfacgpecify
a combination of hard and soft filters; the laftezorporate
ranking in an intuitive manner. GID emulates domgiiaph
query languages such as IgO§PR[25] and filter queries in
PubMed [1]. GID can be combined with more generaph
languages to support complex queries.

«  Filters are implemented by an underlying closeclalg of
physical operators. Each operator produces a ragkagh
and GID operators can be combined. The propertighen
operators are used to determine the relevant qeemiting
rules.

¢ GID soft filters are implemented using authoritgvil based
ranking; they are query dependent and must be ctadmat
runtime. Two novel approximation techniques areligti in
order to achieve interactive query response tirie® is a
path-length-bound technique, where only paths wiitdid
length are considered. The second is a graph-sagnpli
approximation technique, where sampling over a Baye
network is used to create sampled graphs and dsetitha
ranking scores.

¢  GID queries were evaluated on biological and bgtphic
datasets. We show that our approximation methoteee
execution time reductions of up to an order of niagie,
with negligible degradation of the Tdpanswer’s quality (in
comparison to the exact ranking). This allows Gitipport
an exploratory framework.

The paper is organized as follows: Section 2 prsstre
data model. Section 3 describes the query languagetion 4

presents related work. Section 5 presents the r@gaid Section
6 discusses authority flow techniques used to impl soft
filters and their efficient evaluation. Section egents the GID
optimizer and its execution. Section 8 presentsghality and
performance experiments. Finally, Section 9 preseotr
conclusions and future work.

2. DATA MODEL

The GID framework views a database as a labelgohgthis
captures both relational and XML databases. Ituidet a data
and a schema graph. The data gr&pB(Vp,Ep) is a labeled
directed graph where every node (objact)as a type(v), a set
Ay, ..., A of attributes with attribute valugsg(v),...,A(v) and a set
c(v) of keywords. For example, the node “PMID 1465696¥%
Figure 1 has type “PubMed” and attributes “Titleida'Authors”
and the set of keywords includes {*mammals”,
“histocompatibility”, ...}.

The schema grap8QVs, Eg) (Figure 2) is a directed graph
that describes the structure of a data gf2agh Every nodes and
every edges have an associated typ@) or A(e), respectively. For
instance, the “Entrez Gene” to “PubMed” edge inuFéy2 has
type “GN-PM”. We say that a data grapi&(Vp,Ep) conforms to
a schema grapBQVsEy) if there is a unique assignmeytof
data-graph nodes to schema-graph nodes and a temhsis
assignment of edges as follows:

1. for eachvJVp there is au(v) U Vs such thak(v)=A(u(v));
2. for every edgel] E; from nodeu to nodev there is an edge
u(e)JEsthat goes froma(u) to u(v) andi(e) = A(u(e)).
1

contains (m:n)
‘ Entre'z EREN Entrez
— | | Nucleotide . . Gene
co cites (m:n) =
£Q PM-PM A S
2 5 cites (m:n) cites (m:n) @
£ NU-PM—> PubMed [«GN-PM— 3 =
° |
Entrez
Protein [PR-PM- -OM-PM+ OMIM
cites (m:n) cites (m:n)

Figure. 2 Subset of Schema Graph for a Biological &aset.

3. GID QUERY LANGUAGE

The intuition of the GID framework is the applicati of a
sequence of hard and soft filters. A filter genlgrikes as input a
ranked graph and outputs a ranked subgraph ohhe graph. A
hard filter is used to eliminate some nodes in al8an manner
whereas a soft filter provides ranking.



3.1 GID Query Syntax

Given a data grapPG and a schema gra8G a queryq is
a sequence=[r;>...>r] of filters r;. We use the “>” symbol to
denote a total order between the filters and teisresents a
pipelining of the output of one filter as input tee next. The
results of a query, which are usually (see excepkielow) the
nodes of the graph output by the last filter, aafemred to as
target objects A query may also specify the numblerof the
requested top-results. A filterr={R,N,$ is the following 3-
tuple:

(1) The selection conditioR as follows:

¢ A keywords Boolean (OR, AND, NOT) expressi&n
e.g.,Keywords = “cancer” AND “breast”

¢ An attribute value pairav, e.g.,
comparative..”

e AtypeT, e.g.,Type ={EntrezGeng

« A Path expressioR, e.g.,Path = EntrezGen&ubMed
or Path = EntrezGengKeywords= “tnf" ] / PubMed
[author="Michael].

(2) A BooleanN; the value=true means thails negated.

titte = “A

(3) A BooleanS; a value=true means thais soft.

GID does not support soft filter§£true), whereR is a path
expression, or negated soft filtetd=¢rue and S=true) since the
semantics are unintuitive. Path expressiomay contain types,
unidirectional single step navigational operataf)s hulti-step
navigational operators (//), and type wildcards. (Notice that
“Path, “Keyword$ and “Typé€ are reserved words in GID. GID
does not support a combination of selection cooiati(keyword
expression, attribute value pair, type or path esgion) within a
single filter, in order to simplify the implementat and
optimization process.

Example1: A biologist’s exploration is as follows: Startifigom
genes in Entrez Gene she follows links to Entregeit and then
to PubMed; her target objects are a set of paperBubMed. She
wants to rank these papers by their importanceyaatee to the
word “human”. The following expresses her needs

g; = [{ Path= EntrezGene/EntrezProtein/PubMed, false, false
>{Keywords“human”, false, trué
>{Type=PubMed, false, fal§g.

The first hard filter creates a subgraph of pathsnf genes in
Entrez to proteins to PubMed publications. The sd¢aoft filter
provides a “goodness” rankingto be discussed belypvwith

respect to the keyword “human”, and the last, hditter

identifies the “target objects” - publications froubMed — in
the result]

The most simple and intuitive GID query for novicgers is
to specify a set of hard filters ..., } and a single soft filter..
This can have a default interpretationgof{r,...,;} > rsor asq

= rg >{ry,....,;} depending on the application semantics. The

specific ordering of the hard filterg{...,r} is not important as
long as they do not include Path filters as shaw8ection 5.2.

Target Objects:As mentioned above, we assume by default that

all the objects of the resulting subgraph of therguare output to
the user. Alternatively, the $ sign is used to cteée more fine-
grained group of target objects. For instangge,= [{Path =

$EntrezGen®/EntrezProtein, false, fal§ereturns all EntrezGene
objects that point to an EntrezProtein object.

3.2 GID Query Semantics

To define the semantics of GID queries, we firstirdea
score assignment functip@corefor a data grapG(Vp,Ep) to
be a mapping of noded1V;, to real valuesScordv) in [0,1]. A
unit score assignmenScorg,, assignsScorgn(v)=1 to every
v/ Mp. The input of a filter is a pair G;,,Scorg,) of a data graph
G, and a scores assignmedtore, for G;,. Similarly, the output
is a pair GounScorg,y), whereG,,; is a subgraph dg;,. Applying
the filter is as follows:r(G;,Scorg,)=(Goui Scorg,y).-

Given a GID querg=[r;>r,>...>r,.>r] on the data graph
DG=(Vp,Ep) the result  Gg,Score) of ¢ is
Mm(Fmea(-..(r2(r2(DG, Scorgnp))...)).

During query evaluation, filters are applied in theder
indicated in the query. Note that the unit scomggasnent is used
for the first filterr,. Alternative initial scores are possible, e.ge th
global score of a node computed by a method lilgeRank [23].
Each filter may change the scores of the data grEipis may also
eliminate nodes and edges as explained next. Ampliter r on
graphDG is as follows:

e« Eachvin DG is assigned a scoBcordv) in [0.0,1.0].

*  When nodev is assignedscorév)=0, then the node and its
incident edges are removed. For example, applying
{Keywords*human”, false, fals¢ removes all nodes and
incident edges in grapB;, that do not contain the keyword
“human” to creat&s,,; .

Given the result IGg,Score) of g, where DGr=(Vg,ERr),
GID will display a list of the nodesg of Vg ranked by decreasing
Scorg(v) values.

Hard filters are used to eliminate nodes (and their incidegesy
of G;,. The filter is evaluated as a Boolean and mayasstore 0
to some nodes. The score is unchanged for theoféke nodes.
Consider the following filter={ R,false,falsg

1. If Ris a keyword expressiok (or simply a keyword),
Scorg(v)=0 if v does not satisfyE, else Scorg,(v) =
Scorg,(V).

2. If Ris a attribute value paav, thenScorg(v)=0 if nodev
does not satisfgy, elseScorg(Vv) = Score,(V).

3. If Ris a typeT, thenScorg,(v)=0 if v is not of typeT, else
Scorg(v)=Scorg,(v).

4. If Ris a pathP, thenScorg(v)=0 for nodes not contained in
a path of typd>, elseScorg,(v)=Scoreg,(v).

The opposite scores are assigned {fR,true,falsg@

Soft filters rank a result subgraph and are inherently fuzzy.
SupposeR is a keywordw or keyword expressiorkE, then,
applyingr results in the following score:

Scorg(v)=f(Scorg,(v),Scorg(V))

0<Scorg(v)<1 is the score assignedvdy r. Scorg(v) shows how
“good” v is, given the grapks;,. GID does not specify the exact
semantics or computation of these sc@esre(v) for soft filters.
Various approaches are possible including authfiaty (Section



6), IR scoring [27], path count [18], keyword pnaouiy [13, 17],
minimum distance from the keyword nodes and soNmte that
Scorg(v) must be positive (non-zero) and must not depenthe
input score assignme®tore,(v). This important assumption, the
non-pruning order-free assumptidor soft filters, is needed to
obtain useful rewriting axioms. This assumptiorrédasonable to
implement since a small epsilon value can be asdign nodes
instead of O if they are completely irrelevant Ro We use a
combining function f(e.g., product or min). In principle, any
combining function may be used. However, a monofonetion
is usually more intuitive and also allows pipeligirand fast
computation of the top results [10]. In order toimwin the
Scorév) in [0.0,1.0], we normalize th8corégv) after application
of each filter.

Example 1 (cont'd): Figure 3 shows the query evaluation of
query g given the input data graph DG of Figule We assume
initial unit scores assignment Scgye We also assume a simple
soft filter scoring function with Scofg)=0.5 if a node does not
contains the term and Scef@=1 otherwise. The combining
function f is summation]

4. RELATED RESEARCH

Meeting target user needsWe interviewed biomedical domain
experts and examined popular search tools. Whemrdas&
describe the selection of target objects (resthis) are documents
in PubMed, these users chose progressive filtexfrige objects;
see PubMed filter queries [1]. They also requessiuple
navigational paths. PubMed supports filters innaited manner;
users can select a set of predefined filters (Hétets in our
terminology), e.g., filter the publications thatecMEDLINEplus
articles. In [29], we conducted user experimentt ghow the
benefits of soft filters for this domain. We noltext the real test of
the GID framework will be a friendly graphical useterface and
user evaluation studies; this is included in otwifel work.

A second aspect of user needs is the richnesseofiéita
model. The GID model is much simpler compared td-Riet it
can capture much of the knowledge used by a ssteimtithe
process of literature based discovery (LBD) on \tieb. NAGA
[19] has a similar labeled directed multi-graph adahodel.
However, they may have significant overhead in reit@ing the
confidence of facts and relationships of the RDFE®Q.

A third aspect of user needs is personalized rankiAGA
does not support query-customized ranking. Thataisfixed
ranking function is applied to the final resultsasbd on
confidence-based edge weights that reflect thenastid accuracy
of the extraction process and trust in the sodrceontrast, GID
allows the user to specify what ranking mechani$manfy) should
be used for each leg of the query. GID supportbaity flow
based ranking and the authority weights can beopafized. This
is well suited to scientists whose value for specdomain
knowledge may vary depending on the task.

Expressive power:GID is clearly more powerful than the current
PubMed language which only supports hard filterd aas no
ranking capability. Research by Raghavan and Gadolina [24]
studies an expressive graph algebra and querytoperahe GID
language can support the “linear” plans of thiehlg. The “tree”
plans were not considered since they cannot beostgapbby a
simple user language. While users wanted navigatiay did not

express a need for general join operations, remursitc. as found
in [24]. GID soft filters are more general than thanking

operators in [24]. GID soft filters are evaluategiast the whole
input subgraph (e.g., ObjectRank) instead of jesfimg on the
properties of each individual node as is done id].[2This

property is the key to intuitive GID user queryeiriace.

Example 2: This example shows that the GID query language
allows expressing complex queries in an intuitiv@ywno query
language was proposed in [24]. Consider the folhgwsample
query from [24]: “Generate a list of universitiestiw whom
Stanford researchers working on ‘Mobile networking’
collaborate”. A sequence of instructions correspogdo this
query is presented in [24]Let S be a weighted set consisting of
all the pages in the stanford.edu domain that cionthe phrase
'Mobile networking’. The weight of a page in S tual to the
normalized sum of its PageRank and text searchstakmpute
R, the set of all the “.edu” domain@xcept stanford. eduo
which pages in S point. For each domain in R, assigveight
equal to the sum of the weights of all the pageS that point to
that domain. List the top-10 domains in R in dedaem order of
their weights[24]. Creating the algebraic execution plan for this
query (Figure 8 of [24]) requires significant triaig.

In contrast, the hard and soft filters of GID campress this
query in the following sequential and straightfordvananner:
[{ Keywords"", falsetrue}>{ IRFilter("Mobile Networking),
false true} > {PathFWebpagBJRL="stanford.edli AND
Keywords= "Mobile networking)/$WebpagBJRL=".edd’ AND
URL # "stanford.edU$, false falsg> {URL="stanford.edl
false true}].

For this query, we first initialize the graph nodeth global
PageRank scores (empty keywords expression insirfstfilter).
For computing the textrank (IRscores), we neechtmduce the
IR soft filter. Thecombining functionf is summation that adds
textranks and pageranks. Notice that the last fitea soft filter
that computes the final scores for each web padeoatputs the
non-Stanford.edypagesin descending score order. We assume
that this attribute-constrained soft filter useg #rores of the
nodes in the input graph as the weights in the lsasdor the
authority flow execution algorithm.

There has been significant work on query langudgeshe
Web and search engines ranging from keywords blasemiages
to query languages for semi-structured data, tglgrguery
languages; a detailed comparison is in the extendesion [30].
For users who require general query language featto write
complex queries, the GID operators and ranking séinsacan be
incorporated in a straightforward manner into ggleage such as
SPARQL. Alternatively, more complex path expression other
relational operators can be incorporated into the anguage.
NAGA too can express complex queries and can stippor
powerful inference mechanism; however, this may suatle well
to large graphs and an interactive discovery pmces

5. ALGEBRA FOR GID

We present a closed algebra where the algebraiaiopse
have a one-to-one correspondence to the filterSeaftion 3. A
binary Combineoperator is introduced to combine scores. Each
(unary) operator, with the exception @mbine accepts as input
a pair of data graph and score assignmés, (Scorg and
produces the pair DG, Scoré), where DG=(Vp,Ep) and
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Figure. 3 Sample semantic query evaluation.

DG':(VD’,ED'). FUrther,VD’ O VD andED’D ED'

5.1 Operators

1.

HardExpDG,Score,E - (DG',Scoré) whereE is a Boolean

expression over keywords, such thét, ={v | v 7V, and

satisfyv,B)}, Ep={e=(u,\) | e€JEp and u,vO Vp} and the

Boolean predicatsatisfy.,.) is defined by induction oveE

as follows:

. If E is a termgsatisfyfv,E)=true if v contains the terrk,
falseotherwise.

« If E=E1 Op E2
satisfy{v,E2).

« If E = not E1), satisfyv,E)= not(satisfy{v,E1D). The
score of each nodeOVp' remains the same, i.e.,
Scoreg(v)=ScorgV).

HardAttributg DG, Score,ay — (DG’,Scoré) whereav is an
attribute value pair, such thayy’ ={v | v 7 Vp, and
satisfy{v,aVy)}, Ep={e=(u,\) | eJEp and u,v] Vp'} and the
Boolean predicatesatisfyv,E)=true if v contains the
corresponding value for the attribute specifiefd/se
otherwise. Notice that we overload the satisfy jwate.

satisfyv,E)=satisfy(v,E]) Op

HardTypéDG,Score,T- (DG',Scoré) whereT is a set of
types (nodes of the schema graphy,={v | vO Vp and [/t
OT and O t}, Ep={e=(u,V) | eO Ep and uv Vp'}. The
score of each node /7 Vp' remains the same, i.e.,
Scorég(v)=ScorgV).

HardPath(DG,Score, - (DG',Scoré) where P is a path
expression,Vp' = {v | v [J Vp and satisfyPattv,P)},

Ep={e=(u,v) | e [J Ep and u,v 7 Vp%}, the Boolean
predicatesatisfyPatlfv,P) is true if v is part of a patlp that
satisfiesP; false otherwise. The score of each nod&/ Vp'
remains the same, i.&core(v)=ScorgVv).

SoftExgDG, Score, E, ScoreFunctipn- (DG’, Scoré
where E is a Boolean expression over keywords, and
ScoreFunctionis a function such that, giveB and DG,
maps each node to a scoreScoreFunctio(DG,E,) in
[0.0,1.0] ((0.0,1.0] given the non-pruning assumptior
soft filters). Alternatives for ScoreFunction include
ObjectRank, path count, MinDistance, keyword pragim
and so on, as discussed in Section 3.2. The soorE fs
computed as follows:

. If E=E1 OR E2 ScoreFunctio(DG,E\Y) =
ScoreFunctio(DG,E1,y+ ScoreFunctio(DG,E2,y.

« If E=E1 AND E2 ScoreFunctio(DGE,) =
ScoreFunctiofDG,E1,y . ScoreFunctio(DG,E2,V.

e If E=not(El), ScoreFunctio(DG,EY) = 1 -
ScoreFunctio(DG,E1,.

« If E is a term w, ScoreFunctio(DG,E,v) =
ScoreFunctio(DG,w,v).

OnceScoreFunctions executed, the scor&ore(v) of the
nodes in DG are wupdated as follows:Scorgv) =
ScoreFunctiofDG,E,). Note that Scorg(v) is the Scorg(Vv)
described in Section 3.2, that is, the score asdigyy the soft
filter. This score will then be combined with theepious nodes
scoresScore(v)using theCombineoperator below.

6. CombinéDG1,Scorel,DG2,Scorep,f - (DG',Scoré)
where f(scorel,scoreR is a combining function like
product. For every node in the union BG1 and DG2,
Scordv) = f(Scorelv),Score?v)). Given DG=(Vpy,Ep1)
and DG=(Vp,,Epy), the gaphDG'= (Vp', By) is defined
as bllows: Vp' ={v | v 7 Vp; O Vp, and Scorgv)>0.0},
Ep'={e=(u,v) | e JEp; O Epy and u,v7Vp'}.

Example 1(contd): Figure 4 shows an execution plan for query
gl. We use (f.)=SUM(.,.) as the combining function (other
combining functions are possible as explained apoand
ObjectRank as the ScoreFunction .

Due to space limitations we do not describe theaipes to
handle negationN=true) in the filters.

<DGp, Scoreg

HardType(DG3,
Score3,PubMed)

DG3, Score3

Combine(DG1,Score1,
DG2, Score2, SUM)

4

DG2, Score2

SoftExp(DG1,Score1,
"human”,ObjectRank)

DG, Scorel

<DG1, Scorel -

HardPath(DG, Score,
EntrezGene/
EntrezProtein/PubMed)

DG, S&)re,,,,,,
Figure. 4 Execution plan for queryql.



5.2 Axioms

In this section we present the rewriting rules@b queries,
assuming any implementation for the soft filterse.,i any
definition of ScoreFunctionThese rules will be applied together
with the approximations (to be shown in Section@)nsider the
following theorems (without proof):

Theorem 1 Let H, H, be hard filters and;SS be soft filters. The

following properties hold:

1. The commutative property of non-pattard filters H; > H;
= Hj>H.

2. Thecommutative property of soft filters-8§ - §> S.

3. Theidempotence property of hard filters H1H; = H; J

The proof is straightforward and relies on thedwaiing: The soft

filters are non-pruning and always assign a noo-sgore. The

combining functionf which combines the scores of a soft filter

with the current scores is commutative (e.g., pebdsum, max).

Theorem 2: The rewritings of Theorem 1 can be applied to any

subsequence of a query.

For example, iQ = §>H;>H,>S, whereH; and§ are hard and
soft filters respectively, then using the commuwtproperty of
hard filters we can rewrit® asS>H,>H>S,.

6. GID SOFT FILTER COMPUTED BY
AUTHORITY FLOW

GID soft filters will typically be the most expemsi
operators since the popular authority-flow basedkirey
techniques used by most soft filters are well knoten be
expensive for relatively large data graphs. PagkRas] and
ObjectRank [5], rely on pre-computing and indexigigbal or
keyword-specific rankings. Given that the GID framek is
meant to be interactive and exploratory, we aggrelysoptimize
the evaluation of authority-flow soft filters. Wést provide an
overview of some ranking metrics. We then discus® t
approximation techniques.

6.1 Authority Flow Ranking

The ObjectRank score of a nodgiven a keyworadw is the
probability that a random surfer starting from al@ahat contains
w (the base set) will be atat a given time.

Authority Transfer Schema Graph. From the schema graph

directions and not only in the direction that appéa the schema.
For example, an Entrez Gene passes its authorityetd®>ubMed
paper it is associated with and vice versa. Ndimeever, that the
authority flow in each direction (defined by thettearity transfer
rate) may not be the same. For example, a PubMper ghat is
cited by important papers is clearly important itihg important

PubMed papers does not make a paper importantigurd=>5,

different rates could be assigned to different gégiges to achieve
personalized authority flow rankings.

s ——

I

| Entrez l——0.2: Entrez

: Nucleotide | - - 02 --»| Gene
L f [ retea-0-——— A | : 4
g P g S * 0_2 cites | g g |

| T I
! I — PubMed |1 | ®
I

I

L

Entrez
Protein

Figure. 5 Authority Transfer Schema Graph for Biological
Database.

Authority Transfer Data Graph . Given a data grapRPG(Vp,Ep)
that conforms to an authority transfer schema gie®&V+s Er9),
we can derive an authority transfer data graptG(Vyp,Erp) as
follows. For every edge = (U—vV) 0 Ep, the authority transfer
data graph has two edgds: (U—v) ande® = (v—u). The edges’
and €” are annotated with authority transfer raiéd) anda(e”).

f
Assuming that' is of type€s , then

f
_as) i Outbeg(uel)>0
ae') = OutDeg(u,eg)
0, if  OutDeg(u,ef)=0 @
1
f
Where,OUtDequ’eS) is the number of outgoing edges fram

of type efs . The authority transfer ratge”) is defined similarly.
Figure 6 illustrates the authority transfer dateapyr that
corresponds to the data graph of Figure 1 and tithodty
transfer schema graph of Figure 5. Each edge istated with its
authority transfer rate. Notice that the sum ofhatity transfer
rates of outgoing edges of nodeof type x(u) in the authority

SQVsEy), we create the authority transfer schema graph transfer data graph may be less than the sum hbety transfer

TSQV+sErg to reflect the authority flow through the edgéshe
graph. In particular, for each edgg (u—V) of Eg, two authority

f b

transfer edgeses = (u—v) and €s = (v—u) are created. The
two edges carry the type of the schema graph edge ia
addition, each one is annotated with a (potentigifferent)

. f b .
authority transfer rate @ (es) anda (€s) respectively. We say

that a data graptonformsto an authority transfer schema graph if

it conforms to the corresponding schema graph.tidresfer rates
can be determined manually by a domain expert 5 drial and
error basis, while [29] present techniques thawathis task to be
done automatically based on the user’s feedback.

Figure 5 shows the authority transfer schema grdyat
corresponds to the schema graph of Figure 2 (tge &pes are
omitted). The motivation for defining two edges &ach edge of
the schema graph is that authority potentially fom both

rates of outgoing edges pfu) in the schema graph, ifdoes not
have all types of edges.

OMIM /D="142590 " ‘

»
>~ 0.1\ 0.2

PubMed
\ /D = “2156268”

=~ EntrezProtein | 0.2
EntrezGene ~ D=4337110" { PubMéd
= i ID = “14656967”
-
0.2 ,?‘0.2 02 _— 70 1
EntrezNucleotide == 02 02 '
ID="4337095

OMIM ID = “142580 " ‘

Figure. 6 Authority transfer data graph for Biological
database.



ObjectRank computation. Consider a single keywordv) query
and the authority transfer data grapPG(Vip,Erp). A surfer
starts from a node; of the base sefw) (nodes inVyp that
containw), and at each step she follows an edge with pibityab
d or gets bored and jumps to a nod&Sw) with probability 1 -
d. The ObjectRank value of is the probability that at a given
point in time, the surfer is at. The ObjectRank scores vectSr
= [rvy),...r%vy)]" given keyword queryw, wheren=|Vp|, is
defined as follows:

r :dArW+—(1 d) s
| S(w) | @)
whereA is an x n matrix with A; = a(€) if there is an edge(v; —
V) in Erp and 0 otherwise] is the damping factor which controls
the base set importance asc [s;, . S . , §]' is the base set
vector wheres is 1 if v, U S(w) and 0 otherwise. [29] presents a
variant of ObjectRank called ObjectRank2, where thrdom
surfer jumps to different nodes of the base seh wdifferent
probabilities, proportional to their query-specifie score. All
optimizations described below equally apply for €@bRank and
ObjectRank2.

Layered Graph ObjectRank (IgOR): The class of GID queries
with a hard path filter followed by a soft terntdit is very useful

and expressive. [25] proposed the IgOR ranking,agamt of

ObjectRank, to answer such queries. These quermsy a
authority flow ranking on an acyclic directddyered graph

produced by the hard path filter.

Example 3 Consider the following GID query{{Path =
EntrezGene/EntrezProtein/$PubMed$, false, falsp >
{Keywords"aging” OR “cancer”), false, trug]. First, the hard
filter creates a layered graph of paths satisfyitlge path
expression EntrezGene/EntrezProtein /PubMg&igure 7). A
layered graph is a DAG comprised of layers; eaglefahas data
entries of one or more types, which have only edgedata
entries in the next layer of the graph. The dataies in the last
layer, which are returned by the query, are caltbé target
objects. For simplicity we assume that each lagezdmposed of
data entries of one type. Next, the soft filtercexes ObjectRank
on the layered graph for the keyword expressionirig) OR
“cancer”. The target objects(PubMed objec)s are ranked
according to their ObjectRank value.

Layer 2 Layer 3

Layer 1

Entrez Gene Entrez Protein PubMed

Figure. 7 Layered Graph.

A key point of IgOR is that the authority flows tbeen
objects in the layered graph are only determinethbyscores of
the parents of each object in the previous layehefgraph, and
the incoming authority transfer rates. IgOR is dedi as follows:

The ranking vectoR of the target objects in the last layer of the

layered graprRG=(V,q,Eg) of k layers is defined by a transition
matrix Ay and an initial ranking vectd&®™:

k-1
R= Ay KR :(l—l Ag)R™ (3)
| =

The transition matrix iy, where, aig(€) is the authority
transfer rate of edge between nodes and v of typeU andV,
respectively, in adjacent layeps and . The QutDedu,V), the
outdegree of node to nodes of the typ¥, is limited to nodes and
edges in the layered graph as follows:

ai,(e), if e=(u - Vv)UE,

0, otherwise

Agluvl {
(4)

6.2 Approximation Techniques to Efficiently
Evaluate Authority-Flow based Soft Filters

We present two techniques to achieve fast, highlitgua
approximate rankings. Each of these two technigsesnore
effective in different settings. Theath-length-boundechnique
considers paths with an upper bound on the lengtbpmputing
authority flow. The approximation is effective irvatuating a
single authority-flow soft filter (Section 6.2.1hé can be applied
to a sequence of soft filters. Thgraph-samplingtechnique
probabilistically selects a subset of the pathsigis Bayesian
network. It is applied to approximating IgOR qesr{introduced
in [25]), which are equivalent to a hard path hfiltér followed
by an authority-flow soft filter (Section 6.2.2). hig
approximation is indispensable when the data giapharge. In
both techniques, the complexity of evaluating argue reduced,
by minimizing the number of nodes visited duringegu
execution time.

6.2.1 Approximate a Soft Filter with Path-Length-

Bound Technique:

A path-length-boundechnique is applied to approximate the
evaluation of an authority-flow soft filter. The kedea is to
evaluate ObjectRank on a subgrappG'(Vtp',Erp) of TDG
(V1p,Erp)- TDG' is created by first selecting all nodég,’, 0 Vyp
with distance up td1 from the base set (the nodes that contain the
keywords of the soft filter), wher® is the radius constant
usually set to a number between 2 and 4 in oursdedaWe add
the edgesrp’ O Erp that connect nodes Myp'. Figure 8 shows
the detailed steps of this optimization.

1. Let g=[r,] be a query conmposed of a single
soft filter r,

2. Let w be the keyword expression of r_.

3. Initialize TDG with the set of nodes in TDG
satisfying w.

4. Repeat until user

results’ quality {

is satisfied with current

5. Do one step of breadth-first search in
TDG and add each newl y accessed node.

6. Exit loop, if no new nodes are added.

7. Execut e Obj ect Rank on TDG.

8. Qut put top-k objects. }

Figure. 8 Approximate Single Authority-Flow Soft Filter.



In order to guarantee interactive response timesstart with path
length M=1 and progressively increase it to improve theiltes
quality, in the spirit of [15] until the user istisdied with the
current results’ quality. To further accelerate #xecution, we
reuse the ObjectRank values of the previous immatNote that
this algorithm is applicable for a sequence of spferies, by
merging their base sets (node weights are addébjéctRank2
[29] is used, which has weighted base set).

6.2.2 Approximate IgOR: {Hard Path Filter} > {Soft
Filter} with a Graph-Sampling Technique:

A graph-sampling technique can be applied to apprate
IgOR on a query comprising a hard path filter foléa by a soft
filter. Given a layered graptRG=(Vj,Eg), the problem of
approximating IgOR foRG is reduced to estimating a subgraph
RG of RG, so that with high confidence (at le@tthe relative
error of computing an approximation of IJORR®' is €. First, a
set {RG,...RG™ of independent and identically distributed
subgraphs oRG s generated. TheRG' is computed as the union
of the m subgraphs. EaclRG is generated using a Direct
Sampling technique over a Bayesian network [26{ émezodes all
the navigational information encoded RG and in the transition
matrix Ag. Finally, an approximation of IgOR is computed in
RG.

A Bayesian networBN=(Vg,Ep) is built as follows:

« BN andRG are homomorphically equivalent, i.e., there is a
mappingf: Vg - Vg, such that,f(u),f(v)) O Egiff (u,) O Eg.

¢« Nodes inVy correspond to discrete random variables that
represent if a node is visited or not, i¥s,= {X | X takes the
value 1 (true) if the nodeX is visited and 0 (false)
otherwise}.

¢« Each node« of Vg has a conditional probability distribution:

Pr(X | Parentg X)) = Zn:(a( f(Y)), f(X)IY))

i=1

©)
where,Y; is the value of the random variable that represérej-

th parent of the nodX in the previous layer of the network, and
a(f(Y;).f(X)) corresponds to the authority transfer rate ofeed
(f(Y)),f(X)) in the layered graph, and is seen as the prbtyats
move fromY; to nodeX in the network. Thus, the conditional
probability distribution of a nodeX represents the collective
probability thatX is visited by a random surfer, which starts from
the objects in the first layer of the layered grapimally, the
probability of the nodes in the first layer of theetwork
corresponds to a score that indicates how good @aiglet is with
respect to the keywords in the original query.

Direct Sampling is performed using the Bayesianwget
and the topological ordering of the layered graplyenerate each
subgraphRG. Once an iteratiori of the Direct Sampling is
finalized, the sampled layered graRi®=(V',E\q) is created. The
conditional probability of each node in the lasyela of each
subgraphRG corresponds to an approximated value of IgOR.
After all the subgraph®G,...,RG" are computed, an estimate
RG' is obtained as the union of these subgraphs. The
approximation of IgOR in the grapRG' is computed as the
average of the approximated IgOR values of tarpgeats in the
subgraphsRG',...,RG". To achieve an estimaRG' so that the

confidence level in the relative errog of computing an
approximation of IgOR inRG' is at leastd, the Chernoff-
Hoeffding’s bound yields an upper bound on the nemds times
the Direct Sampling process needs to be evaluatedan upper
bound on the sizen of {RGl,...,RG'“}. Details of the Direct
Sampling process and the bounds are in the extemdesion
[30].

7. GID OPTIMIZER AND EXECUTION

We present an overview of the GID optimizer andcexien
engine, to illustrate how the rewriting rules ofcBen 5 and the
approximation techniques of Section 6 are appliegether to
achieve interactive response times for GID quefdgectRank is
used to implement the soft filters. The GID systsorks on top
of relational DBMS, which stores the data graph.

Precomputation: Precomputation is required to achieve exact and
timely query answering. (1) We build an ObjectRamkex which
stores the ObjectRank score for each pair of a keyvand an
object. A threshold is used to avoid storing olgewaith very
small scores. (2) Full-text indexes are createdaficiext attributes
and keyword, as well as indexes on the primary kefyshe
relations. However, if the query does not allow thse of
precomputed structures (e.g., the soft filter feoa hard filter),
then the approximation techniques of Section Geanployed.

Query time: The GID optimizer accepts an input GID query and
produces an execution plan. In particular, theofelihg rewritings
are possible:

Select a physical implementation for each GID algeb
operator. Table 1 shows the available physical atpes for
the GID algebra operators. Note that the path-tengt
approximation is identified as a possible impleraéiot for
SoftExp.

2. Change the order of operators using the rewritiotgmtial of
the axioms of Section 5.2.

3. Insert the Combine operator to support eaclSoftExp
operator.

4. Replace a subsequence of operators with an eqotvale
“superoperator”. Only one such superoperator igectily
implemented as shown in the last line of Tablet teplaces
(HardPath> SoftExp)and is implemented using the graph-
sampling approximation of Section 6.2.2.

Note that we only consider linear plans in thissiemn of
GID optimizer. This is a natural choice given theelr nature of
execution of GID operators. We will relax this régton as more
capabilities are added to the GID algebra.

We use some rules-of-thumb as indicated in thedalstmn
of Table 1 to determine which physical operatopiisferred by
the optimizer for each algebraic operator. Againe-tuning will
be conducted in future versions in order to avathg an index
for non-selective hard filters. Also note that tBeaph-Sampling
algorithm is always used fdadardPath>SoftExpsubsequences.
When re-ordering hard filters, we first apply th@nsselective
filters (if these statistics are known). In theuit, we plan to
integrate our GID optimizer with the relational tbssed
optimizer to make better decisions.



Table 1. Physical Implementation of GID Algebra Opeators.

Algebra Operator Physical Operator Requirements/Coudlitions for Selecting
HardExp Index Lookup Full-Text Index Available/Always if aitlable
On-the-fly None
HardPath Index Lookup (not supported currently) Path IndeXesilable/Always if available
On-the-fly None
HardType Table Scan Separate objects table for each typadA\f available
On-the-fly None
HardAttribute Index Lookup B+-tree index on this attribute aviaiédAlways if
available
On-the-fly None
ObjectRank index lookup ObjectRank index availaBleould be First filter of
SoftExp query/Always if available
Path-Length-Bound Approximation None
(Progressively increase path length)
Combine On-the-fly None
HardPath> SoftExp Graph-Sampling None/Always used for this sequeriagerators

We illustrate how the optimizer creates a plantfoee key
template queries involving the expensive softifiite

a. If the query begins with a keywoRbftExp the precomputed
ObjectRank index is used to evaluate the filter. iRstance,
for query {Keywords“TP53", false, trug¢ > {Path =
EntrezGene/PubMed, false, fdlse the precomputed

ObjectRank index of keywordl'P53' is used to evaluate the

soft filter.

b. If the query starts with alardPath filter followed by a
keyword SoftExp filter, e.g., Rath =
EntrezProtein/PubMed, false, fajse > {Keywords

=“cancer”, false, true},we replace this subsequence with the

superoperator and introduce tf@mbine operator. Our
experiments will show that this superoperator dredgraph-
sampling approximation of Section 6.2.2 are esakmthen
the data graph is large.

c. If a hard filter (excluding &ardPath filter) is followed by a
keyword SoftExp filter,e.g.,{Keywords= “TP53", false,
falsg > { Keywords="cancer”, false, trug - then we apply
the path-length-bound technique described in Sedi@.1.

We start with path lengtM=1 and progressively increase it

to improve the result quality, in the spirit of [15

Clearly, it is not always possible to compute aateiresults
in interactive time for some complex queries, efgr, a long
alternating sequence of hard/soft filters. Howewerch queries
are typically unintuitive.

8. EXPERIMENTAL RESULTS

Our experiments focus on the evaluation time peréorce
and the quality of producing approximate answers tlire
interactive GID framework. We do not compare witthey
systems. The framework of [24] is not targeted forline
computation. They report on the evaluation times do exact
computation (in a warehouse environment) and thecwion
times that they report are in many hundreds of rs@s0Other
graph query languages, e.g., SPARQL, do not prowite
sophisticated ranking which is the key to GID fravoek and so
the comparison would not be meaningful.

Datasets We use three real datasets (Table 2). DS3 and &&7
two biological datasets while DBLP is a bibliogragai dataset.

The biological datasets were created following apeeimental
protocol that start from annotated gene recordguhblic Web
accessible sources, and follow hyperlinks, to rgadblications in
PubMed. A subset of the schema of DS3 and DS7 sguare 2.
DS7 follows less hyperlinks and visits less sourdesnce it
creates a smaller graph. We use the larger grapB RS
experiment with the graph-sampling approximatide shredded
the downloaded DBLP file [2] into the relationalhstna shown
in Figure 9.

Table 2. Datasets

Name #nodes #edges Size (MB)
DS7 699,199 3,533,756 2,184
DBLP 876,110 4,166,626 3,950
DS3 28,351,615 10,014,869 5,978
mn

cites
has

i contains, b
Conference }% Year }T’{ Paper m—y:{ Author ‘

Figure. 9 The DBLP schema graph.

Evaluation Metrics: We evaluate both quality and performance.

(1) The quality of the ranking is with respect e texact ranking.
For the approximation techniques presented in Get6.2.1 and
6.2.2, we measure the quality of the approximatiming a
normalized topk Spearman’s rho with ties [7, 8, 9]. Letando,

be 2 topk lists. The set of results in ties is calledbucket The

ranked list of results, then can be viewed as rdrkecketsB,,

B,,.....B,. The position of buckeB;, denotedpoqB;) is the
average location within buck&. We assigns(x)=pogB) where
o(x) is the rank of resultx and B is the bucket ok. p is the
Spearman’s rho metric, which is a normalized distameasure
that lies in the interval [0, 1] defined as follaws

[Z \al(i)—az(i)f]

(k* (k +1)* (2k +1)/3)'* ©)

p(o,,0,)=

where we usek+1l as the penalty constant [9]. Note that the

denominator of Equation 6 is used for normalization

(2) We also report on runtime performance. The erpnts were
evaluated on a Solaris machine with Sparcv9 1281zMH




processor and 16GB of RAM. All algorithms were iemplented
in Java (JDK version 1.5.0_12). Oracle DBMS (vamsibOg
Enterprise Edition Release 10.2.0.1.0) was usedsttoe the
database and JDBC was used to connect to the datalyatem.
We report on the execution time for successiveaitens of the
approximation algorithm.

8.1 Evaluate Path-Length-Bound Technique
We evaluate the effectiveness of the path-lengtimbo

optimization technique described in Section 6.211 query

template (c) of Section 7 as followdard Filter > Keyword Soft

Filter. We conducted these experiments on the DS7 and DBLP

datasets. We did not use DS3 because this appri@ima
technique was not scalable to the large DS3 dataseahe value

of the radius constant, M,increased. Table 4 presents the

parameter settings of some sample queries ofehiplate used in
experiments over DS7 (see [30] for sample quenes DBLP).

The entire data graph is loaded into memory. Thaliese is
then consulted only to find the base set (withrtheiscores using
oracle intermediacontaing)) of each query. We optimize the
query execution by avoiding the explicit creatidhaosubgraph.
To do this, we reuse the original DBLP or DS7 daszbgraph
(already in memory) and mark the nodes in the @igusing a
Boolean. For example, we mark all nodes that am gathe
subgraph true’ while the rest are markedfdise. Then we
execute the path-length-bound approximation of €GBank
using only those nodes and edges that are paredfitbgraph.

The total execution time is measured for the foilgyv
stages: (i) creating the subgraph for the keywaad Hilter and
(i) executing the keyword soft filter (ObjectRanign the
subgraph. Figures 10(a) and 10(b) show the exetutime
averaged over 20 queries, for the DBLP and DS7 sdtga
respectively, for increasing values of the radiogstantM, and a
convergence threshold of 0.0001. To provide a baselwe
compare our execution time with the exact solutighe original
ObjectRank algorithm executed over the data sulbgrafter
application of the hard filer. This is equivalentgettingM to oc.
Note the significant execution time for the exaulution (over 20
seconds) for DBLP when compared to DS7 datasetéstd its
larger size and high connectivity.

We note that in the GID exploratory framework, wanc
iteratively provide answers to users. Thus,Nbralues of 1 and
2, we can provide answers after a relatively sHetay (in Figure

10 each bar for varyiny1=1, 2, 3, 4 represents the delay time

while M=o represents the total execution time). Figures)larid
11(b) show the quality of the results using the-kdppearman’s
rho metric for the DBLP and DS7 datasets, respelstivEach
group of results is for varyinp-kand each bar is for varyirlg.

As the radius constaM increases, the performance degrades and

the quality improves (lower value of Spearman’s mhgtric) since
a larger subgraph is used for ObjectRank executidiere is
clearly a trade-off; for loweM we have lower delay but also
lower quality. Notice that in both datasets, k&=2, we achieve a
good tradeoff of quality and performance (highealigy for a
relatively shorter delay time), when comparedMel, 3, or 4.
There is a small improvement in quality (lower \alwof
Spearman’s rho metric) for Top-500 and Top-1000 bioth
datasets. This is because of the large numbeesfttiwards the
end of these toj-lists.

8.2 Evaluate Graph-Sampling Technique

We evaluate the effectiveness of the approximat@RIg
metric using the Bayesian network and graph-samp{Bection
6.2.2) on the DS3 and DBLP datasets. (DS7 resuéssinilar
and omitted). We consider 30 queries of the quemyptate (b) in
Section 7. The sample queries for DS3 are as felid®ath =
EntrezGene/*/PubMed, false, fa}se Keyword Soft FilterTable
3 reports on the parameter settings for some cgiéneDS3,
including the size of the subgraph after evaluatimg hard path
filter and the number of target objects (see [80]sample queries
over DBLP).

A key success factor in sampling is to reach gudden
objects For these queries, we identified thelden objectsas the
objects in PubMed whose normalized score was grézda some
threshold (see [30] for more details). To comptie ¢éxact IgOR
metric for a given query, the entire layered grapHoaded in
memory. The database is contacted to construdatfeeed graph
and to find the base set of the query. Then, tRIgs computed
by traversing the whole layered graph. To compht graph-
sampling for a given query, the entire layered brispalso loaded
into main memory to build the Bayesian network. mhéehe
approximated IgOR is computed by following the direampling
method in which a node in the network is visitegheteding on
the conditional probability distribution of the rmdAssuming that
golden objecthave a relatively high probability of being vislte
during the sampling, we optimize the query exeecuby avoiding
traversing the whole layered graph and visitingyombdes that
conduce to thgolden object®f the query.

Figure 12(a) reports the average execution time 80aopk
queries in DS3 and Figure 12(b) reports time ov@mG@eries in
DBLP. Graph-sampling is executed for 1 to 7 iterations where
i corresponds to the number of sampled layered gr&®
(Section 6.2.2). The total execution time corregjsoto the time
of creating the layered graph and the base setcangputing
approximate IgOR on the layered graph. We firsteobs that
despite DS3 being a very large dataset, the exatutines of
approximate IgOR range from 1 to 2 seconds and shpwo an
order of magnitude improvement over the exact cdatmn. This
improvement suggests that this sampling method lvélithe key
to success of the GID exploratory framework. Theseings are
maintained over additional iterations, in particutar the large
dataset DS3. The savings for the smaller DBLP @atase also
significant after multiple iterations.

Figure 13 reports the normalized Spearman’s rhotlier
queries in DS3 and DBLP. We group the queries tintee groups
of ten queries according to the numbergofden objectavhose
normalized score is greater or equal than 0.7. Tég-1 group
comprised of queries with one golden object; th@-Bogroup
with three golden objects and Top-4 group with fagalden
objects. We report on the average normalized Spe#smrho
values over 10 queries of each group. As can be, $ke graph-
sampling technique is able to rank the tombjects in the
sampled layered graphRG in an order close to the exact
solution. Additionally, we have studied precisiardaecall of the
topk objects in the sampled layered graft@ with respect to
the exact golden objects (Table 5). We have olesethat after
i=3 iterations, graph-sampling is able to produce am89% of
the golden objects in all the queries. These resudticate that the
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Figure. 13 Quality experiments of Graph-Sampling Tehnique
Table 3. Sample Queries of query template (b) of 8gon 7 over DS3

Path Filter | Soft Filter Target Objects for different values of i
Selectivity Base set Target Objects and Top-k for Exact IgOR

GID DS3 Query (;%;nodes, size i1 | i=2 | i=3 | i=5 | i=7 Exact

oedged (nodey IgOR
{Path=EntrezGene/*/PubMedalse, false} > Keywords"cancet, false, true} 0.08% ,0.68% 1214 58 114 150 244 9 3B(38397,1
{PatheEntrezGene/*/PubMedalse, false} > Keywords"aging” , false, true} 0.08%,0.62% 111 30 44 62, 105 189 394B,6)
{Path=EntrezGene/*/PubMedalse, false} > Keywords"diabetes”, false, true} 0.08%,0.68% 389 61 118 155 227 33521563,1)
{Path=EntrezGene/*/PubMedalse, false} > Keywords"metastasis”, false, true} | 0.08%,0.68% 137 24 44 88 126 1y2  181/4)




Table 4. Sample Queries of query template (c) of Ston 7 over DS7

Hard Filter Soft Filter Subgraph size¢nodes/edges& Object Rank Iterations performed until
Selectivity Base set convergencdin parenthesi$ for different values of M
GID DS7 Query (%nodes, size _ _ _ _ _ .
%edgel (node3 M=1 M=2 M=3 M=4 M=o Optimal
{{;é’p“t;(‘j‘i',\,"n‘:gtg";f:érfsa'éfs}; 66.77% , 2084 3984/2708 | 6538/8172 | 12002/16639| 20469/25347| 42082/38252 | 466861 /660107
yw true} ' 18.68% 3) ©)) 3) ©)) (4) FinalM=13 @)
{Typ@PuPMed tI"L,Je, false} > 33.22%, 2.95% 18143 18143/138 | 18281/42278| 60421/42286| 60429/42744 60837/427_44 232338/104422
{Keywords"human”, false, true} (4) (6) (2) (2) (6) FinalM=5 (6)
{Keywords p"rotelri , false, false} 22.58%, 6.24% 19639 19639/10356| 28167/17388| 35199/21141| 38952/22581 41337/23?26 157882/220773
> {Keywords"tumor’, false, true} (4) 3) 3) 3) (4) FinalM=11 (4)
{Keywords" tnf’, false, false} > 7.62%, 0.94% 2794 2794/757 3470/1273 3986/1534 4247/1683 4521/180_8 53307/33442
{Keywords"cancet, false, true} 3) 3) 3) 3) (3) FinalM=8 (4)

Table 5. Quality of Graph-Sampling Technique-Preci®n/Recall w.r.t. exact Golden Objects

Dataset Precision Recall |
i=1 [i=2 [i=3 [i=5 |i=7z |i=1 | i=2 | i=3 | i=5 | i=7 |
DBLP | 042 | 050 | 0.63| 0.7 0.84 076 088 091 0.96 0.p7
DS3 |051| 049 051| 051 0517 070 072 080 0.86 086

graph-sampling technique successfully achievesoptimization
goal of minimizing the number of visited nodes dgriquery
execution time.

9. CONCLUSIONS AND FUTURE WORK

We presented a simple and extensible frameworkqtaerying
typed data graphs. An intuitive query language ait and hard
filters was presented along with an underlying etbslgebra of
physical operators and a set of rewriting rules. Aen focused
on soft filters computed by authority flow mechanss and
proposed approximate optimization techniques. HBErpEts
performed over large real and synthetic graphs shbe
feasibility of our techniques in supporting an mafgive,

exploratory and high-quality discovery processtha future we
will consider alternative implementations for theftsfilters, in

addition to authority flow ranking.
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