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Abstract— Authority flow is an effective ranking mechanism for 
answering queries on a broad class of data. Systems have been 
developed to apply this principle on the Web (PageRank and 
topic sensitive PageRank), bibliographic databases 
(ObjectRank), and biological databases (Hubs of Knowledge 
project). However, these systems have the following drawbacks: 
(a) There is no way to explain to the user why a particular result 
received its current score; (b) The authority flow rates, which 
have been shown to dramatically affect the results’ quality in 
ObjectRank, have to be set manually by a domain expert; (c) 
There is no query reformulation methodology to refine the query 
results according to the user’s preferences. In this work, we 
address these shortcomings by introducing a framework and 
algorithms to explain query results and reformulate authority 
flow queries based on the user’s feedback. The query 
reformulation process can be used to learn the user’s preferences 
and automatically adjust the authority flow rates to facilitate 
personalized authority flow searching. We experimentally 
evaluate our algorithms in terms of performance and quality. 

 

I. INTRODUCTION 
Authority flow is an effective ranking mechanism for 

answering queries on a broad class of data. In the context of 
the Web, PageRank [4] is used to compute a global ranking of 
the pages based on the hyperlink structure. ObjectRank [3,13] 
applies the idea of authority flow on a data graph, where 
nodes represent entities like tuples, and edges represent 
associations like primary-to-foreign keys. In contrast to 
PageRank, ObjectRank provides query-specific ranking by 
using the query-specific nodes as the authority source (called 
base set). Another key feature of ObjectRank, as explained 
below, is that different edge types carry different amounts of 
authority. Another appropriate domain for authority flow 
ranking is that of biological data. The Hubs of Knowledge 
project [30] applies the PageRank algorithm on a query-
dependent subgraph of the original biological graph. Raschid 
et al. [26] apply PageRank and ObjectRank to answer 
navigational queries on biological data. We note that not all 
databases are appropriate for authority flow query answering. 

Our work is applicable to the ones that do have the notion of 
authority flow along their associated edges as the ones 
described above. Web search is out of the scope of this work, 
since we focus on typed domain-specific data graphs. 

ObjectRank: We build our work on ObjectRank, since it is 
the most general of the available authority flow ranking 
approaches. We use a modification of ObjectRank, which we 
refer to as ObjectRank2, where the nodes in the base set are 
weighted according to Information Retrieval (IR) techniques. 
Consider the example of Figure 1, which illustrates a small 
subset of the DBLP database in the form of a labeled graph 
(some author, conference and year nodes are omitted to 
simplify the figure). Schema graphs, such as the one of Figure 
2, describe the structure of database graphs. Given a keyword 
query, e.g. the single-keyword query “OLAP”, ObjectRank 
sorts the database objects by their relevance with respect to 
the user-provided keywords. Given the subgraph of Figure 1, 
the “Data Cube” paper is ranked on the top, even though it 
does not contain the keyword “OLAP”. This is a key 
advantage of ObjectRank compared to traditional IR 
approaches. 

Conceptually, the ranking is produced in the following 
way: Myriads of random surfers are initially found at the 
objects containing the keyword “OLAP”, which we call the 
base set, and then they traverse the database graph. In 
particular, at any time step, a random surfer is found at a node 
and either (i) makes a move to an adjacent node by traversing 
an edge, or (ii) jumps randomly to an “OLAP” node without 
following any of the links. The probability that a particular 
traversal happens depends on multiple factors, including the 
type of the edge. These factors are depicted in an authority 
transfer schema graph. Figure 3 illustrates the authority 
transfer schema graph used by the ObjectRank project [3]. 
Assuming the probability that the surfer moves back to an 
“OLAP” node is 15% (damping factor−random jump 
probability [4]), the collective probability to move to a 
referenced paper is up to 85% ⋅ 70% (70% is the authority 
transfer rate of the citation edge as we explain below), and so 
on. As is the case with the PageRank algorithm as well, as 
time goes on, the expected percentage of surfers at each node 
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v converges to a limit r(v). Intuitively, this limit is the 
ObjectRank of the node. 

Limitations of ObjectRank: Ranking the objects of a data 
graph using ObjectRank has the following limitations:  

(a) There is no way to explain to the user why a particular 
result received its current score; e.g., the user may want to see 
proof to believe that the “Data Cube” paper is important for 
“OLAP”. This is even more critical in complex biological 
databases where objects (e.g., proteins) with no obvious 
connection to the query (e.g., gene “TNF”) are returned. 
Figure 4 shows a subgraph of the biological schema graph we 
are using in our experiments.  

 
Figure 1: A subset of the DBLP graph. 

 
Figure 2: The DBLP schema graph. 

 
Figure 3: DBLP authority transfer schema graph. 

(b) The authority transfer rates, which have been shown to 
dramatically affect the results’ quality of ObjectRank [3, 13, 
16], have to be set manually by a domain expert. For instance, 
what is the ratio of authority flowing from a gene to a PubMed 
publication over that flowing to a protein at Entrez Protein? 

(c) There is no query reformulation methodology to refine the 
query results according to the user’s preferences. Query 
reformulation based on user relevance feedback is a mature 
and well-studied process in traditional document IR [29, 
24,9]. However, there is no work on handling user feedback 
for authority flow ranking systems. As we discuss below, our 
reformulation strategy exploits the user feedback in terms of 
content (in the spirit of traditional query expansion [6, 21, 31, 
7]) as well as link structure.  

 

Contributions: This paper has the following contributions:  

1. We present a methodology to explain a result of an 
authority flow query. For that we generate and display an 
explaining subgraph. 

2. A process is presented to automatically reformulate a 
query based on a selection of good results by the user. We 
reformulate the query based both on the content, in the 
spirit of traditional IR query expansion, as well as the 
link-structure, by adjusting the authority flow rates. The 
explaining subgraphs of the selected results are used to 
capture the user’s preference and build the reformulated 
query.  

 
Figure 4: Subgraph of biological schema graph. 

3. Efficient algorithms are presented and evaluated to 
explain a result and create and evaluate the reformulated 
query. 

4. An ObjectRank2 query and reformulation system has 
been built and deployed on bibliographic and biological 
datasets, available on the Web at 
http://dbir.cis.fiu.edu/ObjectRankReformulation/. 

5. User surveys were conducted, which prove the utility of 
the system in explaining and reformulating queries, as 
well as in automatically training the authority flow rates, 
which was done manually before [3]. 

The rest of the paper is organized as follows. Section 2 
presents the framework. Section 3 defines a query and 
presents ObjectRank2. Section 4 presents the result 
explanation technique while Section 5 presents the query 
reformulation techniques. Section 6 present the quality and 
performance experiments. Section 7 describes the related 
work. Finally Section 8 discusses our conclusions. 

 

II. FRAMEWORK 
In this section we present the framework and essential 

definitions, which are later used to describe our result 
explanation and query reformulation techniques. Note that we 
follow the terminology of [3, 13].  

We view a database as a labeled graph, which is a model 
that captures both relational and XML databases. The data 
graph D(VD,ED) is a labeled directed graph where every node 
v has a label λ(v) and a set of keywords. For example, the 
node “ICDE 1997” of Figure 1 has label “Year” and the set of 
keywords {‘‘ICDE’’, ‘‘1997’’, ‘‘Birmingham’’}. Each node 
represents an object of the database and may have a sub-
structure. Without loss of generality, ObjectRank assumes that 
each node has a tuple of attribute name/attribute value pairs. 



For example, the “Year” nodes of Figure 1 have name, year 
and location attributes. Notice that the keywords appearing in 
the attribute values comprise the set of keywords associated 
with the node. One may assume richer semantics by including 
the metadata of a node in the set of keywords. For example, 
the metadata “Forum”, “Year”, “Location” could be included 
in the keywords of a node.  

Each node v has a role λ(v). For instance, the ICDE 
conference node in Figure 1 has role “conference”. Each edge 
e from u to v is labeled with its role λ(e) (we overload λ) and 
represents a relationship between u and v. For example, every 
“paper” to “paper” edge of Figure 1 has the label “cites”. 
When the role is evident and uniquely defined from the labels 
of u and v, we omit the edge label. For simplicity we will 
assume that there are no parallel edges and we will often 
denote an edge e from u to v as “u→v”. The data graph can 
represent relational [2, 14] and XML [15, 8] databases, as well 
as the Web [4], although we repeat that the Web is out of the 
scope of this work.  

The schema graph G(VG,EG) (Figures 2 and 4) is a 
directed graph that describes the structure of D. Every node 
has an associated label. Each edge is labeled with a role, 
which may be omitted (as in Figure 4), as discussed above for 
data graph edge labels. For instance, the “Year” to “Paper” 
edge in Figure 2 has role “contains”. Note that edge 
multiplicity information can optionally be stated at the schema 
graph as in Figure 2. We say that a data graph D(VD,ED) 
conforms to a schema graph G(VG,EG) if there is a unique 
assignment µ of data-graph nodes to schema-graph nodes and 
a consistent assignment of edges such that:  

(1) for every node v ∈  VD there is a node µ(v) ∈VG such 
that λ(v) = λ(µ(v));  

(2) for every edge e ∈  ED from node u to node v there is 
an edge µ(e) ∈  EG that goes from µ(u) to µ(v) and λ(e) = 
λ(µ(e)). 
Authority Transfer Schema Graph. From the schema graph 
G(VG,EG), we create the authority transfer schema graph 
GA(VG,EA) to reflect the authority flow through the edges of 
the graph. In particular, for each edge eG= (u→v) of EG, two 
authority transfer edges, f

Ge  = (u→v) and b
Ge  = (v→u) are 

created. The two edges carry the label of the schema graph 
edge and, in addition, each one is annotated with a (potentially 
different) authority transfer rate -  )( f

Geα   and )( b
Geα  

respectively. We say that a data graph conforms to an 
authority transfer schema graph if it conforms to the 
corresponding schema graph. (Notice that the authority 
transfer schema graph has all the information of the original 
schema graph.) In Balmin at el. [3] the authority transfer rates 
for each edge type was assigned manually by a domain expert 
on a trial and error basis. In contrast, our techniques allow this 
task to be done automatically based on the user’s feedback as 
we explain in Section 5.  

Figure 3 shows the authority transfer schema graph that 
corresponds to the schema graph of Figure 2 (the edge labels 
are omitted). The motivation for defining two edges for each 

edge of the schema graph is that authority potentially flows in 
both directions and not only in the direction that appears in the 
schema. For example, a paper passes its authority to its 
authors and vice versa. Notice however, that the authority 
flow in each direction (defined by the authority transfer rate) 
may not be the same. For example, a paper that is cited by 
important papers is clearly important but citing important 
papers does not make a paper important.  

 
Figure 5: The DBLP Authority transfer data graph. 

Authority Transfer Data Graph. Given a data graph 
D(VD,ED) that conforms to an authority transfer schema graph 
GA(VG,EA), we can derive an authority transfer data graph 
DA(VD, A

DE ) as follows. For every edge e = (u→v) ∈  ED the 
authority transfer data graph has two edges 

fe  = (u→v) and be  = (v→u). The edges fe and eb are 

annotated with authority transfer rates )( feα  and )( beα . 

Assuming that fe  is of type f
Ge , then 
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where ),( f
GeuOutDeg  is the number of outgoing edges from u, 

of type f
Ge . The authority transfer rate )( beα  is defined 

similarly. Figure 5 illustrates the authority transfer data graph 
that corresponds to the data graph of Figure 1 and the 
authority transfer schema graph of Figure 3. Each edge is 
annotated with its authority transfer rate. Note that the edge 
between “Range Queries in OLAP” paper and author 
“Agrawal” is labeled 0.05 as the paper has three other authors 
not shown in Figure 5. Notice that the sum of authority 
transfer rates of the outgoing edges of a node u of type µ(u) in 
the authority transfer data graph may be less than the sum of 
authority transfer rates of the outgoing edges of µ(u) in the 
authority transfer schema graph, if u does not have all types of 
outgoing edges. 
 

III. QUERY DEFINITION AND OBJECTRANK2 
In this section we define a query and describe a modified 

version of ObjectRank originally presented in [3], called 
ObjectRank2. The modification to the original definition is 
that the nodes of the base set are weighted. The weights are 



computed using IR techniques for the original query and using 
query expansion techniques for subsequent queries as we 
describe in Section 5.  
Keyword Query. A keyword query Q is defined as a tuple of 
keywords Q=[t1,…,tm]. To incorporate weighing in the base 
set, we define the query vector as follows. For each query 
Q=[t1,…,tm] we define a query vector Q=[w1,.. , wm] (note that 
Q is boldface for query vector) where wi is the weight of the 
query keyword ti. The initial query vector for a query is 
Q=[1,…,1], since we assume that the query term weights are 
all 1. These weights change during the query expansion stage 
described in Section 5. The answer to Q is a list of objects 
with descending ObjectRank2 scores with respect to Q.  

ObjectRank2 is computed as follows on the authority 
transfer data graph DA(VD, A

DE ). A surfer starts from a node 
(database object) vi of the base set of VD and at each step, 
he/she follows an edge with probability d or gets bored and 
jumps to a node in the base set with probability 1 − d. The 
ObjectRank2 value of vi is the probability that at a given point 
in time, the surfer is at vi. The query base set S(Q) (from now 
on referred to simply as base set when the keyword is implied) 
is the set of nodes/objects that contain at least one keyword in 
Q. In contrast to the original ObjectRank [3], the random 
surfer jumps to different nodes of the base set with different 
probabilities. This probability for a node v is proportional to 
the IR score IRScore(v,Q) of the node(a node is also viewed as 
a document−we overload symbol v in this case) given the 
query vector Q. 

IRScore(v,Q) = v·Q                        (2) 
where “·” denotes the dot product operator, 
v=[W(v,t1),…,W(v,tm)] is the document vector for v, and W(v,t) 
is the IR weight of term t for document v. W(v,t) is defined 
using well studied traditional IR formulas like BM25 [25] or 
Okapi [28].   

We normalize the IR scores of the nodes in the base set to 
sum to one, since they represent probabilities. The 
ObjectRank2 scores vector rQ = [rQ(v1),…,rQ(vn)]T given query 
vector Q, where n=|VD|, is defined as follows:  

 

s
QS
ddAr Q

|)(|
)1(  r Q −+=            (3) 

where A is a n × n matrix with Aij = )(eα  if there is an edge 

e(vj → vi) in A
DE  and 0 otherwise, d is the damping factor 

which controls the base set importance, and s = [s1, . .si . , sn]T 
is the base set vector, where si = IRScore(vi,Q) if vi ∈  S(Q) 
and si= 0 otherwise. Note that the only difference to 
ObjectRank is the definition of the si’s which were 0 or 1 in [3, 
13].  
 

IV. EXPLAINING QUERY RESULTS 
In this section we tackle the problem of explaining a query 

result. For instance, as discussed in Section 1, the “Data 

Cube” paper in Figure 1 (see Figure 5 for corresponding 
authority transfer data graph) is ranked high for the query 
“OLAP”. What is the best way to explain to the user why this 
paper, referred to as the target object, received a high rank? 
This problem is even more critical in complex biological 
databases as the one of Figure 4.  

 
Figure 6: The DBLP Authority transfer data graph annotated with authority 
flows for query “OLAP”. 

Intuitively, we want to show to the user the paths in the 
authority transfer data graph DA that authority traversed to 
reach the target object v, starting from the nodes in the base 
set S(Q). For that, we create an explaining subgraph Q

vG  of DA 

that contains all edges that transfer authority to v given Q, and 
every edge in Q

vG  is annotated with the amount of authority 
that flows on this edge and eventually reaches v. 
We create Q

vG  in two stages:  
(i) Construction stage: Q

vG contains all nodes and edges of 
DA that are part of a directed path going from the base set 
S(Q) to v. That is, Q

vG  contains all edges that can 
potentially carry authority flow to v. 

(ii) Flow adjustment stage: We compute the explaining 
authority flows on the edges of Q

vG . The explaining 
authority flow Flow(e) of an edge e is the amount of 
authority flow that is transferred through e and eventually 
reaches v, on DA for Q. 

 
Figure 7: Intuition behind flow adjustment. 

The construction stage is straightforward and is achieved 
as follows: We first construct the temporary subgraph Dv, 
starting from the target node v and traversing edges of DA 
following the edges in the opposite direction in a breadth first 
manner (depth first would also work) until no more edges can 
be traversed. Then, we start from the authority sources (base 
set nodes) of Dv and traverse the edges of Dv in the forward 
direction until no more edges can be traversed. All nodes and 
edges traversed in the forward stage are added to the 
explaining sub graph Q

vG . 

v1 v2

v3

v

v4

0.3 0.2 

0.2 
0.1 

Q
vG



The flow adjustment stage is more challenging because we 
have to adjust the “original” edge authority flows for Q to 
subtract the authority flow not reaching to v. For instance, in 
Figure 7 we must subtract from the edge flows the amount 
that will eventually “leak” out of Q

vG  through v2→v4. By 
“original” flows we refer to the authority flows at 
convergence state in DA for ObjectRank2 execution for query 
Q. The original flow for edge vi→vj  is: 

)()()(0 i
Q

jiji vrvvdvvFlow ⋅→⋅=→ α  (4) 

where )( ji vv →α  is the authority transfer rate of edge 

e = (vi→vj) in DA according to Equation 1.  
  
 Figure 6 illustrates the original authority flows for d = 0.85 
and query Q=[“OLAP”], on the authority transfer data graph 
of Figure 5. The computed ObjectRank2 scores vector rQ = 
[0.076, 0.002, 0.009, 0.076, 0.017, 0.025, 0.083]T, after 5 
iterations. 

It is more intuitive to view the problem as adjusting the 
edge flows instead of adjusting the node scores, although the 
adjusted node scores can be easily computed given the edge 
flows in the end. One could think of simply reducing the flow 
on an incoming edge vi→vj of Q

vG  proportionally to the ratio 
of the outgoing flow of vj going outside Q

vG . However, this 
approach will fail if there are cycles in Q

vG , since adjusting the 
flow of an edge can have a ripple effect. Hence, an iterative 
method is used. In particular, for every node u, with the 
exception of the target node v, we iteratively reduce its 
incoming flows proportionally to the flow going from u 
towards nodes outside of Q

vG . We do not adjust the incoming 
flows of the target node v, as the purpose of the explaining 
subgraph is to explain to the user the total authority that v 
receives from other nodes in DA. We assume all edges are 
bidirectional (arbitrarily small flow rates can be assigned to 
direction of small importance) to guarantee convergence, 
since this makes the graph irreducible [20]. 

 
For instance, for the explaining subgraph in Figure 7 with 

target node v, where we assume d=1 (i.e., nodes pass all their 
authority to their neighbours) and all edges are of the same 
type, we adjust the original edge flows of v1→v2 and v3→v2 as 
follows: Half of the flow going through these edges goes 
through v2→v and half through v2→v4. Since v2→v4 is 
outside Q

vG , we cut the flows of v1→v2 and v3→v2 to half, i.e., 
to 0.15 and 0.05 respectively. This process is repeated 
iteratively for all edges in Q

vG  until the computation 
converges. Note that the flow on edges vi→v, i.e., edges that 
end at v, are not adjusted.  
 
Details of adjustment stage: The details of the adjusting 
algorithm are as follows: For each node vk in Q

vG , let O(vk) be 
the summation of all outgoing flows of vk in Q

vG  and I(vk) be 
the summation of all incoming flows of vk in Q

vG (we consider 

all incoming edges in Q
vG and not DA since Observation 1 

below shows that both are equal). It is 

∑
∈

→=Ι
Q
vkj Gvv

kjk vvFlowv
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)()(         (5a) 

 

∑
∈

→=
Q
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Figure 8: Algorithm to Compute Flows in Explaining Subgraph. 

Observation 1: There is no incoming edge vi→vj with non-
zero authority flow, where vj is in Q

vG  but vi is outside Q
vG . If 

such en edge existed, it would have been included to Q
vG  

during the construction stage.  
 
As mentioned before, our goal is to compute the factor 

h(vk) by which the incoming flow I(vk) of each node vk must 
be reduced to be consistent with the reduced outgoing flow 
O(vk) of vk in Q

vG . It is: 
)()()( 0 kjkkj vvFlowvhvvFlow →⋅=→  (6)  

Intuitively, this factor h(vk) is computed by the ratio of rQ′(vk) 
and rQ(vk) which are the ObjectRank score of vk in Q

vG  (the 
“original” score) and DA respectively. Hence, for a node vk: 

d
vOvr k

k
Q )()(' =   (7) 

)(
)(' )h(

k
Q

k
Q

k vr
vrv =   (8) 

Combining Equations 4, 5b, 6, 7 and 8, we get the following 
fixpoint equation for the computation of h(vk).  

( )∑
∈

→⋅=
Q
vjk Gvv

jkjk vvvhv
),(

)()( )h( α          (9) 

 

Explain-ObjectRank(Target Object v, Graph 
DA, Base Set S(Q)={s1,…,sn},Threshold T) { 
/*Construction Stage */ 
1)Create a temporary subgraph Dv by executing 
breadth-first search on DA with v as the root 
node, traversing edges in opposite direction; 

2)Create explaining subgraph, Q
vG  by executing 

breadth-first search on Dv with the nodes in 
base set S(Q) as root nodes, traversing edges 
in right direction; 
/*Flow Adjustment Stage */ 

3)For each edge vi->vj in Q
vG ,compute 

Flow0(vi->vj) using Equation 4; 

4)For each node vk in 
Q
vG  set h(vk)=1; 

5)While not converged do 

      For each node vk in 
Q
vG  except v do 

Compute h(vk) using Equation 9; 

6)Update the Flow of each edge in Q
vG  using 

Equation 6; 
7)Return 

Q
vG
; 



Observation 2: The “original” ObjectRank2 scores are not 
used in computing the reduction factor h(vk).  

The iterative computation of Equation 9 on the explaining 
subgraph converges since the graph is aperiodic and 
irreducible, as described above. 
 
Example 1. Figure 9 shows the explaining subgraph for 
Q=[“OLAP”] and target object v4 after 5 iterations of 
Equation 9. Note that the “Data Cube” paper (see Figure 6) 
is not in Q

vG , since there is no path from that paper to v4.  
Notice that the incoming flows of the target object v4 are the 
same as the original ones of Figure 6. The computed 
reduction factors after 5 iterations are as follows: 
h(v1)=1.59e-4, h(v2)=4.77e-4, h(v3)=0.0011, h(v4)=1.0, 
h(v5)=0.1006 and h(v6)=0.0067. Note that h(v4) is 1 as v4 is 
the target object which implies that its incoming flow from v5 
is not adjusted as shown in Figure 9.  

Figure 9: Explaining Subgraph for “Range Queries in OLAP” paper in Figure 
6. 

The explaining subgraph Q
vG  can be very large which 

would make its generation slow and its display to the user, 
impossible. Hence, in practice we limit the radius of Q

vG to L 
(longer paths are generally unintuitive and carry less authority) 
and only keep the paths with high authority flow. We apply 
these techniques in our online demo. We have found that a 
relatively small L (e.g., L=3) value is adequate to effectively 
explain a result and produce useful reformulations (see 
Section 5). 

 

V. QUERY REFORMULATION 
Query reformulation using relevance feedback has been 

well studied in traditional IR [29, 24, 7, 6, 9], where query 
expansion has been the dominant strategy. That is, keywords 
are added to the original query according to the user’s 
feedback. Such techniques are not adequate for ObjectRank2, 
since they ignore the link-structure of the graph which plays a 
key role in the ranking. For instance, if the user selects the 
“Range Queries in OLAP” paper in Figure 5 as a relevant 
object, what is the best way to reformulate the query using this 
paper (referred as feedback object)? The explaining subgraph 
described in Section 4 is a key structure for query 
reformulation since a “vote” of the user for feedback object v 
can be viewed as “vote” of the user for the explaining 
subgraph Q

vG  of v. 
 

Overview of process: First, the system computes the top-k 
objects with the highest ObjectRank2 values. The user marks 
a result object v (can be extended to multiple objects) as 
relevant − user’s click-through could be used to implicitly 
derive such markings. Then the explaining subgraph Q

vG  of v 
is computed. (In practice (Section 6) a subgraph of Q

vG  is 
computed to improve response time.) Based on the content 
and link-structure of Q

vG  we reformulate the initial query. In 
particular, the Content-based component (subsection A) of the 
reformulation is inspired by traditional query expansion ideas 
and leads to a query expansion; whereas the Structure-based 
component (subsection B) adjusts the authority transfer rates 
of the authority transfer schema graph based on the edge types 
in Q

vG . The two reformulation components can be combined. 

A. Content-based Reformulation 
According to traditional reformulation techniques, the 

terms in the feedback object v (viewed as a document) should 
be added, appropriately weighted, to the original query. 
However, due to the nature of authority flow ranking, we 
extend this idea to also include terms in the objects that 
transfer high authority to v. These objects are the nodes of the 
explaining graph Q

vG . The weight of an expansion term t is 
proportional to the flow that the nodes that contain t pass to v, 
that is, the outgoing flow of these nodes in Q

vG .  
A term t is weighted according to its distance from v and 

the amount of authority it transfers to v, as shown in Equation 
10. The authority flow a node transfers to v is its outgoing 
flow in the explaining graph Q

vG  as explained in Section 4. 

∑ ∑
∈∧∈ ∈
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where 0 ≤ dC ≤ 1 is the decay factor (in the spirit of XRANK 
[8]), typically set to 0.5 (which we have found to produce 
good reformulations) and D(vk,v)  is the distance (length in 
number of edges) of vk from v. Note that if vk is v, then we use 

∑
∈

→⋅
Q
vkj Gvv

kj vvFlowd
),(

)(  instead of ∑
∈

→
Q
vjk Gvv

jk vvFlow
),(

)(   , 

since the outgoing flow of v is not specified in Q
vG .  

 
We select the top-s terms Z with highest weight (ignoring 

stop words) and add them, after normalizing them as 
explained below, to the original query vector Q0. The 
reformulated query vector Qi at iteration i is defined as 
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where t is the vector of term t (as in the vector space model 
[28]), and 0≤ eC ≤1 is the expansion factor, typically 0.5, used 
to scale the weights of new terms (as well as new weights of 
old terms) with respect to the terms present in current query 
vector. Appropriate normalization is employed. 



 
Example 2. Consider the authority transfer data graph of 
Figure 5, query Q=[“OLAP”], and feedback object, v is the 
“Range Queries in OLAP” paper. The explaining subgraph 

Q
vG  (Figure 9) is created. Using Equation 10, and assuming 

Cd and Ce are 0.5, the top-5 new terms are olap(1.0), 
cubes(0.99), range(0.99), multidimensional(0.05) and 
modeling(0.05). Note that the terms in the feedback object 
(target object of Q

vG ) generally get a higher weight due to the 
decay factor Cd. The reformulated query vector Q computed 
by Equation 11 is [olap, cubes, range, multidimensional, 
modeling]=[2.0,0.99, 0.99, 0.05, 0.05]. 

B. Structure-based Reformulation 
The structure-based reformulation adjusts the authority 

transfer rates based on the explaining subgraph Q
vG . 

Intuitively, if edges of an edge type eG carry large authority in 
Q
vG  then the user probably believes eG is an important edge 

type for the query. We boost the authority transfer rate of each 
edge type present in Q

vG  according to the authority it transfers 
(to the feedback object v). The reformulated authority transfer 
rate )(' Geα  of edge type eG is computed by, 

)()(1)('
),(),(

G
etypehasvvGvv

jkfG evvFlowCe
Gjk

Q
vjk

αα ⋅
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where 0≤ fC ≤1 is the authority transfer rate adjustment 
factor, typically set to 0.5 (which we have found to produce 
good reformulations) is used to scale the authority transfer 
rates with respect to their previous values, )( Geα  is the 
previous authority flow rate of edge type eG. Appropriate 
normalization is employed. 
 
Example 2 (cont’d). The authority transfer rates of the 
original query are [PP,PP′,PA,AP,CY,YC,YP,PY] = 
[0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. Using Equation 12 and the 
normalization process, the reformulated authority transfer 
rates are [0.67,0.0,0.24,0.16,0.24,0.24,0.24,0.08]. Notice that 
the transfer rates of PA and AP edge types are increased and 
decreased respectively as they carry greater and lesser 
authority to the feedback object respectively.    
 

VI. EXPERIMENTS 
We experimentally evaluate our algorithms in terms of 

quality and performance. This section is organized as follows: 
First we briefly describe the datasets used for evaluation and 
then subsections A and B present the user surveys and the 
performance experiments respectively. 
 
Datasets: We use two real datasets (Table 1). DBLPcomplete 
and DBLPtop are the complete DBLP dataset and a databases-
related subset respectively. We shredded the downloaded 
DBLP file into the relational schema of Figure 2.  

 

TABLE I 
REAL AND SYNTHETIC DATASETS 

Name #nodes #edges Size (MB) 
DBLPcomplete 876,110 4,166,626 3,950 

DBLPtop 22,653 166,960 136 

A. User Surveys 
We used DBLPtop for our user surveys and not 

DBLPcomplete since on-the-fly ObjectRank2 executions on 
the latter are slow and survey subjects would be irritated. The 
first phase (internal survey) was conducted at Florida 
International University (FIU) involving five professors and 
PhD students from the database lab, who were not involved 
with the project. The goal of this survey was to compare 
content-based, structure-based, and content & structure-based 
reformulations. The result was that structure-based 
reformulation is superior. The second phase (external survey) 
focused on structure-based reformulation and involved 10 FIU 
and outside (including IBM TJ Watson and Almaden) 
database researchers, not involved in the project. In both 
phases we also measure the capability of our system to 
discover the authority transfer rates set by a domain expert. 
 
Internal Survey: The residual collection method [24, 29] can 
be summarized as follows: All objects seen by the user or 
marked as relevant are removed from the collection and both 
the initial and all reformulated queries are evaluated using the 
residual collection. We use the average precision as the 
evaluation measure. Note that measuring the recall in this 
experiment would give identical conclusions since we limit 
the output results to k.  We report the survey results for 4 
relevance feedback iterations and for the following 3 settings: 
i) Content-Only reformulation (Cf=0&Ce=0.2), ii) Content & 
Structure-based reformulation (Cf =0.5& Ce =0.2) and iii) 
Structure-Only reformulation (Cf =0.5& Ce =0). (We have 
found that these values of Cf and Ce are appropriate for this 
dataset.) The decay factor Cd is set to 0.5. We use L=3 to limit 
the size of the explaining subgraph as explained in Section 4. 
We initialize the authority transfer rates of each edge type to 
0.3. Figure 10 shows the survey results. We see that the 
structure-only reformulation performs the best. Content-based 
reformulation is not effective in our setting because the users 
are domain experts and hence know the right keywords, i.e., 
traditional query expansion is not effective. Note that in a 
different domain the results could vary. 
 
 Next we evaluate the effectiveness of structure-based 
reformulation to automatically train the authority transfer rates 
of the DBLP authority transfer schema graph and compare the 
learned weights to the ones of [3], which we view as ground 
truth. The rates there were assigned manually by domain 
experts in a trial and error manner. We start by setting the 
transfer rates of all edge types to 0.3. We again limit the 
length of paths of the explaining graph with L=3. Let 
UserVector[PP,PP′,PA,AP,CY,YC,YP,PY] be the authority 
rates vector. It is initialized to [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]. 
The ground truth ObjVector is [0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. 



At each iteration we compute the current UserVector 
produced by the reformulation and compute the cosine 
similarity cos(ObjVector,UserVector). Figure 11 shows the 
cosine similarity training curves for 4 users averaged over 5 
queries each for a different value of Cf (Ce is always 0). We 
see that the cosine similarity initially increases with the 
number of iterations and then decreases due to overfitting. 
Larger Cf values lead to faster peak, since the adjustment of 
the rates is less smooth (see Equation 12). 
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Figure 10: Average Precision for different calibration parameters. 
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Figure 11: Training of Authority Transfer Rates. 

 
ObjectRank2 vs. ObjectRank: We also conducted a survey 
comparing the quality of ObjectRank2 with ObjectRank [3]. 
We found that ObjectRank2 is only slightly better by 3%. The 
reason is the ObjectRank also uses something equivalent to 
the idf of our IR function: they weigh the ObjectRank values 
for multi-keyword queries according to the size of the base 
set. However, we believe that ObjectRank2 will be superior in 
datasets with longer text descriptions.  
 
External Survey: We conducted an external survey operating 
on DBLPtop using only structure-based reformulation as it 
was found to be the best, in the internal survey. Figure 12 
shows the average precision curve for 5 iterations averaged 
over 20 queries by 10 users (2 queries per user). Figure 13 
shows the authority transfer rate training curves for the 
external survey which are similar to those in the internal 
survey. 
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Figure 12: Average Precision using structure-only reformulation with Cf=0.5. 
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Figure 13: Training of the Authority Transfer Rates. 

B. Performance Experiments 
 To evaluate the performance of our algorithms, we 
conducted experiments on DBLPcomplete. We used a linux 
machine with Power 4+ 1.7GHz processor and 20GB of RAM. 
The total execution time is measured for various stages: (a) 
computing the top-k objects for the initial or reformulated 
query, (b) creating the explaining subgraph, (c) executing the 
explaining ObjectRank2 on the explaining subgraph, and (d) 
creating the reformulated query. 
  
 As in [3], for the initial user query, we initialize every 
node in DA with their global ObjectRank values, to achieve 
faster convergence. Then, for the first reformulated query we 
use the ObjectRank values of the initial query and so on. The 
intuition is that the ObjectRank values of the newly 
reformulated query are expected to be close to the ones 
obtained by the previous query. 
  
 Figure 14(a) shows the execution times for the various 
components of the process: execute the query (first bar), and 
create the reformulated query (last three bars) at each user 
feedback and reformulation iteration. We use L=3 as the 
radius of the explaining subgraph, and convergence threshold 
0.0001. Figure 14(b) shows the number of ObjectRank2 
iterations for the initial and the reformulated queries over the 
whole graph. Clearly, using the previous scores as initial 
values accelerates the convergence of ObjectRank2.   
 
 The ObjectRank2 execution times for DBLPcomplete is 
clearly too long for exploratory searching. This can be 



addressed in one of the following ways: use faster hardware, 
precompute ObjectRank2 values as in [3], or define focused 
subsets like DBLPtop. The ObjectRank2 execution times for 
these datasets are about 2 seconds for the initial query and less 
than 1 sec for the subsequent reformulated queries (graphs 
omitted due to space constraints). 
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(b): ObjectRank2 iterations. 

Figure 14: DBLPcomplete Execution. 

 

VII. RELATED WORK 
 We first present how state-of-the-art works rank the results 
of a keyword query, using traditional IR techniques and 
exploiting the link structure of the data graph. Then we 
discuss about related work on the relevance feedback and 
query reformulation. 
 
Traditional IR ranking. For an overview of modern IR 
techniques we refer to [28]. Any state-of-the-art IR ranking 
function is based on the tf-idf principle [28]. The shortcoming 
of these semantics is that they miss objects that are much 
related to the keywords, although they do not contain them. 
The most popular specificity metric in Information Retrieval 
is the document length (dl). The relevance information is 
hidden in the link structure of the data graph which is largely 
ignored by the traditional IR techniques. 
 

Link-based semantics. Savoy [27] was the first to use the 
link-structure of the Web to discover relevant pages. This idea 
became more popular with PageRank [4], where a global 
score is assigned to each Web page. HITS [18] employ 
mutually dependant computation of two values for each web 
page: hub value and authority. Balmin et al. [3] introduce the 
ObjectRank metric. In contrast to PageRank, it is able to find 
relevant pages that do not contain the keyword, if they are 
directly pointed by pages that do. Haveliwala [11] proposes a 
topic-sensitive PageRank, where the topic-specific PageRanks 
for each page are precomputed and the PageRank value of the 
most relevant topic is used for each query. Both works apply 
to the Web and do not address the unique characteristics of 
structured databases, as we discuss in Section 1. Furthermore, 
they offer no adjusting parameters to calibrate the system 
according to the specifics of an application.  
 Recently, the idea of PageRank has been applied to 
structured databases [8, 17]. XRANK [8] proposes a way to 
rank XML elements using the link structure of the database. 
Furthermore, they introduce a notion similar to ObjectRank 
transfer edge bounds, to distinguish between containment and 
IDREF edges. Huang et al. [17] propose a way to rank the 
tuples of a relational database using PageRank, where 
connections are determined dynamically by the query 
workload and not statically by the schema. However, none of 
these works exploits the link structure to provide keyword-
specific ranking. Furthermore, they ignore the schema 
semantics when computing the scores.  
 
Relevance Feedback & Query Expansion. Salton and 
Buckley [29] introduced the idea of using relevance feedback 
for improving search performance. Relevance feedback covers 
a range of techniques intended to improve a user’s query and 
facilitate retrieval of information relevant to a user’s 
information need. In [5, 6], they showed that query expansion 
and query term reweighting are essential to Relevance 
Feedback. For a detailed survey of relevance feedback 
methods we refer to [24, 10]. The basic approach of term 
selection, term reweighing and query expansion 
[7,9,21,31,19,12] using terms drawn from the relevant 
documents works well for traditional IR which is content-
based. For link-based metrics like ObjectRank [3] this yields 
poor results as shown in Section 6. Hence, we need link-based 
(structure-based) relevance feedback methods as described in 
Section 5.  
 Nie et al. [22] and Agarwal et al. [1] present query-
independent techniques to assign popularity propagation 
factor values (similar to the authority flow rates of 
ObjectRank) to Web objects, given an optimal object ranking. 
Our structure-based reformulation technique, which is query 
and feedback-specific, is inspired by these works. A recent 
work [33] on relevance feedback is based on web-graph 
distance metrics. The basic idea, which is similar to our 
content-based reformulation technique, is that relevant pages 
tend to point to other relevance pages, while irrelevant pages 
are pointed to by other irrelevant pages. Another recent study 



on relevance propagation over the web [23] proposes site-
based propagation models that out-perform hyperlink-based 
models. Another recent work [32] describes active feedback 
algorithms that help to choose documents for relevance 
feedback so that the system can learn most from the feedback. 
 

VIII. CONCLUSIONS 
 In this work we presented a technique to explain the 
results of authority flow queries and also reformulate them. 
We discussed reformulations based on content and structure of 
the underlying graph. We also showed how to automatically 
train the authority transfer rates of the schema graph based on 
user preferences. We presented efficient algorithms to explain 
and reformulate authority flow queries. We also conducted 
user surveys to measure the effectiveness of the proposed 
algorithms. Furthermore, we showed the feasibility of our 
approach by conducting performance experiments over large 
graphs.  
 

REFERENCES 
[1] A. Agarwal, S. Chakrabarti and S. Aggarwal. Learning to rank 

networked entities. SIGKDD 2006. 
[2] S. Agrawal, S. Chaudhuri and G. Das. DBXplorer: A System for 

Keyword-Based Search over Relational Databases. ICDE 2002. 
[3] A. Balmin, V. Hristidis and Y. Papakonstantinou. Authority-

Based Keyword Queries in Databases using ObjectRank. VLDB 
2004. 

[4] S. Brin and L. Page. The Anatomy of a Large-Scale 
Hypertextual Web Search Engine. WWW Conference 1998. 

[5] C. Buckley, G. Salton and J. Allan. The Effect of Adding 
Relevance Information in a Relevance Feedback Environment. 
SIGIR 1994. 

[6] C. Buckley, G. Salton, J. Allan and A. Singhal. Automatic query 
expansion using SMART: TREC-3. NIST special publication 
500-225. pp 69-80. 1995. 

[7] E. N. Efthimiadis. A user-centered evaluation of ranking 
algorithms for interactive query expansion. SIGIR 1993. 

[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. 
XRANK: Ranked Keyword Search over XML Documents. 
SIGMOD 2003. 

[9] D. Harman. Towards interactive query expansion. SIGIR 1988. 
[10] D. Harman. Relevance feedback and other query modification 

techniques. Information retrieval: Data structures and 
Algorithms, Prentice-Hall Inc, 1992. 

[11] T. Haveliwala. Topic-Sensitive PageRank. WWW Conference 
2002. 

[12] D. Haines and W.B. Croft. Relevance feedback and inference 
networks. SIGIR 1993. 

[13] V. Hristidis, H. Hwang and Y. Papakonstantinou. Authority-
Based Keyword Search in Databases. ACM TODS, 2008. 

[14] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword 
Search in Relational Databases. VLDB 2002. 

[15] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword 
Proximity Search on XML Graphs. ICDE 2003. 

[16] H. Hwang, V. Hristidis, and Y. Papakonstantinou. ObjectRank: 
A System for Authority-based Search on Databases. Demo at 
SIGMOD 2006.  

[17] A. Huang, Q. Xue, and J. Yang. TupleRank and Implicit 
Relationship Discovery in Relational Databases. WAIM 2003. 

[18] J. M. Kleinberg. Authoritative sources in a hyperlinked 
environment. Journal of the ACM 46, 1999. 

[19] D. Kelly and X. Fu. Elicitation of term relevance feedback: an 
investigation of term source and context. SIGIR 2006. 

[20] R. Motwani and P. Raghavan. Randomized Algorithms. 
Cambridge University Press, United Kingdom, 1995.  

[21] M. Mitra, A. Singhal and C. Buckley. Improving automatic 
query expansion. SIGIR pp 206-214. 1998. 

[22] Z. Nie, Y. Zhang, J. Wen, and W. Ma. Object-level ranking: 
Bringing order to Web objects. WWW 2005. 

[23] T.Qin, T. Liu, X. Zhang,  Z. Chen and W.A study of relevance 
propagation for web search. SIGIR 2005. 

[24] I. Ruthven and M. Lalmas. A survey on the use of relevance 
feedback for information access systems . The Knowledge 
Engineering Review. 94-145. vol 18, issue 2. 2003.  

[25] S. E. Robertson and S Walker. Some simple effective 
approximations to the 2-Poisson model for probabilistic 
weighted retrieval. SIGIR 1994. 

[26] L. Raschid, Y. Wu, W. Lee, M. E. Vidal, P. Tsaparas, P. 
Srinivasan, and A. K. Sehgal. Ranking target objects of 
navigational queries. WIDM 2006. 

[27] J. Savoy. Bayesian inference networks and spreading activation 
in hypertext systems. Information Processing and Management, 
28(3):389–406, 1992. 

[28] A. Singhal: Modern Information Retrieval: A Brief Overview, 
Google, IEEE Data Eng. Bull, 2001. 

[29] G. Salton and C. Buckley. Improving retrieval performance by 
relevance feedback. Journal of the American Society for 
Information Science. 41. 4. pp 288- 297. 1990. 

[30] P. Shafer, T. Isganitis, G. Yona. Hubs of knowledge: using the 
functional link structure in Biozon to mine for biologically 
significant entities. BMC Bioinformatics. 2006 Feb 15;7:71. 

[31] A. Smeaton and C. J. van Rijsbergen. The retrieval effects of 
query expansion on a feedback document retrieval system. The 
Computer Journal. 26. 3. pp 239-246. 1983. 

[32] X. Shen and C. Zhai. Active feedback in ad hoc information 
retrieval. SIGIR 2005. 

[33] S. Vassilvitskii and E. Bill. Using web-graph distance for 
relevance feedback in web search. SIGIR 2006. 

 
 


