
Explaining and Reformulating Authority Flow
Queries*

Ramakrishna Varadarajan#1, Vagelis Hristidis#2, Louiqa Raschid+3
#School of Computing and Information Sciences, Florida International University

11200 S.W. 8th Street, Miami, FL 33199, USA.
1ramakrishna@cis.fiu.edu

2vagelis@cis.fiu.edu
+Department of Computer Science, University of Maryland

 College Park, MD 20742.
3louiqa@umiacs.umd.edu

Abstract— Authority flow is an effective ranking mechanism for
answering queries on a broad class of data. Systems have been
developed to apply this principle on the Web (PageRank and
topic sensitive PageRank), bibliographic databases
(ObjectRank), and biological databases (Hubs of Knowledge
project). However, these systems have the following drawbacks:
(a) There is no way to explain to the user why a particular result
received its current score; (b) The authority flow rates, which
have been shown to dramatically affect the results’ quality in
ObjectRank, have to be set manually by a domain expert; (c)
There is no query reformulation methodology to refine the query
results according to the user’s preferences. In this work, we
address these shortcomings by introducing a framework and
algorithms to explain query results and reformulate authority
flow queries based on the user’s feedback. The query
reformulation process can be used to learn the user’s preferences
and automatically adjust the authority flow rates to facilitate
personalized authority flow searching. We experimentally
evaluate our algorithms in terms of performance and quality.

I. INTRODUCTION
Authority flow is an effective ranking mechanism for

answering queries on a broad class of data. In the context of
the Web, PageRank [4] is used to compute a global ranking of
the pages based on the hyperlink structure. ObjectRank [3,13]
applies the idea of authority flow on a data graph, where
nodes represent entities like tuples, and edges represent
associations like primary-to-foreign keys. In contrast to
PageRank, ObjectRank provides query-specific ranking by
using the query-specific nodes as the authority source (called
base set). Another key feature of ObjectRank, as explained
below, is that different edge types carry different amounts of
authority. Another appropriate domain for authority flow
ranking is that of biological data. The Hubs of Knowledge
project [30] applies the PageRank algorithm on a query-
dependent subgraph of the original biological graph. Raschid
et al. [26] apply PageRank and ObjectRank to answer
navigational queries on biological data. We note that not all
databases are appropriate for authority flow query answering.

Our work is applicable to the ones that do have the notion of
authority flow along their associated edges as the ones
described above. Web search is out of the scope of this work,
since we focus on typed domain-specific data graphs.

ObjectRank: We build our work on ObjectRank, since it is
the most general of the available authority flow ranking
approaches. We use a modification of ObjectRank, which we
refer to as ObjectRank2, where the nodes in the base set are
weighted according to Information Retrieval (IR) techniques.
Consider the example of Figure 1, which illustrates a small
subset of the DBLP database in the form of a labeled graph
(some author, conference and year nodes are omitted to
simplify the figure). Schema graphs, such as the one of Figure
2, describe the structure of database graphs. Given a keyword
query, e.g. the single-keyword query “OLAP”, ObjectRank
sorts the database objects by their relevance with respect to
the user-provided keywords. Given the subgraph of Figure 1,
the “Data Cube” paper is ranked on the top, even though it
does not contain the keyword “OLAP”. This is a key
advantage of ObjectRank compared to traditional IR
approaches.

Conceptually, the ranking is produced in the following
way: Myriads of random surfers are initially found at the
objects containing the keyword “OLAP”, which we call the
base set, and then they traverse the database graph. In
particular, at any time step, a random surfer is found at a node
and either (i) makes a move to an adjacent node by traversing
an edge, or (ii) jumps randomly to an “OLAP” node without
following any of the links. The probability that a particular
traversal happens depends on multiple factors, including the
type of the edge. These factors are depicted in an authority
transfer schema graph. Figure 3 illustrates the authority
transfer schema graph used by the ObjectRank project [3].
Assuming the probability that the surfer moves back to an
“OLAP” node is 15% (damping factor−random jump
probability [4]), the collective probability to move to a
referenced paper is up to 85% ⋅ 70% (70% is the authority
transfer rate of the citation edge as we explain below), and so
on. As is the case with the PageRank algorithm as well, as
time goes on, the expected percentage of surfers at each node

* This project was supported in part by the National Science
Foundation Grant IIS-0534530.

v converges to a limit r(v). Intuitively, this limit is the
ObjectRank of the node.

Limitations of ObjectRank: Ranking the objects of a data
graph using ObjectRank has the following limitations:

(a) There is no way to explain to the user why a particular
result received its current score; e.g., the user may want to see
proof to believe that the “Data Cube” paper is important for
“OLAP”. This is even more critical in complex biological
databases where objects (e.g., proteins) with no obvious
connection to the query (e.g., gene “TNF”) are returned.
Figure 4 shows a subgraph of the biological schema graph we
are using in our experiments.

Figure 1: A subset of the DBLP graph.

Figure 2: The DBLP schema graph.

Figure 3: DBLP authority transfer schema graph.

(b) The authority transfer rates, which have been shown to
dramatically affect the results’ quality of ObjectRank [3, 13,
16], have to be set manually by a domain expert. For instance,
what is the ratio of authority flowing from a gene to a PubMed
publication over that flowing to a protein at Entrez Protein?

(c) There is no query reformulation methodology to refine the
query results according to the user’s preferences. Query
reformulation based on user relevance feedback is a mature
and well-studied process in traditional document IR [29,
24,9]. However, there is no work on handling user feedback
for authority flow ranking systems. As we discuss below, our
reformulation strategy exploits the user feedback in terms of
content (in the spirit of traditional query expansion [6, 21, 31,
7]) as well as link structure.

Contributions: This paper has the following contributions:

1. We present a methodology to explain a result of an
authority flow query. For that we generate and display an
explaining subgraph.

2. A process is presented to automatically reformulate a
query based on a selection of good results by the user. We
reformulate the query based both on the content, in the
spirit of traditional IR query expansion, as well as the
link-structure, by adjusting the authority flow rates. The
explaining subgraphs of the selected results are used to
capture the user’s preference and build the reformulated
query.

Figure 4: Subgraph of biological schema graph.

3. Efficient algorithms are presented and evaluated to
explain a result and create and evaluate the reformulated
query.

4. An ObjectRank2 query and reformulation system has
been built and deployed on bibliographic and biological
datasets, available on the Web at
http://dbir.cis.fiu.edu/ObjectRankReformulation/.

5. User surveys were conducted, which prove the utility of
the system in explaining and reformulating queries, as
well as in automatically training the authority flow rates,
which was done manually before [3].

The rest of the paper is organized as follows. Section 2
presents the framework. Section 3 defines a query and
presents ObjectRank2. Section 4 presents the result
explanation technique while Section 5 presents the query
reformulation techniques. Section 6 present the quality and
performance experiments. Section 7 describes the related
work. Finally Section 8 discusses our conclusions.

II. FRAMEWORK
In this section we present the framework and essential

definitions, which are later used to describe our result
explanation and query reformulation techniques. Note that we
follow the terminology of [3, 13].

We view a database as a labeled graph, which is a model
that captures both relational and XML databases. The data
graph D(VD,ED) is a labeled directed graph where every node
v has a label λ(v) and a set of keywords. For example, the
node “ICDE 1997” of Figure 1 has label “Year” and the set of
keywords {‘‘ICDE’’, ‘‘1997’’, ‘‘Birmingham’’}. Each node
represents an object of the database and may have a sub-
structure. Without loss of generality, ObjectRank assumes that
each node has a tuple of attribute name/attribute value pairs.

For example, the “Year” nodes of Figure 1 have name, year
and location attributes. Notice that the keywords appearing in
the attribute values comprise the set of keywords associated
with the node. One may assume richer semantics by including
the metadata of a node in the set of keywords. For example,
the metadata “Forum”, “Year”, “Location” could be included
in the keywords of a node.

Each node v has a role λ(v). For instance, the ICDE
conference node in Figure 1 has role “conference”. Each edge
e from u to v is labeled with its role λ(e) (we overload λ) and
represents a relationship between u and v. For example, every
“paper” to “paper” edge of Figure 1 has the label “cites”.
When the role is evident and uniquely defined from the labels
of u and v, we omit the edge label. For simplicity we will
assume that there are no parallel edges and we will often
denote an edge e from u to v as “u→v”. The data graph can
represent relational [2, 14] and XML [15, 8] databases, as well
as the Web [4], although we repeat that the Web is out of the
scope of this work.

The schema graph G(VG,EG) (Figures 2 and 4) is a
directed graph that describes the structure of D. Every node
has an associated label. Each edge is labeled with a role,
which may be omitted (as in Figure 4), as discussed above for
data graph edge labels. For instance, the “Year” to “Paper”
edge in Figure 2 has role “contains”. Note that edge
multiplicity information can optionally be stated at the schema
graph as in Figure 2. We say that a data graph D(VD,ED)
conforms to a schema graph G(VG,EG) if there is a unique
assignment µ of data-graph nodes to schema-graph nodes and
a consistent assignment of edges such that:

(1) for every node v ∈ VD there is a node µ(v) ∈VG such
that λ(v) = λ(µ(v));

(2) for every edge e ∈ ED from node u to node v there is
an edge µ(e) ∈ EG that goes from µ(u) to µ(v) and λ(e) =
λ(µ(e)).
Authority Transfer Schema Graph. From the schema graph
G(VG,EG), we create the authority transfer schema graph
GA(VG,EA) to reflect the authority flow through the edges of
the graph. In particular, for each edge eG= (u→v) of EG, two
authority transfer edges, f

Ge = (u→v) and b
Ge = (v→u) are

created. The two edges carry the label of the schema graph
edge and, in addition, each one is annotated with a (potentially
different) authority transfer rate -)(f

Geα and)(b
Geα

respectively. We say that a data graph conforms to an
authority transfer schema graph if it conforms to the
corresponding schema graph. (Notice that the authority
transfer schema graph has all the information of the original
schema graph.) In Balmin at el. [3] the authority transfer rates
for each edge type was assigned manually by a domain expert
on a trial and error basis. In contrast, our techniques allow this
task to be done automatically based on the user’s feedback as
we explain in Section 5.

Figure 3 shows the authority transfer schema graph that
corresponds to the schema graph of Figure 2 (the edge labels
are omitted). The motivation for defining two edges for each

edge of the schema graph is that authority potentially flows in
both directions and not only in the direction that appears in the
schema. For example, a paper passes its authority to its
authors and vice versa. Notice however, that the authority
flow in each direction (defined by the authority transfer rate)
may not be the same. For example, a paper that is cited by
important papers is clearly important but citing important
papers does not make a paper important.

Figure 5: The DBLP Authority transfer data graph.

Authority Transfer Data Graph. Given a data graph
D(VD,ED) that conforms to an authority transfer schema graph
GA(VG,EA), we can derive an authority transfer data graph
DA(VD, A

DE) as follows. For every edge e = (u→v) ∈ ED the
authority transfer data graph has two edges

fe = (u→v) and be = (v→u). The edges fe and eb are

annotated with authority transfer rates)(feα and)(beα .

Assuming that fe is of type f
Ge , then

)(feα =

=

>

0),(,0

0),(,
),(

)(

f
G

f
Gf

G

f
G

euifOutDeg

euifOutDeg
euOutDeg

eα
 (1)

where),(f
GeuOutDeg is the number of outgoing edges from u,

of type f
Ge . The authority transfer rate)(beα is defined

similarly. Figure 5 illustrates the authority transfer data graph
that corresponds to the data graph of Figure 1 and the
authority transfer schema graph of Figure 3. Each edge is
annotated with its authority transfer rate. Note that the edge
between “Range Queries in OLAP” paper and author
“Agrawal” is labeled 0.05 as the paper has three other authors
not shown in Figure 5. Notice that the sum of authority
transfer rates of the outgoing edges of a node u of type µ(u) in
the authority transfer data graph may be less than the sum of
authority transfer rates of the outgoing edges of µ(u) in the
authority transfer schema graph, if u does not have all types of
outgoing edges.

III. QUERY DEFINITION AND OBJECTRANK2
In this section we define a query and describe a modified

version of ObjectRank originally presented in [3], called
ObjectRank2. The modification to the original definition is
that the nodes of the base set are weighted. The weights are

computed using IR techniques for the original query and using
query expansion techniques for subsequent queries as we
describe in Section 5.
Keyword Query. A keyword query Q is defined as a tuple of
keywords Q=[t1,…,tm]. To incorporate weighing in the base
set, we define the query vector as follows. For each query
Q=[t1,…,tm] we define a query vector Q=[w1,.. , wm] (note that
Q is boldface for query vector) where wi is the weight of the
query keyword ti. The initial query vector for a query is
Q=[1,…,1], since we assume that the query term weights are
all 1. These weights change during the query expansion stage
described in Section 5. The answer to Q is a list of objects
with descending ObjectRank2 scores with respect to Q.

ObjectRank2 is computed as follows on the authority
transfer data graph DA(VD, A

DE). A surfer starts from a node
(database object) vi of the base set of VD and at each step,
he/she follows an edge with probability d or gets bored and
jumps to a node in the base set with probability 1 − d. The
ObjectRank2 value of vi is the probability that at a given point
in time, the surfer is at vi. The query base set S(Q) (from now
on referred to simply as base set when the keyword is implied)
is the set of nodes/objects that contain at least one keyword in
Q. In contrast to the original ObjectRank [3], the random
surfer jumps to different nodes of the base set with different
probabilities. This probability for a node v is proportional to
the IR score IRScore(v,Q) of the node(a node is also viewed as
a document−we overload symbol v in this case) given the
query vector Q.

IRScore(v,Q) = v·Q (2)
where “·” denotes the dot product operator,
v=[W(v,t1),…,W(v,tm)] is the document vector for v, and W(v,t)
is the IR weight of term t for document v. W(v,t) is defined
using well studied traditional IR formulas like BM25 [25] or
Okapi [28].

We normalize the IR scores of the nodes in the base set to
sum to one, since they represent probabilities. The
ObjectRank2 scores vector rQ = [rQ(v1),…,rQ(vn)]T given query
vector Q, where n=|VD|, is defined as follows:

s
QS
ddAr Q

|)(|
)1(r Q −+= (3)

where A is a n × n matrix with Aij =)(eα if there is an edge

e(vj → vi) in A
DE and 0 otherwise, d is the damping factor

which controls the base set importance, and s = [s1, . .si . , sn]T
is the base set vector, where si = IRScore(vi,Q) if vi ∈ S(Q)
and si= 0 otherwise. Note that the only difference to
ObjectRank is the definition of the si’s which were 0 or 1 in [3,
13].

IV. EXPLAINING QUERY RESULTS
In this section we tackle the problem of explaining a query

result. For instance, as discussed in Section 1, the “Data

Cube” paper in Figure 1 (see Figure 5 for corresponding
authority transfer data graph) is ranked high for the query
“OLAP”. What is the best way to explain to the user why this
paper, referred to as the target object, received a high rank?
This problem is even more critical in complex biological
databases as the one of Figure 4.

Figure 6: The DBLP Authority transfer data graph annotated with authority
flows for query “OLAP”.

Intuitively, we want to show to the user the paths in the
authority transfer data graph DA that authority traversed to
reach the target object v, starting from the nodes in the base
set S(Q). For that, we create an explaining subgraph Q

vG of DA

that contains all edges that transfer authority to v given Q, and
every edge in Q

vG is annotated with the amount of authority
that flows on this edge and eventually reaches v.
We create Q

vG in two stages:
(i) Construction stage: Q

vG contains all nodes and edges of
DA that are part of a directed path going from the base set
S(Q) to v. That is, Q

vG contains all edges that can
potentially carry authority flow to v.

(ii) Flow adjustment stage: We compute the explaining
authority flows on the edges of Q

vG . The explaining
authority flow Flow(e) of an edge e is the amount of
authority flow that is transferred through e and eventually
reaches v, on DA for Q.

Figure 7: Intuition behind flow adjustment.

The construction stage is straightforward and is achieved
as follows: We first construct the temporary subgraph Dv,
starting from the target node v and traversing edges of DA
following the edges in the opposite direction in a breadth first
manner (depth first would also work) until no more edges can
be traversed. Then, we start from the authority sources (base
set nodes) of Dv and traverse the edges of Dv in the forward
direction until no more edges can be traversed. All nodes and
edges traversed in the forward stage are added to the
explaining sub graph Q

vG .

v1 v2

v3

v

v4

0.3 0.2

0.2
0.1

Q
vG

The flow adjustment stage is more challenging because we
have to adjust the “original” edge authority flows for Q to
subtract the authority flow not reaching to v. For instance, in
Figure 7 we must subtract from the edge flows the amount
that will eventually “leak” out of Q

vG through v2→v4. By
“original” flows we refer to the authority flows at
convergence state in DA for ObjectRank2 execution for query
Q. The original flow for edge vi→vj is:

)()()(0 i
Q

jiji vrvvdvvFlow ⋅→⋅=→ α (4)

where)(ji vv →α is the authority transfer rate of edge

e = (vi→vj) in DA according to Equation 1.

 Figure 6 illustrates the original authority flows for d = 0.85
and query Q=[“OLAP”], on the authority transfer data graph
of Figure 5. The computed ObjectRank2 scores vector rQ =
[0.076, 0.002, 0.009, 0.076, 0.017, 0.025, 0.083]T, after 5
iterations.

It is more intuitive to view the problem as adjusting the
edge flows instead of adjusting the node scores, although the
adjusted node scores can be easily computed given the edge
flows in the end. One could think of simply reducing the flow
on an incoming edge vi→vj of Q

vG proportionally to the ratio
of the outgoing flow of vj going outside Q

vG . However, this
approach will fail if there are cycles in Q

vG , since adjusting the
flow of an edge can have a ripple effect. Hence, an iterative
method is used. In particular, for every node u, with the
exception of the target node v, we iteratively reduce its
incoming flows proportionally to the flow going from u
towards nodes outside of Q

vG . We do not adjust the incoming
flows of the target node v, as the purpose of the explaining
subgraph is to explain to the user the total authority that v
receives from other nodes in DA. We assume all edges are
bidirectional (arbitrarily small flow rates can be assigned to
direction of small importance) to guarantee convergence,
since this makes the graph irreducible [20].

For instance, for the explaining subgraph in Figure 7 with

target node v, where we assume d=1 (i.e., nodes pass all their
authority to their neighbours) and all edges are of the same
type, we adjust the original edge flows of v1→v2 and v3→v2 as
follows: Half of the flow going through these edges goes
through v2→v and half through v2→v4. Since v2→v4 is
outside Q

vG , we cut the flows of v1→v2 and v3→v2 to half, i.e.,
to 0.15 and 0.05 respectively. This process is repeated
iteratively for all edges in Q

vG until the computation
converges. Note that the flow on edges vi→v, i.e., edges that
end at v, are not adjusted.

Details of adjustment stage: The details of the adjusting
algorithm are as follows: For each node vk in Q

vG , let O(vk) be
the summation of all outgoing flows of vk in Q

vG and I(vk) be
the summation of all incoming flows of vk in Q

vG (we consider

all incoming edges in Q
vG and not DA since Observation 1

below shows that both are equal). It is

∑
∈

→=Ι
Q
vkj Gvv

kjk vvFlowv
),(

)()((5a)

∑
∈

→=
Q
vjk Gvv

jkk vvFlowvO
),(

)()((5b)

Figure 8: Algorithm to Compute Flows in Explaining Subgraph.

Observation 1: There is no incoming edge vi→vj with non-
zero authority flow, where vj is in Q

vG but vi is outside Q
vG . If

such en edge existed, it would have been included to Q
vG

during the construction stage.

As mentioned before, our goal is to compute the factor

h(vk) by which the incoming flow I(vk) of each node vk must
be reduced to be consistent with the reduced outgoing flow
O(vk) of vk in Q

vG . It is:
)()()(0 kjkkj vvFlowvhvvFlow →⋅=→ (6)

Intuitively, this factor h(vk) is computed by the ratio of rQ′(vk)
and rQ(vk) which are the ObjectRank score of vk in Q

vG (the
“original” score) and DA respectively. Hence, for a node vk:

d
vOvr k

k
Q)()(' = (7)

)(
)(')h(

k
Q

k
Q

k vr
vrv = (8)

Combining Equations 4, 5b, 6, 7 and 8, we get the following
fixpoint equation for the computation of h(vk).

()∑
∈

→⋅=
Q
vjk Gvv

jkjk vvvhv
),(

)()()h(α (9)

Explain-ObjectRank(Target Object v, Graph
DA, Base Set S(Q)={s1,…,sn},Threshold T) {
/*Construction Stage */
1)Create a temporary subgraph Dv by executing
breadth-first search on DA with v as the root
node, traversing edges in opposite direction;

2)Create explaining subgraph, Q
vG by executing

breadth-first search on Dv with the nodes in
base set S(Q) as root nodes, traversing edges
in right direction;
/*Flow Adjustment Stage */

3)For each edge vi->vj in Q
vG ,compute

Flow0(vi->vj) using Equation 4;

4)For each node vk in
Q
vG set h(vk)=1;

5)While not converged do

 For each node vk in
Q
vG except v do

Compute h(vk) using Equation 9;

6)Update the Flow of each edge in Q
vG using

Equation 6;
7)Return

Q
vG
;

Observation 2: The “original” ObjectRank2 scores are not
used in computing the reduction factor h(vk).

The iterative computation of Equation 9 on the explaining
subgraph converges since the graph is aperiodic and
irreducible, as described above.

Example 1. Figure 9 shows the explaining subgraph for
Q=[“OLAP”] and target object v4 after 5 iterations of
Equation 9. Note that the “Data Cube” paper (see Figure 6)
is not in Q

vG , since there is no path from that paper to v4.
Notice that the incoming flows of the target object v4 are the
same as the original ones of Figure 6. The computed
reduction factors after 5 iterations are as follows:
h(v1)=1.59e-4, h(v2)=4.77e-4, h(v3)=0.0011, h(v4)=1.0,
h(v5)=0.1006 and h(v6)=0.0067. Note that h(v4) is 1 as v4 is
the target object which implies that its incoming flow from v5
is not adjusted as shown in Figure 9.

Figure 9: Explaining Subgraph for “Range Queries in OLAP” paper in Figure
6.

The explaining subgraph Q
vG can be very large which

would make its generation slow and its display to the user,
impossible. Hence, in practice we limit the radius of Q

vG to L
(longer paths are generally unintuitive and carry less authority)
and only keep the paths with high authority flow. We apply
these techniques in our online demo. We have found that a
relatively small L (e.g., L=3) value is adequate to effectively
explain a result and produce useful reformulations (see
Section 5).

V. QUERY REFORMULATION
Query reformulation using relevance feedback has been

well studied in traditional IR [29, 24, 7, 6, 9], where query
expansion has been the dominant strategy. That is, keywords
are added to the original query according to the user’s
feedback. Such techniques are not adequate for ObjectRank2,
since they ignore the link-structure of the graph which plays a
key role in the ranking. For instance, if the user selects the
“Range Queries in OLAP” paper in Figure 5 as a relevant
object, what is the best way to reformulate the query using this
paper (referred as feedback object)? The explaining subgraph
described in Section 4 is a key structure for query
reformulation since a “vote” of the user for feedback object v
can be viewed as “vote” of the user for the explaining
subgraph Q

vG of v.

Overview of process: First, the system computes the top-k
objects with the highest ObjectRank2 values. The user marks
a result object v (can be extended to multiple objects) as
relevant − user’s click-through could be used to implicitly
derive such markings. Then the explaining subgraph Q

vG of v
is computed. (In practice (Section 6) a subgraph of Q

vG is
computed to improve response time.) Based on the content
and link-structure of Q

vG we reformulate the initial query. In
particular, the Content-based component (subsection A) of the
reformulation is inspired by traditional query expansion ideas
and leads to a query expansion; whereas the Structure-based
component (subsection B) adjusts the authority transfer rates
of the authority transfer schema graph based on the edge types
in Q

vG . The two reformulation components can be combined.

A. Content-based Reformulation
According to traditional reformulation techniques, the

terms in the feedback object v (viewed as a document) should
be added, appropriately weighted, to the original query.
However, due to the nature of authority flow ranking, we
extend this idea to also include terms in the objects that
transfer high authority to v. These objects are the nodes of the
explaining graph Q

vG . The weight of an expansion term t is
proportional to the flow that the nodes that contain t pass to v,
that is, the outgoing flow of these nodes in Q

vG .
A term t is weighted according to its distance from v and

the amount of authority it transfers to v, as shown in Equation
10. The authority flow a node transfers to v is its outgoing
flow in the explaining graph Q

vG as explained in Section 4.

∑ ∑
∈∧∈ ∈

→⋅=

k
Q
vk

Q
vjk

k

vtGv Gvv
jk

vvD
d

f vvFlowCtw
),(

),()()()((10)

where 0 ≤ dC ≤ 1 is the decay factor (in the spirit of XRANK
[8]), typically set to 0.5 (which we have found to produce
good reformulations) and D(vk,v) is the distance (length in
number of edges) of vk from v. Note that if vk is v, then we use

∑
∈

→⋅
Q
vkj Gvv

kj vvFlowd
),(

)(instead of ∑
∈

→
Q
vjk Gvv

jk vvFlow
),(

)(,

since the outgoing flow of v is not specified in Q
vG .

We select the top-s terms Z with highest weight (ignoring

stop words) and add them, after normalizing them as
explained below, to the original query vector Q0. The
reformulated query vector Qi at iteration i is defined as

=

>⋅⋅+
= ∑

∈
−

0,Q

1,t)(Q
Q

0

1

i

itwC
Zt

f
ei

i
 (11)

where t is the vector of term t (as in the vector space model
[28]), and 0≤ eC ≤1 is the expansion factor, typically 0.5, used
to scale the weights of new terms (as well as new weights of
old terms) with respect to the terms present in current query
vector. Appropriate normalization is employed.

Example 2. Consider the authority transfer data graph of
Figure 5, query Q=[“OLAP”], and feedback object, v is the
“Range Queries in OLAP” paper. The explaining subgraph

Q
vG (Figure 9) is created. Using Equation 10, and assuming

Cd and Ce are 0.5, the top-5 new terms are olap(1.0),
cubes(0.99), range(0.99), multidimensional(0.05) and
modeling(0.05). Note that the terms in the feedback object
(target object of Q

vG) generally get a higher weight due to the
decay factor Cd. The reformulated query vector Q computed
by Equation 11 is [olap, cubes, range, multidimensional,
modeling]=[2.0,0.99, 0.99, 0.05, 0.05].

B. Structure-based Reformulation
The structure-based reformulation adjusts the authority

transfer rates based on the explaining subgraph Q
vG .

Intuitively, if edges of an edge type eG carry large authority in
Q
vG then the user probably believes eG is an important edge

type for the query. We boost the authority transfer rate of each
edge type present in Q

vG according to the authority it transfers
(to the feedback object v). The reformulated authority transfer
rate)(' Geα of edge type eG is computed by,

)()(1)('
),(),(

G
etypehasvvGvv

jkfG evvFlowCe
Gjk

Q
vjk

αα ⋅

→⋅+= ∑

∧∈

 (12)

where 0≤ fC ≤1 is the authority transfer rate adjustment
factor, typically set to 0.5 (which we have found to produce
good reformulations) is used to scale the authority transfer
rates with respect to their previous values,)(Geα is the
previous authority flow rate of edge type eG. Appropriate
normalization is employed.

Example 2 (cont’d). The authority transfer rates of the
original query are [PP,PP′,PA,AP,CY,YC,YP,PY] =
[0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. Using Equation 12 and the
normalization process, the reformulated authority transfer
rates are [0.67,0.0,0.24,0.16,0.24,0.24,0.24,0.08]. Notice that
the transfer rates of PA and AP edge types are increased and
decreased respectively as they carry greater and lesser
authority to the feedback object respectively.

VI. EXPERIMENTS
We experimentally evaluate our algorithms in terms of

quality and performance. This section is organized as follows:
First we briefly describe the datasets used for evaluation and
then subsections A and B present the user surveys and the
performance experiments respectively.

Datasets: We use two real datasets (Table 1). DBLPcomplete
and DBLPtop are the complete DBLP dataset and a databases-
related subset respectively. We shredded the downloaded
DBLP file into the relational schema of Figure 2.

TABLE I
REAL AND SYNTHETIC DATASETS

Name #nodes #edges Size (MB)
DBLPcomplete 876,110 4,166,626 3,950

DBLPtop 22,653 166,960 136

A. User Surveys
We used DBLPtop for our user surveys and not

DBLPcomplete since on-the-fly ObjectRank2 executions on
the latter are slow and survey subjects would be irritated. The
first phase (internal survey) was conducted at Florida
International University (FIU) involving five professors and
PhD students from the database lab, who were not involved
with the project. The goal of this survey was to compare
content-based, structure-based, and content & structure-based
reformulations. The result was that structure-based
reformulation is superior. The second phase (external survey)
focused on structure-based reformulation and involved 10 FIU
and outside (including IBM TJ Watson and Almaden)
database researchers, not involved in the project. In both
phases we also measure the capability of our system to
discover the authority transfer rates set by a domain expert.

Internal Survey: The residual collection method [24, 29] can
be summarized as follows: All objects seen by the user or
marked as relevant are removed from the collection and both
the initial and all reformulated queries are evaluated using the
residual collection. We use the average precision as the
evaluation measure. Note that measuring the recall in this
experiment would give identical conclusions since we limit
the output results to k. We report the survey results for 4
relevance feedback iterations and for the following 3 settings:
i) Content-Only reformulation (Cf=0&Ce=0.2), ii) Content &
Structure-based reformulation (Cf =0.5& Ce =0.2) and iii)
Structure-Only reformulation (Cf =0.5& Ce =0). (We have
found that these values of Cf and Ce are appropriate for this
dataset.) The decay factor Cd is set to 0.5. We use L=3 to limit
the size of the explaining subgraph as explained in Section 4.
We initialize the authority transfer rates of each edge type to
0.3. Figure 10 shows the survey results. We see that the
structure-only reformulation performs the best. Content-based
reformulation is not effective in our setting because the users
are domain experts and hence know the right keywords, i.e.,
traditional query expansion is not effective. Note that in a
different domain the results could vary.

 Next we evaluate the effectiveness of structure-based
reformulation to automatically train the authority transfer rates
of the DBLP authority transfer schema graph and compare the
learned weights to the ones of [3], which we view as ground
truth. The rates there were assigned manually by domain
experts in a trial and error manner. We start by setting the
transfer rates of all edge types to 0.3. We again limit the
length of paths of the explaining graph with L=3. Let
UserVector[PP,PP′,PA,AP,CY,YC,YP,PY] be the authority
rates vector. It is initialized to [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3].
The ground truth ObjVector is [0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1].

At each iteration we compute the current UserVector
produced by the reformulation and compute the cosine
similarity cos(ObjVector,UserVector). Figure 11 shows the
cosine similarity training curves for 4 users averaged over 5
queries each for a different value of Cf (Ce is always 0). We
see that the cosine similarity initially increases with the
number of iterations and then decreases due to overfitting.
Larger Cf values lead to faster peak, since the adjustment of
the rates is less smooth (see Equation 12).

10.00%

20.00%

30.00%

40.00%

50.00%

1 2 3 4 5

A
ve

ra
ge

 P
re

ci
si

on

Content & Structure-based
Structure-Only
Content-Only

Initial
Query Reformulated Queries

Figure 10: Average Precision for different calibration parameters.

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

1 2 3 4 5 6

Iterations

C
os

in
e

Cf=0.1 Cf=0.3 Cf=0.5 Cf=0.7 Cf=0.9

Figure 11: Training of Authority Transfer Rates.

ObjectRank2 vs. ObjectRank: We also conducted a survey
comparing the quality of ObjectRank2 with ObjectRank [3].
We found that ObjectRank2 is only slightly better by 3%. The
reason is the ObjectRank also uses something equivalent to
the idf of our IR function: they weigh the ObjectRank values
for multi-keyword queries according to the size of the base
set. However, we believe that ObjectRank2 will be superior in
datasets with longer text descriptions.

External Survey: We conducted an external survey operating
on DBLPtop using only structure-based reformulation as it
was found to be the best, in the internal survey. Figure 12
shows the average precision curve for 5 iterations averaged
over 20 queries by 10 users (2 queries per user). Figure 13
shows the authority transfer rate training curves for the
external survey which are similar to those in the internal
survey.

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5

Iterations

A
ve

ra
ge

 P
re

ci
si

on

Structure-Only

Initial
Query Reformulated Queries

Figure 12: Average Precision using structure-only reformulation with Cf=0.5.

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

1 2 3 4 5
Iterations

C
os

in
e

Cf=0.5

Figure 13: Training of the Authority Transfer Rates.

B. Performance Experiments
 To evaluate the performance of our algorithms, we
conducted experiments on DBLPcomplete. We used a linux
machine with Power 4+ 1.7GHz processor and 20GB of RAM.
The total execution time is measured for various stages: (a)
computing the top-k objects for the initial or reformulated
query, (b) creating the explaining subgraph, (c) executing the
explaining ObjectRank2 on the explaining subgraph, and (d)
creating the reformulated query.

 As in [3], for the initial user query, we initialize every
node in DA with their global ObjectRank values, to achieve
faster convergence. Then, for the first reformulated query we
use the ObjectRank values of the initial query and so on. The
intuition is that the ObjectRank values of the newly
reformulated query are expected to be close to the ones
obtained by the previous query.

 Figure 14(a) shows the execution times for the various
components of the process: execute the query (first bar), and
create the reformulated query (last three bars) at each user
feedback and reformulation iteration. We use L=3 as the
radius of the explaining subgraph, and convergence threshold
0.0001. Figure 14(b) shows the number of ObjectRank2
iterations for the initial and the reformulated queries over the
whole graph. Clearly, using the previous scores as initial
values accelerates the convergence of ObjectRank2.

 The ObjectRank2 execution times for DBLPcomplete is
clearly too long for exploratory searching. This can be

addressed in one of the following ways: use faster hardware,
precompute ObjectRank2 values as in [3], or define focused
subsets like DBLPtop. The ObjectRank2 execution times for
these datasets are about 2 seconds for the initial query and less
than 1 sec for the subsequent reformulated queries (graphs
omitted due to space constraints).

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 5

Ti
m

e(
se

cs
)

ObjectRank2 Execution Explaining Subgraph Creation
Explaining ObjectRank2 Execution Query Reformulation

~113.63 ~28.50 ~28.76 ~28.88 ~29.00

Initial Query Reformulated Queries

`

(a): Query and Reformulation Times.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

O
bj

ec
tR

an
k2

 It
er

at
io

ns

Initial Query Reformulated Queries

(b): ObjectRank2 iterations.

Figure 14: DBLPcomplete Execution.

VII. RELATED WORK
 We first present how state-of-the-art works rank the results
of a keyword query, using traditional IR techniques and
exploiting the link structure of the data graph. Then we
discuss about related work on the relevance feedback and
query reformulation.

Traditional IR ranking. For an overview of modern IR
techniques we refer to [28]. Any state-of-the-art IR ranking
function is based on the tf-idf principle [28]. The shortcoming
of these semantics is that they miss objects that are much
related to the keywords, although they do not contain them.
The most popular specificity metric in Information Retrieval
is the document length (dl). The relevance information is
hidden in the link structure of the data graph which is largely
ignored by the traditional IR techniques.

Link-based semantics. Savoy [27] was the first to use the
link-structure of the Web to discover relevant pages. This idea
became more popular with PageRank [4], where a global
score is assigned to each Web page. HITS [18] employ
mutually dependant computation of two values for each web
page: hub value and authority. Balmin et al. [3] introduce the
ObjectRank metric. In contrast to PageRank, it is able to find
relevant pages that do not contain the keyword, if they are
directly pointed by pages that do. Haveliwala [11] proposes a
topic-sensitive PageRank, where the topic-specific PageRanks
for each page are precomputed and the PageRank value of the
most relevant topic is used for each query. Both works apply
to the Web and do not address the unique characteristics of
structured databases, as we discuss in Section 1. Furthermore,
they offer no adjusting parameters to calibrate the system
according to the specifics of an application.
 Recently, the idea of PageRank has been applied to
structured databases [8, 17]. XRANK [8] proposes a way to
rank XML elements using the link structure of the database.
Furthermore, they introduce a notion similar to ObjectRank
transfer edge bounds, to distinguish between containment and
IDREF edges. Huang et al. [17] propose a way to rank the
tuples of a relational database using PageRank, where
connections are determined dynamically by the query
workload and not statically by the schema. However, none of
these works exploits the link structure to provide keyword-
specific ranking. Furthermore, they ignore the schema
semantics when computing the scores.

Relevance Feedback & Query Expansion. Salton and
Buckley [29] introduced the idea of using relevance feedback
for improving search performance. Relevance feedback covers
a range of techniques intended to improve a user’s query and
facilitate retrieval of information relevant to a user’s
information need. In [5, 6], they showed that query expansion
and query term reweighting are essential to Relevance
Feedback. For a detailed survey of relevance feedback
methods we refer to [24, 10]. The basic approach of term
selection, term reweighing and query expansion
[7,9,21,31,19,12] using terms drawn from the relevant
documents works well for traditional IR which is content-
based. For link-based metrics like ObjectRank [3] this yields
poor results as shown in Section 6. Hence, we need link-based
(structure-based) relevance feedback methods as described in
Section 5.
 Nie et al. [22] and Agarwal et al. [1] present query-
independent techniques to assign popularity propagation
factor values (similar to the authority flow rates of
ObjectRank) to Web objects, given an optimal object ranking.
Our structure-based reformulation technique, which is query
and feedback-specific, is inspired by these works. A recent
work [33] on relevance feedback is based on web-graph
distance metrics. The basic idea, which is similar to our
content-based reformulation technique, is that relevant pages
tend to point to other relevance pages, while irrelevant pages
are pointed to by other irrelevant pages. Another recent study

on relevance propagation over the web [23] proposes site-
based propagation models that out-perform hyperlink-based
models. Another recent work [32] describes active feedback
algorithms that help to choose documents for relevance
feedback so that the system can learn most from the feedback.

VIII. CONCLUSIONS
 In this work we presented a technique to explain the
results of authority flow queries and also reformulate them.
We discussed reformulations based on content and structure of
the underlying graph. We also showed how to automatically
train the authority transfer rates of the schema graph based on
user preferences. We presented efficient algorithms to explain
and reformulate authority flow queries. We also conducted
user surveys to measure the effectiveness of the proposed
algorithms. Furthermore, we showed the feasibility of our
approach by conducting performance experiments over large
graphs.

REFERENCES
[1] A. Agarwal, S. Chakrabarti and S. Aggarwal. Learning to rank

networked entities. SIGKDD 2006.
[2] S. Agrawal, S. Chaudhuri and G. Das. DBXplorer: A System for

Keyword-Based Search over Relational Databases. ICDE 2002.
[3] A. Balmin, V. Hristidis and Y. Papakonstantinou. Authority-

Based Keyword Queries in Databases using ObjectRank. VLDB
2004.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. WWW Conference 1998.

[5] C. Buckley, G. Salton and J. Allan. The Effect of Adding
Relevance Information in a Relevance Feedback Environment.
SIGIR 1994.

[6] C. Buckley, G. Salton, J. Allan and A. Singhal. Automatic query
expansion using SMART: TREC-3. NIST special publication
500-225. pp 69-80. 1995.

[7] E. N. Efthimiadis. A user-centered evaluation of ranking
algorithms for interactive query expansion. SIGIR 1993.

[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
SIGMOD 2003.

[9] D. Harman. Towards interactive query expansion. SIGIR 1988.
[10] D. Harman. Relevance feedback and other query modification

techniques. Information retrieval: Data structures and
Algorithms, Prentice-Hall Inc, 1992.

[11] T. Haveliwala. Topic-Sensitive PageRank. WWW Conference
2002.

[12] D. Haines and W.B. Croft. Relevance feedback and inference
networks. SIGIR 1993.

[13] V. Hristidis, H. Hwang and Y. Papakonstantinou. Authority-
Based Keyword Search in Databases. ACM TODS, 2008.

[14] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. VLDB 2002.

[15] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
Proximity Search on XML Graphs. ICDE 2003.

[16] H. Hwang, V. Hristidis, and Y. Papakonstantinou. ObjectRank:
A System for Authority-based Search on Databases. Demo at
SIGMOD 2006.

[17] A. Huang, Q. Xue, and J. Yang. TupleRank and Implicit
Relationship Discovery in Relational Databases. WAIM 2003.

[18] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM 46, 1999.

[19] D. Kelly and X. Fu. Elicitation of term relevance feedback: an
investigation of term source and context. SIGIR 2006.

[20] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, United Kingdom, 1995.

[21] M. Mitra, A. Singhal and C. Buckley. Improving automatic
query expansion. SIGIR pp 206-214. 1998.

[22] Z. Nie, Y. Zhang, J. Wen, and W. Ma. Object-level ranking:
Bringing order to Web objects. WWW 2005.

[23] T.Qin, T. Liu, X. Zhang, Z. Chen and W.A study of relevance
propagation for web search. SIGIR 2005.

[24] I. Ruthven and M. Lalmas. A survey on the use of relevance
feedback for information access systems . The Knowledge
Engineering Review. 94-145. vol 18, issue 2. 2003.

[25] S. E. Robertson and S Walker. Some simple effective
approximations to the 2-Poisson model for probabilistic
weighted retrieval. SIGIR 1994.

[26] L. Raschid, Y. Wu, W. Lee, M. E. Vidal, P. Tsaparas, P.
Srinivasan, and A. K. Sehgal. Ranking target objects of
navigational queries. WIDM 2006.

[27] J. Savoy. Bayesian inference networks and spreading activation
in hypertext systems. Information Processing and Management,
28(3):389–406, 1992.

[28] A. Singhal: Modern Information Retrieval: A Brief Overview,
Google, IEEE Data Eng. Bull, 2001.

[29] G. Salton and C. Buckley. Improving retrieval performance by
relevance feedback. Journal of the American Society for
Information Science. 41. 4. pp 288- 297. 1990.

[30] P. Shafer, T. Isganitis, G. Yona. Hubs of knowledge: using the
functional link structure in Biozon to mine for biologically
significant entities. BMC Bioinformatics. 2006 Feb 15;7:71.

[31] A. Smeaton and C. J. van Rijsbergen. The retrieval effects of
query expansion on a feedback document retrieval system. The
Computer Journal. 26. 3. pp 239-246. 1983.

[32] X. Shen and C. Zhai. Active feedback in ad hoc information
retrieval. SIGIR 2005.

[33] S. Vassilvitskii and E. Bill. Using web-graph distance for
relevance feedback in web search. SIGIR 2006.

