Ranked Search on Data Graphs

Ramakrishna Varadarajan

Thesis Proposal

FLORIDA INTERNATIONAL UNIVERSITY,
School of Computing and Information Sciences,
Miami.
Acknowledgments to the Committee

Advisor: Professor: Vagelis Hristidis

Committee Members:
Professor: Shu-Ching Chen
Professor: Tao Li
Professor: Raju Rangaswami
Professor: Kaushik Dutta, FIU College of Business.
Roadmap

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
Roadmap

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
Problem Statement & Motivation

• Graph-structured databases – becoming a commonplace.

• Need for Efficient & High Quality search & retrieval.

• Common Graph Models
 – Web
 □ Nodes – Pages
 □ Edges – Hyperlinks
 – Relational Database
 □ Nodes – Tuples
 □ Edges – Primary/Foreign key relationships
 – XML
 □ Nodes – XML elements
 □ Edges – Intra-document links (IDREFs), Inter-document links (Xlinks)
Problem Statement & Motivation

- **Keyword Search** – most effective & dominant information discovery method.

- Success of search engines confirm this.

- **Key Advantages:**
 - Simplicity (ease of use).
 - Query interface is flexible.
 - No prior knowledge about structure of underlying data.
 - Queries can be imprecise

- Recently applied over Structured (databases) & Semi-structured Data(XML).
Roadmap

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
State of Art Graph Search Methods

• **Keyword Proximity Search**
 - **Input**: Data Graph DG, Keyword Query Q, Ranking Function f, Top-k.
 - **Output**: k subgraphs of DG with smallest (or largest) scores such that each of the subgraph is
 - A Tree.
 - Total (contains all the keywords).
 - Minimal (non-redundant).

• **Applications**:
 - Web (“Information Unit” paper [WWW02]).
 - Database (DBXplorer [ICDE02], BANKS [ICDE02], DISCOVER [VLDB02], IRStyle [VLDB03], GoldMan [VLDB98]).
 - XML (Xkeyword [ICDE03], Xsearch [VLDB03]).
State of Art Graph Search Methods

• **Authority Flow-Based Search**
 - Input: Data Graph DG, Keyword Query Q, Top-k.
 - Output: k nodes of DG of highest global importance and relevance to the query. Rankings are
 - Primarily based on underlying link-structure.
 - Secondarily based on content.

• **Applications:**
 - Web (PageRank [WWW98], Topic-Sensitive PageRank [WWW02], Scaling Personalized Web Search [WWW03]).
 - Database (ObjectRank [VLDB04]).
 - XML (XRANK [SIGMOD03]).
Roadmap

- Problem Statement & Motivation
- State of Art Graph Search Methods
- Data Model
- Related Work
- Preliminary Work
- Ongoing & Future Work
Data Model

- **Web Graph (directed, unweighted)**
 - Web Pages (nodes) & Hyperlinks (edges)

Legend:
- Node in Web Graph (Web Page)
- Hyperlinks

1. Admission Office - Florida International University.
2. Florida International University, a member of the State University System of Florida, is a fully accredited comprehensive, multi-campus urban research institution located in Miami, Florida (more).
5. ...
6. ...
7. ...

5. ACHIEVING THE UNIVERSITY'S VISION 1986 TO THE PRESENT.
6. ...
7. ...
8. ...
9. In early 1996, in order to secure resources for faculty endowed chairs, scholarships and facilities, the University launched its first major capital campaign, the $65 million Campaign for FIU. This goal that was achieved in early 2001, more than one year ahead of schedule.
10. ...
11. ...
12. Some 30 years after opening its doors, FIU is within reach of attaining its foremost goal - to become one of the nation's top, urban, public research universities.
13. ...

5. Financial Aid Office.
7. ...
8. ...
10. ...
11. Institutional Programs Academic Merit Assistance The University's commitment to academic excellence. Additional awards for outstanding high school seniors include the Presidential Scholars Academic Excellence Scholars, Valedictorian and Salutatorian Scholarships.
12. ...
13. ...

6. Page 1
7. Page 2
8. Page 3
Data Model

Sample Document

(v0) Brain chip offers hope for paralyzed
(v1) A team of neuroscientists have successfully implanted a chip into the brain of a quadriplegic man, allowing him to control a computer.
(v2) ...
(v3) ...
(v4) ...
(v5) BrainGate offers the possibility of hitherto unimaginable levels of independence for the severely disabled.
(v6) ...
(v7) ...
(v8) ...
(v9) ...
(v10) Donoghue's initial research, published in the science journal Nature in 2002, consisted of attaching an implant to a monkey's brain that enabled it to play a simple pinball computer game remotely.
(v11) The four-millimeter square chip, which is placed on the surface of the motor cortex area of the brain, contains 100 electrodes each thinner than a hair which detect neural electrical activity. The sensor is then connected to a computer via a small wire attached to a pedestal mounted on the skull.
(v12) ...
(v13) ...
(v14) ...
(v15) "Here we have a research participant who is capable of controlling his environment by thought alone -- something we have only found in science fiction so far," said Friehs.
(v16) ...

- **Page Graph (undirected, weighted)**
 - Text Fragments(nodes)
 - Semantic links(edges)
 - Parsing delimiter – NewLine.
 - Text Fragments – Paragraphs.
 - 17 text fragments (v0...v16).
 - 17 nodes in Document Graph.
Data Model

- **Data Graph** (directed, unweighted)
 - Tuples (nodes) & primary/foreign key relationships (edges).
 - Each node represents an object & has a role.
 - Each edge is labeled with its role.
 - Richer semantics – metadata.

- **Schema Graph**
 - Describes the structure of the data graph.
Data Model

• **Authority Transfer Schema Graph**
 - Edges reflect the authority transfer.
 - Bi-directional authority transfer.
 - Potentially different rates for each direction.

• **Authority Transfer Data Graph** (directed, weighted)
 - Data graph edges labeled with authority transfer rates.

\[
\alpha(e^f) = \begin{cases}
\frac{\alpha(e^f_G)}{\text{OutDeg}(u,e^f_G)}, & \text{if OutDeg}(u,e^f_G) > 0 \\
0, & \text{if OutDeg}(u,e^f_G) = 0
\end{cases}
\]
Roadmap

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
Related Work

Overview

- Document Summarization.
- Keyword Search on Data Graphs.
- Traditional IR Ranking.
- Link-based Semantics.
- Relevance Feedback & Query Reformulation.
Related Work

1) Document Summarization

✓ Mostly Query-Independent

✓ Summarizing Web Pages

✓ Splitting Web pages in to blocks
 - Song et.al [WWW2004] Block importance models (learning algorithms)
 - Cai et.al [SIGIR2004] Block level link analysis

✓ Document modeled as Graphs
 - TextRank [EMNLP2004]: “representative” sentences using link analysis.

2) Keyword Search on Data Graphs

- BANKS [ICDE2002]: group-steiner tree problem
- DISCOVER[VLDB2002], DBXplorer[ICDE2002],IRStyle[VLDB2003].
- XRANK[SIGMOD2003], Xkeyword[ICDE2003]: search in XML documents.
Related Work

3) Traditional IR Ranking

- Modern IR Overview.
 - Singhal [IEEE data bulletin 2001].

- Term weighting.

- State of art IR is based on tf * idf principle.
 - Okapi Formula.
 - Pivoted Normalized Weighting.

4) Link-Based Semantics

- HITS [ACM Journal 99].
- ObjectRank for the database [VLDB02].
- XRANK [SIGMOD03] for XML databases.
Related Work

5) Relevance Feedback & Query Reformulation

- Salton, Buckley introduced Relevance feedback [Information Sciences 90].
- Term selection, re-weighting, query expansion [SIGIR94, TREC95].
- Ruthven, Lalmas - Complete Relevance feedback Survey [knowledge engineering review 2003]
- RF based on web-graph distance metrics [SIGIR06]
- Query-independent techniques to assign propagation factors - Nie et al. [WWW2005], Agarwal et al. [SIGKDD2006]
Roadmap

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
Preliminary Work (published/accepted)

• **Structure-Based Query-Specific Document Summarization**
 – Ramakrishna Varadarajan, Vagelis Hristidis
 – Published in ACM CIKM, 2005 (2-page poster)

• **Searching the Web Using Composed Pages**
 – Ramakrishna Varadarajan, Vagelis Hristidis, Tao Li
 – Published in ACM SIGIR, 2006 (2-page poster)

• **A System for Query-Specific Document Summarization.**
 – Ramakrishna Varadarajan, Vagelis Hristidis
 – Published in ACM CIKM, 2006 (full paper)

• **Beyond Single-Page Web Search Results.**
 – Ramakrishna Varadarajan, Vagelis Hristidis, Tao Li
 – Accepted for publication in IEEE TKDE, 2008 (Journal paper)

• **Explaining and Reformulating Authority Flow Queries.**
 – Ramakrishna Varadarajan, Vagelis Hristidis, Louiqa Raschid
 – Accepted for publication in IEEE ICDE, 2008 (full paper)
Preliminary Work

Specific Research Goals

 - Improve Result Presentation.
 - Go beyond page-granularity.
 - Make it more user-friendly by reducing user-browsing time.
 - Improve the quality of results.

2. **Improve Authority-Flow Based Graph Search** [ICDE2008]
 - Make it more user-friendly.
 - Explain query results in an intuitive manner.
 - Personalize the search system.
 - Enable user-feedback.
Preliminary Work Overview

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work

• Preliminary Work
 ❖ **Query-Specific Document Summarization**
 ❖ Beyond Single-Page Web Search Results
 ❖ Explaining & Reformulation Authority Flow Queries

• Ongoing & Future Work
Preliminary Work

Document Summarization [CIKM’05, CIKM’06]

- Locating relevant information is hard.

- **Summaries** are **helpful** because:
 - Provide a Quick preview of the document.
 - Allow users to quickly decide relevance.
 - Save user’s browsing time.

- **Success of Web search engines** – Query specific **snippets** are important.

- **Two categories of summaries:**
 - *Query-Independent* – Most of prior works.
 - *Query-Specific* – Applicable to web search engines.
Preliminary Work

Document Summarization [CIKM’05,CIKM’06]

- Document \rightarrow graph
- We call it Document Graph.

Three Steps

Step 1: Preprocess

- Build a document graph, G.

Step 2: Summary Generation (keyword proximity search)

- Given a query Q and a document graph G,

 Summaries \rightarrow Spanning Trees that cover all keywords

Step 3: Rank spanning trees.
Preliminary Work

Input parameters for Document Graph construction

- **Parsing** Delimiters
 - For Plain Text – Newline or Period
 - For HTML – Tags (<p>,
, , , <table>... etc.)

- **Threshold** for Edge weights
 - Tradeoff of Quality and Performance.
 - Edges with weights lesser, are not added.

- **Maximum** Fragment Size
 - Limit on Node Size

Edge Scoring

\[
EScore(e) = \sum_{w \in (t(u) \cup t(v))} (tf(t(u), w) + tf(t(v), w)) \cdot idf(w))
\]

A \(tf*idf \) adaptation.

- **Query Independent**.

Node Scoring: **Query-dependent** (based on okapi formula).
Preliminary Work

Sample Document

- **(v0)** *Brain chip* offers hope for paralyzed
- **(v1)** A team of neuroscientists have successfully implanted a *chip* into the *brain* of a quadriplegic man, allowing him to control a computer.
- **(v2)** ...
- **(v3)** ...
- **(v4)** ...
- **(v5)** BrainGate offers the possibility of hitherto unimaginable levels of independence for the severely disabled.
- **(v6)** ...
- **(v7)** ...
- **(v8)** ...
- **(v9)** ...
- **(v10)** Donoghue's initial *research*, published in the science journal *Nature* in 2002, consisted of attaching an implant to a monkey's *brain* that enabled it to play a simple pinball computer game remotely.
- **(v11)** The four-millimeter square *chip*, which is placed on the surface of the motor cortex area of the *brain*, contains 100 electrodes each thinner than a hair which detect neural electrical activity. The sensor is then connected to a computer via a small wire attached to a pedestal mounted on the skull.
- **(v12)** ...
- **(v13)** ...
- **(v14)** ...
- **(v15)** "Here we have a *research* participant who is capable of controlling his environment by thought alone -- something we have only found in science fiction so far," said Friehs.
- **(v16)** ...

Example

Document Graph

Top Summary for

*"Brain Chip Research"

<table>
<thead>
<tr>
<th>v0</th>
<th>v10</th>
<th>v11</th>
<th>v12</th>
<th>v13</th>
<th>v14</th>
<th>v15</th>
<th>v16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>0.015</td>
<td>0.017</td>
<td>0.026</td>
<td>0.015</td>
<td>0.015</td>
<td>0.043</td>
<td>0.032</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Score = 67.74

Brain chip offers hope for paralyzed.

Donoghue’s initial *research* published in the science journal *Nature* in 2002 consisted of attaching an implant to a monkey’s *brain* that enabled it to play a simple pinball computer game remotely.
Preliminary Work

Summary Scoring Function Requirements

Properties of Good Summaries:

- Highly relevant nodes (fragments) improve Score.
- Loose semantic Links degrade Score.
- Large spanning trees get a degraded Score.
- Based on Query-dependent & Query-Independent factors.

Summary Scoring

- This function satisfies these requirements.
- Best Summary has minimum score

\[
\text{Score}(T) = a \sum_{\text{edge } e \in T} \frac{1}{E\text{Score}(e)} + b \frac{1}{\sum_{\text{node } v \in T} N\text{Score}(v)}
\]

\(a\) and \(b\) are calibrating parameters.

(a=1 & b=0.5)
Preliminary Work Overview

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
 ❖ Query-Specific Document Summarization
 ❖ Beyond Single-Page Web Search Results
 ❖ Explaining & Reformulation Authority Flow Queries
• Ongoing & Future Work
Preliminary Work

Composed Pages Search [SIGIR’06, TKDE’08]

Motivation

• Current Web search engines return a list of *individual* web pages.

• Basic unit for search & retrieval - individual web page.

• Information – distributed across pages & are hyperlinked.

• Degrades quality of search results.
 – Especially for Long & Uncorrelated Queries.

• Li et al. [WWW01] (“Information Unit” paper).

• **We extract & stitch together pieces of information**

• **In contrast, we go beyond page granularity.**
Preliminary Work

Composed Pages Overview: [SIGIR’06, TKDE’08]

STEPS

1) Preprocessing: Web Page \rightarrow labeled, weighted Page graph.

2) At Query Time: Given a set of keywords, Q.
 – Compute Web Spanning Tree (WST – a hyperlinked set of pages).
 – WST is total & minimal.
 – Compute Page Spanning Tree (PST – a query-specific summary) for each page of WST.
 – WST & PST computed using keyword proximity search.
 – Appropriately combined \rightarrow COMPOSED PAGE
 – Top-k Composed Pages are returned.
Preliminary Work

Composed Pages Example: [SIGIR’06, TKDE’08]

Web Graph (crawled)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Search Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>101.60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>209.89</td>
<td></td>
</tr>
</tbody>
</table>
Presentation & Ranking of Composed Pages

- First ranking principle - search results involving fewer pages are ranked higher.
 \[\text{Score} (R) = \sum_{p \in R} \frac{\text{Score} (p)}{PR (p)} \]

- Second ranking principle - Within search results of same page size, rank according to the involved page spanning trees.

- Scores of PSTs are combined using a monotone combining function.
Preliminary Work

ALGORITHMS & EXPERIMENTS [SIGIR’06, TKDE’08]

• Adaptations of BANKS [ICDE02] Algorithms
• Enumeration Algorithm.
• Expanding Search Algorithm.
• Pre-computation:
 – A Full text Index.
 – PageRank values of each web page.
 – Page Graphs of each web page.
 – All Pairs shortest paths for each page graph (edge weight of edge $e = 1/\text{Escore}(e)$)
• User Surveys – DUC, Google/MSN Desktop.
Preliminary Work Overview

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
 ❖ Query-Specific Document Summarization
 ❖ Beyond Single-Page Web Search Results
 ❖ **Explaining & Reformulation Authority Flow Queries**
• Ongoing & Future Work
Preliminary Work

Explaining & Reformulating Authority Flow Queries [ICDE’08]

Motivation:

Limitations of ObjectRank [VLDB04]:

- No way to *explain* to the user why a particular result received its current score.

- Authority transfer rates have to be set manually by a domain expert.

- No *query reformulation* methodology to refine results.

Focus

- Web search (out of scope) - we focus on typed domain-specific data graphs.
Preliminary Work

Query Definition & ObjectRank2 [ICDE’08]

- A keyword query \(Q \) is defined as a tuple of keywords
 \(Q = [t_1, \ldots, t_m] \)

- For each query \(Q = [t_1, \ldots, t_m] \) we define a *query vector*
 \(Q = [w_1, \ldots, w_m] \)

- Random Surfer jumps to different nodes of base set with different probabilities.

- Probability for a node \(v \) is proportional to \(IRScore(v, Q) \)

\[
 r^Q = dA r^Q + \frac{(1-d)}{|S(Q)|} s
\]

Power Method

- \(A \) (transition matrix),
- \(S \) (base set), \(s \) (base set vector),
- \(r \) (objectrank2 scores vector)
Explaining Authority-Flow Query Results [ICDE’08]

Problem – Given a target object T, explain user why it received a high rank (or score).

Our Solution – Display an explaining subgraph of Authority transfer data graph, for T.

Explaining subgraph contains:
- All Edges that transfer authority to T.
- Edges are annotated with amount of authority flow.

Steps:
- Construction Stage (construct using Breadth-First Search from Base set S)
- Flow Adjustment Stage (adjust original authority flows – most challenging)
Preliminary Work

- **Flow Adjustment Stage**
 1) Intuition
 2) Original Authority Flow
 3) Reduced Authority Flow
 4) Reduction Factor

Important Find:

- The “original” ObjectRank2 scores are **NOT** used in computing the reduction factor $h(v_k)$.
Preliminary Work

Query Reformulation

- Well studied in Traditional IR (Salton, Buckley 1990)
- Query Expansion was the dominant strategy (ignores link-structure)

STEPS:

1) System computes Top-k objects with high ObjectRank2 scores.
2) User marks relevant “feedback” objects.
3) Compute explaining subgraph of feedback objects.
4) Reformulate based on (a) Content (b) Structure.
5) Practically diameter is limited to a constant (L=3).
Roadmap

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
Preliminary Work Overview

- Problem Statement & Motivation
- State of Art Graph Search Methods
- Data Model
- Related Work
- Preliminary Work
- Ongoing & Future Work
 - Information Discovery in Clinical Databases
 - XML Search Evaluation
 - Flexible & Efficient Querying on hyperlinked Data
Ongoing & Future Work

Specific Research Goals

Information Discovery on Clinical Databases

- Objective - Develop methods to effectively search EMRs.
- Design - Clinical ObjectRank (CO) System.
- Consider domain-specifics for ranking.
- Personalize the system for a variety of users.

IMPLEMENTATION STEPS

- DATASET - EMR dataset of cardiovascular division of MCH.
- Measurements – Precision/recall comparing traditional IR.
- Customization – Develop user profiles for a researcher, physician, pharmacist, nurse, therapist,......
Preliminary Work Overview

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
 – Information Discovery in Clinical Databases
 – **XML Search Evaluation**
 – Flexible & Efficient Querying on hyperlinked Data
Ongoing & Future Work

Specific Research Goals

XML Search Evaluation

- Objective - Create distance measures for Top-k XML lists.
- Method – based on tree-edit distances.
- XML Top-k Distance Algorithms based on
 - (a) Spearman’s footrule
 - (b) Kentall Tau
- Formally prove the distance metric conditions.
- XML List Aggregation based on the proposed distance metrics
- Finally provide a Case Study.
Preliminary Work Overview

• Problem Statement & Motivation
• State of Art Graph Search Methods
• Data Model
• Related Work
• Preliminary Work
• Ongoing & Future Work
 – Information Discovery in Clinical Databases
 – XML Search Evaluation
 – Flexible & Efficient Querying on hyperlinked Data Sources
Ongoing & Future Work

Specific Research Goals

 zelf flexible & efficient discovery over hyperlinked data
[SIGMOD 2008 submission]

➢ Create a simple & intuitive framework.
➢ Make it flexible & extensible.
➢ Optimize the search execution.
➢ Support a variety of users – from sophisticated to naïve.

Joint work with 4 collaborators:
1. Framework/Query language based on Soft & Hard Filters.
2. Closed algebra of physical operators / rewriting rules.
3. Exact / approximate optimizations techniques for authority flow based soft filters.
Thank You !!!

Questions ????