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Many algorithms for inferring causality rely heavily on the faith-
fulness assumption. The main justification for imposing this assump-
tion is that the set of unfaithful distributions has Lebesgue measure
zero, since it can be seen as a collection of hypersurfaces in a hyper-
cube. However, due to sampling error the faithfulness condition alone
is not sufficient for statistical estimation, and strong-faithfulness has
been proposed and assumed to achieve uniform or high-dimensional
consistency. In contrast to the plain faithfulness assumption, the set
of distributions that is not strong-faithful has nonzero Lebesgue mea-
sure and in fact, can be surprisingly large as we show in this paper.
We study the strong-faithfulness condition from a geometric and com-
binatorial point of view and give upper and lower bounds on the
Lebesgue measure of strong-faithful distributions for various classes
of directed acyclic graphs. Our results imply fundamental limitations
for the PC-algorithm and potentially also for other algorithms based
on partial correlation testing in the Gaussian case.

1. Introduction. Determining causal structure among variables based
on observational data is of great interest in many areas of science. While
quantifying associations among variables is well-developed, inferring causal
relations is a much more challenging task. A popular approach to make
the causal inference problem more tractable is given by directed acyclic
graph (DAG) models, which describe conditional dependence information
and causal structure.
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A DAG G = (V,E) consists of a set of vertices V and a set of directed
edges E such that there is no directed cycle. We index V = {1,2, . . . , p} and
consider random variables {Xi | i= 1, . . . , p} associated to the nodes V . We
denote a directed edge from vertex i to vertex j by (i, j) or i→ j. In this
case, i is called a parent of j and j is called a child of i. If there is a directed
path i→ · · · → j, then j is called a descendent of i and i an ancestor of j. The
skeleton of a DAG G is the undirected graph obtained fromG by substituting
directed edges by undirected edges. Two nodes which are connected by an
edge in the skeleton of G are called adjacent, and a triple of nodes (i, j, k) is
an unshielded triple if i and j are adjacent to k but i and j are not adjacent.
An unshielded triple (i, j, k) is called a v-structure if i → k and j → k. In
this case, k is called a collider.

The problem of estimating a DAG from the observational distribution is
ill-posed due to nonidentifiability: in general, several DAGs encode the same
conditional independence (CI) relations and therefore, the true underlying
DAG cannot be identified from the observational distribution. However, as-
suming faithfulness (see Definition 1.1), the Markov equivalence class, that
is, the skeleton and the set of v-structures of a DAG, is identifiable (cf. [9],
Theorem 5.2.6), making it possible to infer some bounds on causal effects [8].
We focus here on the problem of estimating the Markov equivalence class
of a DAG and argue that, even in the Gaussian case, severe complications
arise for data of finite (or asymptotically increasing) sample size.

There has been a substantial amount of work on estimating the Markov
equivalence class in the Gaussian case [3, 5, 11, 12]. Algorithms which are
based on testing CI relations usually must require the faithfulness assump-
tion (cf. [12]):

Definition 1.1. A distribution P is faithful to a DAG G if no CI rela-
tions other than the ones entailed by the Markov property are present.

This means that if a distribution P is faithful to a DAG G, all condi-
tional (in-) dependences can be read-off from the DAG G using the so-called
d-separation rule (cf. [12]). Two nodes i, j are d-separated given S if every
path between i and j contains a noncollider that is in S or a collider that
is neither in S nor an ancestor of a node in S. For Gaussian models, the
faithfulness assumption can be expressed in terms of the d-separation rule
and conditional correlations as follows.

Definition 1.2. A multivariate Gaussian distribution P is said to be
faithful to a DAG G= (V,E) if for any i, j ∈ V and any S ⊂ V \ {i, j}:

j is d-separated from i | S ⇐⇒ corr(Xi,Xj |XS) = 0.
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The main justification for imposing the faithfulness assumption is that
the set of unfaithful distributions to a graph G has measure zero. How-
ever, for data of finite sample size estimation error issues come into play.
Robins et al. [11] showed that many causal discovery algorithms, and the
PC-algorithm [12] in particular, are pointwise but not uniformly consistent
under the faithfulness assumption. This is because it is possible to create
a sequence of distributions that is faithful but arbitrarily close to an un-
faithful distribution. As a result, Zhang and Spirtes [16] defined the strong-
faithfulness assumption for the Gaussian case, which requires sufficiently
large nonzero partial correlations.

Definition 1.3. Given λ ∈ (0,1), a multivariate Gaussian distribution
P is said to be λ-strong-faithful to a DAG G= (V,E) if for any i, j,∈ V and
any S ⊂ V \ {i, j}:

j is d-separated from i | S ⇐⇒ |corr(Xi,Xj |XS)| ≤ λ.

The assumption of λ-strong-faithfulness is equivalent to requiring

min{|corr(Xi,Xj |XS)|, j not d-separated from i | S,∀i, j, S}> λ.

This motivates our next definition which is weaker than strong-faithfulness.

Definition 1.4. Given λ ∈ (0,1), a multivariate Gaussian distribution
P is said to be restricted λ-strong-faithful to a DAG G = (V,E) if both of
the following hold:

(i) min{| corr(Xi,Xj | XS)|, (i, j) ∈ E,S ⊂ V \ {i, j} such that |S| ≤
deg(G)} > λ, where here and in the sequel, deg(G) denotes the maximal
degree (i.e., sum of indegree and outdegree) of nodes in G;

(ii) min{| corr(Xi,Xj | XS)|, (i, j, S) ∈ NG} > λ, where NG is the set of
triples (i, j, S) such that i, j are not adjacent but there exists k ∈ V making
(i, j, k) an unshielded triple, and i, j are not d-separated given S.

The first condition (i) is called adjacency-faithfulness in [17], the second
condition (ii) is called orientation-faithfulness. If a multivariate Gaussian
distribution P satisfies adjacency-faithfulness with respect to a DAG G, we
call the distribution λ-adjacency-faithful to G. Obviously, restricted λ-strong
faithfulness is a weaker assumption than λ-strong-faithfulness.

We now briefly discuss the relevance of these conditions and their use in
previous work. Zhang and Spirtes [16] proved uniform consistency of the
PC-algorithm under the strong-faithfulness assumption with λ≍ 1/

√
n, for

the low-dimensional case where the number of nodes p = |V | is fixed and
sample size n→∞. In a high-dimensional and sparse setting, Kalisch and
Bühlmann [5] require strong-faithfulness with λn ≍

√

deg(G) log(p)/n (the
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assumption in [5] is slightly stronger, but can be relaxed as indicated here).
Importantly, since corr(Xi,Xj |XS) is required to be bounded away from 0
by λ for vertices that are not d-separated, the set of distributions that is
not λ-strong-faithful no longer has measure 0.

It is easy to see, for example, from the proof in [5] that restricted λ-strong-
faithfulness is a sufficient condition for consistency of the PC-algorithm in
the high-dimensional scenario [with λ ≍

√

deg(G) log(p)/n] and that the
condition is also sufficient and essentially necessary for consistency of the
PC-algorithm. Furthermore, part (i) of the restricted strong-faithfulness con-
dition is sufficient and essentially necessary for correctness of the conserva-
tive PC-algorithm [17], where correctness refers to the property that an ori-
ented edge is correctly oriented but there might be some nonoriented edges
which could be oriented (i.e., the conservative PC-algorithm may not be fully
informative). The word “essentially” above means that we may consider too
many possible separation sets S where |S| ≤ deg(G), while the necessary
collection of separating sets S which the (conservative) PC-algorithm has
to consider might be a little bit smaller. Nevertheless, these differences are
minor and we should think of part (i) of the restricted strong-faithfulness
assumption as a necessary condition for consistency of the conservative PC-
algorithm and both parts (i) and (ii) as a necessary condition for consistency
of the PC-algorithm.

There are no known upper and lower bounds for the Lebesgue measure
of λ-strong-unfaithful distributions or of restricted λ-strong-unfaithful dis-
tributions. Since these assumptions are so crucial to inferring structure in
causal networks it is vital to understand if restricted and plain λ-strong-
faithfulness are likely to be satisfied.

In this paper, we address the question of how restrictive the (restricted)
strong-faithfulness assumption is using geometric and combinatorial argu-
ments. In particular, we develop upper and lower bounds on the Lebesgue
measure of Gaussian distributions that are not λ-strong-faithful for various
graph structures. By noting that each CI relation can be written as a poly-
nomial equation and the unfaithful distributions correspond to a collection
of real algebraic hypersurfaces, we exploit results from real algebraic geom-
etry to bound the measure of the set of strong-unfaithful distributions. As
we demonstrate in this paper, the strong-faithfulness assumption is restric-
tive for various reasons. First, the number of hypersurfaces corresponding
to unfaithful distributions may be quite large depending on the graph struc-
ture, and each hypersurface fills up space in the hypercube. Secondly, the
hypersurfaces may be defined by polynomials of high degrees depending on
the graph structure. The higher the degree, the greater the curvature and
therefore the surface area of the corresponding hypersurface. Finally, to get
the set of λ-strong-unfaithful distributions, these hypersurfaces get fattened
up by a factor which depends on the size of λ.
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Our results show that the set of distributions that do not satisfy strong-
faithfulness can be surprisingly large even for small and sparse graphs [e.g.,
10 nodes and an expected neighborhood (adjacency) size of 2] and small
values of λ such as λ = 0.01. This implies fundamental limitations for the
PC-algorithm [12] and possibly also for other algorithms based on partial
correlations. Other inference methods, which are not based on conditional
independence testing (or partial correlation testing), have been described.
The penalized maximum likelihood estimator [3] is an example of such a
method and consistency results without requiring strong-faithfulness have
been given for the high-dimensional and sparse setting [15]. This method
requires, however, a different and so-called permutation beta-min condition,
and it is nontrivial to understand how the strong-faithfulness condition and
this new condition interact or relate to each other.

The remainder of this paper is organized as follows: Section 2 presents
a simple example of a 3-node fully connected DAG, where we explicitly
list the polynomial equations defining the hypersurfaces and plot the pa-
rameters corresponding to unfaithful distributions. In Section 3, we define
the general model for a DAG on p nodes and give a precise description of
the problem of bounding the measure of distributions that do not satisfy
strong-faithfulness for general DAGs. In Section 4, we provide an algebraic
description of the unfaithful distributions as a collection of hypersurfaces
and give a combinatorial description of the defining polynomials in terms
of paths along the graph. Section 5 provides a general upper bound on the
measure of λ-strong-unfaithful distributions and lower bounds for various
classes of DAGs, namely DAGs whose skeletons are trees, cycles or bipar-
tite graphs K2,p−2. Finally, in Section 6, we provide simulation results to
validate our theoretical bounds.

2. Example: 3-node fully-connected DAG. In this section, we motivate
the analysis in this paper using a simple example involving a 3-node fully-
connected DAG. The graph is shown in Figure 1. We demonstrate that even
in the 3-node case, the strong-faithfulness condition may be quite restrictive.
We consider a Gaussian distribution which satisfies the directed Markov

Fig. 1. Motivating example: 3-node graph.
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property with respect to the 3-node fully-connected DAG. An equivalent
model formulation in terms of a Gaussian structural equation model is given
as follows:

X1 = ε1,

X2 = a12X1 + ε2,

X3 = a13X1 + a23X2 + ε3,

where (ε1, ε2, ε3) ∼ N (0, I).2 The parameters a12, a13 and a23 reflect the
causal structure of the graph. Whether the parameters are zero or nonzero
determines the absence or presence of a directed edge.

It is well known that through observing only covariance information it is
not always possible to infer causal structure. In this example, the pairwise
marginal and the conditional covariances are as follows:

cov(X1,X2) = a12,(1)

cov(X1,X3) = a13 + a12a23,(2)

cov(X2,X3) = a212a23 + a12a13 + a23,(3)

cov(X1,X2 |X3) = a13a23 − a12,(4)

cov(X1,X3 |X2) =−a13,(5)

cov(X2,X3 |X1) =−a23.(6)

If it were known a priori that the temporal ordering of the DAG is
(X1,X2,X3), the problem of inferring the DAG-structure would reduce to
a simple estimation problem. We would only need information about the
(non-) zeroes of cov(X1,X2), cov(X1,X3 | X2) and cov(X2,X3 | X1), that
is, information whether the single edge weights a12, a13 and a23 are zero or
not, which is a standard hypothesis testing problem. In particular, issues
around (strong-) faithfulness would not arise. However, since the causal
ordering of the DAG is unknown, algorithms based on conditional inde-
pendence testing, which amount to testing partial correlations or condi-
tional covariances, require that we check all partial correlations between
two nodes given any subset of remaining nodes: a prominent example is
the PC-algorithm [12]. For instance for the 3-node case, the PC-algorithm
would infer that there is an edge between nodes 1 and 2 if and only if
cov(X1,X2) 6= 0 and cov(X1,X2 |X3) 6= 0. The issue of faithfulness comes
into play, because it is possible that all causal parameters a12, a13 and a23
are nonzero while cov(X1,X2 |X3) = 0, simply setting a12 = a13a23 in (4).

2The assumption of var(εj) ≡ 1 is obviously restricting the class of Gaussian DAG
models. We refer to the more general discussion on this issue in Section 7.
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Fig. 2. Parameter values corresponding to unfaithful distributions in the 3-node case.

Since in this example no CI relations are imposed by the Markov prop-
erty, a distribution P is unfaithful to G if any of the polynomials in (1)–(6)
[corresponding to (conditional) covariances] are zero. Therefore, the set of
unfaithful distributions for the 3-node example is the union of 6 real alge-
braic varieties, namely the three coordinate hyperplanes given by (1), (5)
and (6), two real algebraic hypersurfaces of degree 2 given by (2) and (4),
and one real algebraic hypersurface of degree 3 given by (3).

Assuming that the causal parameters lie in the cube (a12, a13, a23) ∈
[−1,1]3, we use surfex, a software for visualizing algebraic surfaces, to
generate a plot of the set of parameters leading to unfaithful distribu-
tions. Figure 2(a)–(c) shows the nontrivial hypersurfaces corresponding to
cov(X1,X3) = 0, cov(X1,X2 | X3) = 0 and cov(X2,X3) = 0. Figure 2(d)
shows a plot of the union of all six hypersurfaces.

It is clear that the set of unfaithful distributions has measure zero. How-
ever, due to the curvature of the varieties and the fact that we are taking a
union of 6 varieties, the chance of being “close” to an unfaithful distribution
is quite large. As discussed earlier, being close to an unfaithful distribution
is of great concern due to sampling error. Hence, the set of distributions
that does not satisfy λ-strong-faithfulness is of interest. As a direct conse-
quence of Definition 1.3, this set of distributions corresponds to the set of
parameters satisfying at least one of the following inequalities:

|cov(X1,X2)| ≤ λ
√

var(X1) var(X2),

|cov(X1,X3)| ≤ λ
√

var(X1) var(X3),

|cov(X2,X3)| ≤ λ
√

var(X2) var(X3),

|cov(X1,X2 |X3)| ≤ λ
√

var(X1 |X3) var(X2 |X3),

|cov(X1,X3 |X2)| ≤ λ
√

var(X1 |X2) var(X3 |X2),

|cov(X2,X3 |X1)| ≤ λ
√

var(X2 |X1) var(X3 |X1).

The set of parameters (a12, a13, a23) satisfying any of the above relations
for λ ∈ (0,1) has nontrivial volume. As we show in this paper, the volume
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of the distributions that are not λ-strong-faithful grows as the number of
nodes and the graph density grow since both the number of varieties and
the curvature of the varieties increase.

3. General problem setup. Consider a DAG G. Without loss of general-
ity, we assume that the vertices of G are topologically ordered, meaning that
i < j for all (i, j) ∈E. Each node i in the graph is associated with a random
variable Xi. Given a DAG G, the random variables Xi are related to each
other by the following structural equations:

Xj =
∑

i<j

aijXi + εj , j = 1,2, . . . , p,(7)

where ε = (ε1, ε2, . . . , εp) ∼ N (0, I) (see footnote 2) and aij ∈ [−1,+1] are
the causal parameters with aij 6= 0 if and only if (i, j) ∈ E. As we will see
later, we can easily generalize our results to a rescaling of the parameter
cube. In matrix form, these equations can be expressed as

(I −A)TX = ε,

where X = (X1,X2, . . . ,Xp) and A ∈ Rp×p is an upper triangular matrix
with Aij = aij for i < j. Since ε∼N (0, I),

X ∼N (0, [(I −A)(I −A)T ]−1).(8)

We will exploit the distributional form (8) for bounding the volume of the
sets (aij)(i,j)∈E ∈ [−1,+1]|E| that correspond to Gaussian distributions that
are not (restricted) λ-strong-faithful.

Given (i, j) ∈ V × V with i 6= j and S ⊂ V \ {i, j}, we define the set

Pλ
ij|S := {(au,v) ∈ [−1,+1]|E| | |cov(Xi,Xj |XS)|

≤ λ
√

var(Xi |XS) var(Xj |XS)}.
The set of parameters corresponding to distributions that are not λ-strong-
faithful is

MG,λ :=
⋃

i,j∈V,S⊂V \{i,j}:

j not d-separated from i|S

Pλ
ij|S.

The set of parameters corresponding to distributions that are not re-
stricted λ-strong-faithful is given by

N (1)
G,λ :=

⋃

i,j∈V,S⊂V \{i,j}:

(i,j,S)∈N
(1)
G

Pλ
ij|S,

whereN
(1)
G denotes the set of triples (i, j, S), S ⊂ V \{i, j} with |S| ≤ deg(G),

satisfying either (i, j) ∈E or i, j are not d-separated given S and not adja-
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cent but there exists k ∈ V making (i, j, k) an unshielded triple. The set of
parameters corresponding to distributions that are not λ-adjacency-faithful
[see part (i) of Definition 1.4] is given by

N (2)
G,λ :=

⋃

i,j∈V,S⊂V \{i,j}:

(i,j,S)∈N
(2)
G

Pλ
ij|S,

whereN
(2)
G denotes the set of triples (i, j, S), S ⊂ V \{i, j} with |S| ≤ deg(G),

satisfying (i, j) ∈E.
Our goal is to provide upper and lower bounds on the volume of MG,λ,

N (1)
G,λ and N (2)

G,λ relative to the volume of [−1,1]|E|, that is, to provide upper
and lower bounds for

vol(MG,λ)

2|E|
and

vol(N (1)
G,λ)

2|E|
and

vol(N (2)
G,λ)

2|E|
.

This is the probability mass of MG,λ, N (1)
G,λ and N (2)

G,λ if the parameters

(aij)(i,j)∈E are distributed uniformly in [−1,+1]|E|, which we will assume
throughout the paper.

4. Algebraic description of unfaithful distributions. In this section, we
first explain that the unfaithful distributions can always be described by
polynomials in the causal parameters (aij)(i,j)∈E and therefore correspond

to a collection of hypersurfaces in the hypercube [−1,+1]|E|. We then give
a combinatorial description of these defining polynomials in terms of paths
in the underlying graph. The proofs can be found in Section 8.

Proposition 4.1. Let i, j ∈ V , S ( V \ {i, j} and Q = S ∪ {i, j}. All
CI relations in model (7) can be formulated as polynomial equations in the
entries of the concentration matrix K = (I −A)(I −A)T , namely:

(i) Xi ⊥⊥Xj ⇐⇒ (C(K))ij = 0,
(ii) Xi ⊥⊥Xj |XV \{i,j}⇐⇒Kij = 0,
(iii) Xi ⊥⊥Xj |XS ⇐⇒ det(KQcQc)Kij −KiQcC(KQcQc)KQcj = 0,

where C(B) denotes the cofactor matrix of B.3

We now give an interpretation of the polynomials defining the hypersur-
faces corresponding to unfaithful distributions in directed Gaussian graph-
ical models as paths in the skeleton of G. The concentration matrix K can

3The (i, j)th cofactor is defined as C(K)ij = (−1)i+jMij where Mij is the (i, j)th minor
of K, that is, Mij = det(A(−i,−j)), where A(−i,−j) is the submatrix of A obtained by
removing the ith row and jth column of A.
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be expanded as follows:

K = (I −A)(I −A)T = I −A−AT +AAT .

This decomposition shows that the entry Kij , i 6= j, corresponds to the sum
of all paths from i to j which lead over a collider k minus the direct path
from i to j if j is a child of i, that is,

Kij =
∑

k:i→k←j

aikajk − aij .(9)

Note that aij is zero in the case that j is not a child of i.
For the covariance matrix Σ =K−1 the equivalent result describing the

path interpretation is given in [14], equation (1), namely

Σ =

2p−2
∑

k=0

∑

r+s=k
r,s≤p−1

(AT )rAs.(10)

We give a proof using Neumann power series in Section 8.
Equation (10) shows that the (i, j)th entry of Σ corresponds to all paths

from i to j, which first go backwards until they reach some vertex k and
then forwards to j. Such paths are called treks in [14]. In other words, Σij

corresponds to all collider-free paths from i to j.
We now understand the covariance between two variables Xi and Xj and

the conditional covariance when conditioning on all remaining variables in
terms of paths from i to j. In the following, we will extend these results to
conditional covariances between Xi and Xj when conditioning on a subset
S ( V \ {i, j}. This means that we need to find a path description of

Pij|S := det(KQcQc)Kij −KiQcC(KQcQc)KQcj(11)

[see Proposition 4.1(iii)] and therefore of the determinant and the cofactors
of KQcQc .

Ponstein [10] gave a beautiful path description of det(λI −M) and the
cofactors of λI −M , where M denotes a variable adjacency matrix of a not
necessarily acyclic directed graph. By replacing M by A+AT −AAT , that
is by symmetrizing the graph and reweighting the directed edges, we can
apply Ponstein’s theorem.

Ponstein’s theorem. Let i, j ∈ V , S ( V \ {i, j} and Q = S ∪ {i, j}
and let Ĝ denote the weighted directed graph corresponding to the adjacency
matrix A+AT −AAT and ĜQc the subgraph resulting from restricting Ĝ to
the vertices in Qc. Then:

(i) det(KQcQc) = 1+
∑|Qc|

k=1

∑

m1+···+ms=k(−1)sµ(cm1) · · ·µ(cms),

(ii) (C(KQcQc))ij =
∑|Qc|

k=2

∑

m0+···+ms=k−1(−1)sµ(dm0)µ(cm1) · · ·µ(cms),
for i 6= j,



GEOMETRY OF FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE 11

where µ(dm0) denotes the product of the edge weights along a self-avoiding

path from i to j in ĜQc of length m0, µ(cm1), . . . , µ(cms) denote the product

of the edge weights along self-avoiding cycles in ĜQc of lengths m1, . . . ,ms,
respectively, and dm0 , cm1 , . . . , cms are disjoint paths.

Putting together the various pieces in (11), namely equation (9) for de-
scribing KQQ, KQQc and KQcQ, and Ponstein’s theorem for det(KQcQc) and
C(KQcQc), we get a path interpretation of all partial correlations.

Example 4.2. For the special case where the underlying DAG is fully
connected and we condition on all but one variable, that is, S = V \ {i, j, s},
the representation of the conditional correlation between Xi and Xj when
conditioning on XS in terms of paths in G is given by

(

1 +
∑

k:s→k

a2sk

)(

∑

k:i→k←j

aikajk − aij

)

−
(

∑

t:i→t←s

aitast − ais

)(

∑

t:j→t←s

ajtast − ajs

)

.

In the following, we apply equations (9), (10) and Ponstein’s theorem
to describe the structure of the polynomials corresponding to unfaithful
distributions for various classes of DAGs, namely DAGs whose skeletons are
trees, cycles and bipartite graphs. We denote by Tp a directed connected
rooted tree on p nodes, where all edges are directed away from the root
as shown in Figure 3(a). Let Cp denote a DAG whose skeleton is a cycle,
and K2,p−2 a DAG whose skeleton is a bipartite graph, where the edges are
directed as shown in Figure 3(b) and (c).

We denote by SOS(a) a sum of squares polynomial in the variables
(aij)(i,j)∈E , meaning

SOS(a) =
∑

k

f2
k (a),

Fig. 3. Directed tree, cycle and bipartite graph.
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where each fk(a) is a polynomial in (aij)(i,j)∈E . The polynomials correspond-
ing to unfaithful distributions for the graphs described in Figure 3 are given
in the following result.

Corollary 4.3. Let i, j ∈ V and S ⊂ V \{i, j} such that i, j are not d-
separated given S. Then the polynomials Pij|S defined in (11) corresponding
to the CI relation Xi ⊥⊥Xj |XS in model (7) are of the following form:

(a) for G= Tp:

ai→j · (1 + SOS(a)),

where ai→j is a monomial and denotes the value of the unique path from i
to j;

(b) for G=Cp:

ai→j · (1 + SOS(a)) if p /∈ S,

f(ā)ai,i+1 − g(ā)aj,j+1 if S = {p},
where ai→j denotes the value of a path from i to j and f(ā), g(ā) are poly-
nomials in the variables ā= {ast | (s, t) /∈ {(i, i+ 1), (j, j +1)}};

(c) for G=K2,p−2:

ai→j · (1 + SOS(a)) if p /∈ S,

f(ā)a1,j − g(ā)aj,p if i= 1 and p ∈ S.

5. Bounds on the volume of unfaithful distributions. Based on the path
interpretation of the partial covariances explained in the previous section, we
derive upper and lower bounds on the volume of the parameters that lead to
λ-strong-unfaithful distributions. We also provide bounds on the proportion
of restricted λ-strong-unfaithful distributions. These are distributions which
do not satisfy the necessary conditions for uniform or high-dimensional con-
sistency of the PC-algorithm. Our first result makes use of Crofton’s formula
for real algebraic hypersurfaces and the Lojasiewicz inequality to provide a
general upper bound on the measure of strong-unfaithful distributions.

Crofton’s formula gives an upper bound on the surface area of a real
algebraic hypersurface defined by a degree d polynomial, namely:

Crofton’s formula. The volume of a degree d real algebraic hyper-
surface in the unit m-ball is bounded above by C(m)d, where C(m) satisfies

(

m+ d
d

)

− 1≤C(m)dm.

For more details on Crofton’s formula for real algebraic hypersurfaces see,
for example, [2] or [4], pages 45 and 46.
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The Lojasiewicz inequality gives an upper bound for the distance of a
point to the nearest zero of a given real analytic function. This is used as
an upper bound for the thickness of the fattened hypersurface.

Lojasiewicz inequality. Let f :Rp → R be a real-analytic function
and K ⊂Rp compact. Let Vf ⊂Rp denote the real zero locus of f , which is
assumed to be nonempty. Then there exist positive constants c, k such that
for all x ∈K:

dist(x,Vf )≤ c|f(x)|k.

Theorem 5.1 (General upper bound). Let G= (V,E) be a DAG on p
nodes. Then

vol(N (2)
G,λ)

2|E|
≤

vol(N (1)
G,λ)

2|E|
≤ vol(MG,λ)

2|E|

≤ C(|E|)cκkλk

2|E|/2

∑

i,j∈V

∑

S⊂V \{i,j}

deg(cov(Xi,Xj |XS)),

where C(|E|) is a positive constant coming from Crofton’s formula, c, k are
positive constants, depending on the polynomials characterizing exact un-
faithfulness (for an exact definition, see the proof), and κ denotes the maxi-
mal partial variance over all possible parameter values (ast) ∈ [−1,1]|E|, that
is,

κ= max
i,j∈V,S⊂V \{i,j}

max
(ast)∈[−1,1]|E|

var(Xi |XS).

Theorem 5.1 shows that the volume of (restricted) λ-strong-unfaithful
distributions may be large for two reasons. First, the number of polynomials
grows quickly as the size and density of the graph increases, and secondly
the degree of the polynomials grows as the number of nodes and density of
the graph increases. The higher the degree, the greater the curvature of the
variety and hence the larger the volume that is filled according to Crofton’s
formula. Unfortunately, the upper bound cannot be computed explicitly,
since we do not have bounds on the constants in the Lojasiewicz inequality.

Proof of Theorem 5.1. It is clear that

vol(N (2)
G,λ)≤ vol(N (1)

G,λ)≤ vol(MG,λ).

Using the standard union bound, we get that

vol(MG,λ)≤
∑

i,j∈V,S⊂V \{i,j}:

j not d-separated from i|S

vol(Pλ
ij|S).
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Let Vij|S denote the real algebraic hypersurface defined by cov(Xi,Xj |XS),

that is, the set of all parameter values (ast) ∈ [−1,+1]|E| which vanish on
cov(Xi,Xj |XS). Hence,

vol(Pλ
ij|S)≤ vol({(ast) ∈ [−1,+1]|E| | |cov(Xi,Xj |XS)| ≤ λκ})

≤ vol({(ast) ∈ [−1,+1]|E| | dist((ast), Vij|S)≤ cij|Sλ
kij|Sκkij|S}),

where cij|S, kij|S are positive constants and the second inequality follows
from the Lojasiewicz inequality.

We apply Crofton’s formula on an |E|-dimensional ball of radius
√
2 to

get an upper bound on the surface area of a real algebraic hypersurface in
the hypercube [−1,1]|E|:

vol(Pλ
ij|S)≤ cij|Sλ

kij|Sκkij|S2|E|/2C(|E|) deg(cov(Xi,Xj |XS)).

The claim follows by setting

c= max
i,j∈V,S⊂V \{i,j}

cij|S and k = min
i,j∈V,S⊂V \{i,j}

kij|S.
�

The PC-algorithm in practice only requires λ-strong-faithfulness for all
subsets S ⊂ V \ {i, j} for which |S| is at most the maximal degree of the
graph. This could lead to a tighter upper bound, since we have fewer sum-
mands. We will analyze in Section 6 how helpful this is in practice. In addi-
tion, note that we can easily get upper bounds for a general parameter cube
of size [−r, r]|E| by applying Crofton’s formula to a sphere of radius

√
2r.

Since the main goal of this paper is to show how restrictive the (restricted)
strong-faithfulness assumption is, lower bounds on the proportion of (re-
stricted) λ-strong-unfaithful distributions are necessary. However, nontriv-
ial lower bounds for general graphs cannot be found using tools from real
algebraic geometry, since in the worst case the surface area of a real alge-
braic hypersurface is zero. This is the case when the polynomial defining
the hypersurface has no real roots. In that case, the corresponding real alge-
braic hypersurface is empty. As a consequence, we need to analyze different
classes of graphs separately, understand the defining polynomials, and find
lower bounds for these classes of graphs. In Section 4, we discussed the
structure of the defining polynomials for DAGs whose skeleton are trees,
cycles or bipartite graphs, respectively. In the following, we use these results
to find lower bounds on the proportion of (restricted) λ-strong-unfaithful
distributions for these classes of graphs.

Theorem 5.2 (Lower bound for trees). Let Tp be a connected directed
tree on p nodes with edge set E as shown in Figure 3(a). Then:

(i)
vol(MTp,λ)

2|E| ≥ 1− (1− λ)p−1,
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(ii)
vol(N

(1)
Tp,λ

)

2|E| ≥ 1− (1− λ)p−1,

(iii)
vol(N

(2)
Tp,λ

)

2|E| ≥ 1− (1− λ)p−1.

Theorem 5.2 shows that the measure of restricted and ordinary λ-strong-
unfaithful distributions converges to 1 exponentially in the number p of
nodes for fixed λ ∈ (0,1). Hence, even for trees the strong-faithfulness as-
sumption is restrictive and the use of the PC-algorithm problematic when
the number of nodes is large.

Proof of Theorem 5.2. (i) For a given pair of nodes i, j ∈ V , i 6= j,
and subset S ⊂ V \ {i, j} we want to lower bound the volume of parameters
(ast) ∈ [−1,1]|E| (in this example |E|= p− 1) for which

|cov(Xi,Xj |XS)| ≤ λ
√

var(Xi |XS) var(Xj |XS)

or equivalently

|Pij|S| ≤ λ
√

Pii|SPjj|S.

From Corollary 4.3, we know that the defining polynomials Pij|S for Tp are
of the form

ai→j · (1 + SOS(a)).

Similarly as in Corollary 4.3, one can prove that the polynomials Pii|S are
of the form 1+ SOS(a) and can therefore be lower bounded by 1.

So the hypersurfaces representing the unfaithful distributions are the co-
ordinate planes corresponding to the p−1 edges in the tree Tp. A distribution
is strong-unfaithful if it is near to any one of the hypersurfaces (worst case).
Since there is a defining polynomial Pij|S without the factor consisting of
the sum of squares, the λ-strong-unfaithful distributions correspond to the
parameter values (ast) ∈ [−1,1]p−1 satisfying

|ai→j| ≤ λ

for at least one pair of i, j ∈ V . Since we are seeking a lower bound, we set
all parameter values to 1 except for one. As a result, a lower bound on the
proportion of λ-strong-unfaithful distributions is given by the union of all
parameter values (ast) ∈ [−1,1]p−1 such that

|ast| ≤ λ.

We get a lower bound on the volume by an inclusion-exclusion argument.
We first sum over the volume of all by 2λ thickened coordinate hyperplanes,
subtract all pairwise intersections, add all three-wise intersections, and so
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on. This results in the following lower bound:

vol(MTp,λ)

2|E|
≥ (p− 1)

2λ2p−2

2p−1
−
(

p− 1
2

)

(2λ)22p−3

2p−1
− · · ·

=

p−1
∑

k=1

(−1)k+1

(

p− 1
k

)

λk

= 1−
p−1
∑

k=0

(

p− 1
k

)

(−λ)k

= 1− (1− λ)p−1.

The proof of (ii) and (iii) is similar. The monomials ai→j reduce to single
parameters aij , since the necessary conditions only involve (i, j) ∈E. �

This theorem is in line with the results in [1], where they show that for
trees checking if a Gaussian distribution satisfies all conditional indepen-
dence relations imposed by the Markov property only requires testing if the
causal parameters corresponding to the edges in the tree are nonzero.

Note that the behavior stated in Theorem 5.2 is qualitatively the same
as for a linear model Y =Xβ + ε with active set S = {j | βj 6= 0}. To get
consistent estimation of S, a “beta-min” condition is required, namely that
for some suitable λ,

min
j∈S

|βj |>λ,

meaning that the volume of the problematic set of parameter values β ∈
[−1,1]p is given by

1− (1− 2λ)|S|.

The cardinality |S| is the analogue of the number of edges in a DAG; for
trees, the number of edges is p−1≍ p and hence, the comparable behavior for
strong-faithfulness of trees and the volume of coefficients where the “beta-
min” condition holds.

Using the lower bound computed in Theorem 5.2, we can also analyze
some scaling of n, p = pn and deg(G) = deg(Gn) as a function of n, such
that λ= λn-strong-faithfulness holds. This is discussed in Section 5.1.

We now provide a lower bound for DAGs where the skeleton is a cycle on
p nodes.

Theorem 5.3 (Lower bound for cycles). Let Cp be a directed cycle on
p nodes with edge set E as shown in Figure 3(b). Then:

(i)
vol(MCp,λ)

2|E| ≥ 1− (1− λ)p+(
p−1
2 ),
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(ii)
vol(N

(1)
Cp,λ

)

2|E| ≥ 1− (1− λ)3p−2,

(iii)
vol(N

(2)
Cp,λ

)

2|E| ≥ 1− (1− λ)2p−1.

For cycles, the measure of λ-strong-unfaithful distributions converges to
1 exponentially in p2. The addition of a single cycle significantly increases
the volume of strong-unfaithful distributions. The measure of restricted λ-
strong-unfaithful distributions, however, converges to 1 exponentially in 3p
and hence shows a similar behavior as for trees. The scaling for achieving
strong-faithfulness for cycles is discussed in Section 5.1.

Proof of Theorem 5.3. Similar as for trees, all coordinate hyper-
planes correspond to unfaithful distributions. The corresponding volume
of strong-unfaithful distributions is 2p−1 · (2λ) and there are p such fat-
tened hyperplanes. In addition, there are

(p−1
2

)

hypersurfaces in the case of
(i), 2(p− 1) hypersurfaces for (ii), and p− 1 hypersurfaces for (iii) defined
by polynomials of the form f(ā)ai,i+1 − g(ā)aj,j+1, where ā= {ast | (s, t) /∈
{(i, i+ 1), (j, j +1)}}. Such hypersurfaces are equivalently defined by

ai,i+1 =
g(ā)

f(ā)
aj,j+1.

Since for any fixed ā ∈ [−1,1]p−2 this is the parametrization of a line, we
can lower bound the surface area of this hypersurface by 2p−2 · 2, which is
the same lower bound as for a coordinate hyperplane. Similarly as in the
proof for trees, an inclusion-exclusion argument over all hyperplanes yields
the proof. �

Our simulations in Section 6 show that by increasing the number of cy-
cles in the skeleton, the volume of strong-unfaithful distributions increases
significantly. We now provide a lower bound for DAGs where the skeleton
is a bipartite graph K2,p−2 and therefore consists of many 4-cycles. The
corresponding scaling for strong-faithfulness is discussed in Section 5.1.

Theorem 5.4 (Lower bound for bipartite graphs). Let K2,p−2 be a di-
rected bipartite graph on p nodes with edge set E as shown in Figure 3(c).
Then:

(i)
vol(MK2,p−2,λ

)

2|E| ≥ 1− (1− λ)(p−2)(2
p−3+1),

(ii)
vol(N

(1)
K2,p−2,λ

)

2|E| ≥ 1− (1− λ)(p−2)(2
p−3+1),

(iii)
vol(N

(2)
K2,p−2,λ

)

2|E| ≥ 1− (1− λ)(p−2)(2
p−3+1).
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Proof. The graph K2,p−2 has 2(p − 2) edges leading to 2(p − 2) hy-

perplanes of surface area 22(p−2)−1. In addition, there are (p− 2)(2p−3 − 1)
distinct hypersurfaces defined by polynomials of the form f(ā)a1,j−g(ā)aj,p.

Their surface area can be lower bounded as well by 22(p−2)−1 as seen in the
proof of Theorem 5.3. Hence, the volume of restricted and ordinary λ-strong-
unfaithful distributions on K2,p−2 is bounded below by

1− (1− λ)2(p−2)+(p−2)(2p−3−1). �

We remark that we can generalize the lower bounds to a rescaled pa-
rameter cube [−r, r]|E| by replacing λ by λ

r . Notice that as r increases the
lower bounds decrease but a very large value of r (i.e., very large absolute
values of causal parameters) would be needed to achieve sufficiently small
lower bounds. Furthermore, as discussed in [7], other factors such as sin-
gularities on the partial correlation hypersurfaces may significantly increase
the volume and can occur anywhere on the hypersurface depending on the
structure of the DAG. Therefore, the lower bound may not be tight.

5.1. Scaling and strong-faithfulness. We here consider the setting where
the DAG G=Gn and hence the number of nodes p= pn and the degree of the
DAG deg(G) = deg(Gn) depend on n, and we take an asymptotic view point
where n→∞. In such a setting, we focus on λ= λn ≍

√

deg(Gn) log(pn)/n
(see [5]). We now briefly discuss when (restricted) λn-strong-faithfulness will
asymptotically hold. For the latter, we must have that the lower bounds (see
Theorems 5.2–5.4) on failure of (restricted) λn-strong-faithfulness tend to
zero.

Case I: lower bound ≍ 1− (1−λn)
pn . Such lower bounds appear for trees

(Theorem 5.2) as well as for restricted strong-faithfulness for cycles (Theo-
rem 5.3). The lower bound 1− (1− λn)

pn tends to zero as n→∞ if

pn = o

(
√

n

deg(Gn) log(n)

)

(n→∞).

Thus, we have pn = o(
√

n/ log(n)) for λn-strong-faithfulness for bounded
degree trees and for restricted λn-strong faithfulness for cycles, and we have
pn = o((n/ log(n))1/3) for star-shaped graphs.

Case II: lower bound ≍ 1− (1− λn)
p2n . Such a lower bound appears for

strong-faithfulness for cycles (Theorem 5.3). The lower bound 1− (1−λn)
p2n

tends to zero as n→∞ if

pn = o

((

n

deg(Gn) log(n)

)1/4)

(n→∞).

Therefore, we have pn = o((n/ log(n))1/4) for λn-strong-faithfulness for cy-
cles.
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Case III: lower bound ≍ 1 − (1 − λn)
2pn . This lower bound appears for

strong-faithfulness for bipartite graphs (Theorem 5.4). This bound tends to
zero as n→∞ if

pn = o(log(n)) (n→∞),

regardless of deg(Gn)≤ pn. Thus, for bipartite graphs with deg(Gn) = pn−2
we have pn = o(log(n)) for λn-strong-faithfulness.

In summary, even for trees, we cannot have pn ≫ n, and high-dimensional
consistency of the PC-algorithm seems rather unrealistic (unless, e.g., the
causal parameters have a distribution which is very different from uniform).

6. Simulation results. In this section, we describe various simulation re-
sults to validate the theoretical bounds described in the previous section.
For our simulations, we used the R library pcalg [6].

In a first set of simulations, we generated random DAGs with a given ex-
pected neighborhood size (i.e., expected degree of each vertex in the DAG)
and edge weights sampled uniformly in [−1,1]. We then analyzed how the
proportion of λ-strong-unfaithful distributions depends on the number of
nodes p and the expected neighborhood size of the graph. Depending on the
number of nodes in a graph, we analyzed 5–10 different expected neighbor-
hood sizes and generated 10,000 random DAGs for each expected neighbor-
hood size.

Using pcalg we computed all partial correlations. Since this compu-
tation requires multiple matrix inversions, numerical imprecision has to
be expected. We assumed that all partial correlations smaller than 10−12

were actual zeroes and counted the number of simulations, for which the
minimal partial correlation (after excluding the ones with partial correla-
tion < 10−12) was smaller than λ. The resulting plots of the proportion
of λ-strong-unfaithful distributions for three different values of λ, namely
λ= 0.1,0.01,0.001 are given in Figure 4(a) for p= 3 nodes, in Figure 4(b)
for p= 5 nodes and in Figure 4(c) for p= 10 nodes.

Fig. 4. Proportion of λ-strong-unfaithful distributions for 3 values of λ.
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Fig. 5. Proportion of λ-strong-unfaithful distributions for 10-node DAGs when restrict-

ing the parameter space.

It appears that already for very sparse graphs (i.e., expected neighbor-
hood size of 2) and relatively small graphs (i.e., 10 nodes) the proportion
of λ-strong-unfaithful distributions is nearly 1 for λ = 0.1, about 0.9 for
λ = 0.01 and about 0.7 for λ = 0.001. In addition, the proportion of λ-
strong-unfaithful distributions increases with graph density and with the
number of nodes (even for a fixed expected neighborhood size). The general
upper bound derived in Theorem 5.1 shows similar behaviors. The number
of summands and the degrees of the hypersurfaces grow with the number of
nodes and graph density.

6.1. Bounding the causal parameters away from zero. In the following,
we analyze how the proportion of λ-strong-unfaithful distributions changes
when restricting the parameter space. The motivation behind this exper-
iment is that unfaithfulness would not be too serious of an issue if the
PC-algorithm only fails to recover very small causal effects but does well
when the causal parameters are large. We repeated the experiments when
restricting the parameter space to

[−1,−c]∪ [c,1]

for c= 0.25,0.5 and 0.75. The results for 10-node DAGs are shown in Fig-
ure 5. Restricting the parameter space seems to help for sparse graphs but
does not seem to play a role for dense graphs. We now analyze various classes
of graphs and their behavior when restricting the parameter space.

6.1.1. Trees. We generated connected trees where all edges are directed
away from the root by first sampling the number of levels uniformly from
{2, . . . , p} (a tree with 2 levels is a star graph, a tree with p levels is a
line), then distributing the p nodes on these levels such that there is at
least one node on each level, and finally assigning a unique parent to each
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Fig. 6. Proportion of λ-strong-unfaithful distributions when the skeleton is a tree, a cycle

or a bipartite graph.

node uniformly from all nodes on the previous level. The resulting plots
for the whole parameter space [−1,1] are shown in Figure 6(a). The plots
when restricting the parameter space for c= 0.25,0.5 and 0.75 are shown in
Figure 7. As before, each proportion is computed from 10,000 simulations.

For trees restricting the parameter space reduces the proportion of λ-
strong-unfaithful distributions by a large amount. This can be explained
by the special structure of the defining polynomials (given in Corollary 4.3).
Since the defining polynomials of the partial correlation hypersurfaces are of
the form ai→j · (1+SOS(a)), the minimal possible value of these polynomials
when restricting the parameter space is

cpath length from i to j.

6.1.2. Cycles. We generated DAGs where the skeleton is a cycle and the
edges are directed as shown in Figure 3(b). The edge weights were sampled
uniformly from [−1,−c] ∪ [c,1]. The resulting plots for the whole parame-

Fig. 7. Proportion of λ-strong-unfaithful distributions for trees when restricting the pa-

rameter space.
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Fig. 8. Proportion of λ-strong-unfaithful distributions for cycles when restricting the

parameter space.

ter space are shown in Figure 6(b). The plots for the restricted parameter
space with c= 0.25,0.5 and 0.75 are shown in Figure 8. Again, each point
corresponds to 10,000 DAGs.

For cycles restricting the parameter space also reduces the proportion of
λ-strong-unfaithful distributions, however not as drastically as for trees. This
can again be explained by the special structure of the defining polynomials
(given in Corollary 4.3). When the defining polynomials are of the form
f(ā)ai,i+1 − g(ā)aj,j+1, they might evaluate to a very small number even
when the parameters themselves are large.

6.1.3. Bipartite graphs. We generated DAGs where the skeleton is a bi-
partite graph K2,p−2 and the edges are directed as shown in Figure 3(c).
Bipartite graphs K2,p−2 consist of many 4-cycles. For such graphs there
are many paths from one vertex to another and therefore many ways for a
polynomial to cancel out, even when the parameter values are large. As a
consequence, for such graphs restricting the parameter space makes hardly
no difference on the proportion of λ-strong-unfaithful distributions. This
becomes apparent in Figures 6(c) and 9.

6.1.4. Lower bounds. We compare the theoretical lower bounds derived
in Section 5 to the simulation results in this section for DAGs where the
skeleton is a tree, a cycle or a bipartite graph when c= 0. We present our
lower bounds together with the simulation results in Figure 10. The black
lines correspond to the lower bounds, the solid line to λ= 0.1, the dashed
line to λ= 0.01 and the dotted line to λ= 0.001. In particular for bipartite
graphs our lower bounds approximate the simulation results very well.

6.2. Restricted λ-strong-faithfulness. As already discussed earlier, the
PC-algorithm only requires the computation of all partial correlations over
edges in the graph G and conditioning sets S of size at most deg(G).
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Fig. 9. Proportion of λ-strong-unfaithful distributions for bipartite graphs K2,p−2 when

restricting the parameter space.

In order to analyze when the (conservative) PC-algorithm works, we re-
peated all our simulations when restricting the partial correlations to edges
in the graph G and conditioning sets S of size at most deg(G), that is,
part (i) of the restricted strong-faithfulness assumption in Definition 1.4,
called the adjacency-faithfulness assumption. The results for general 10-node
DAGs are shown in Figure 11. We see that the proportion of λ-adjacency-
unfaithful distributions is slightly reduced compared to the proportion of
λ-strong-unfaithful distributions shown in Figure 5, in particular for sparse
graphs. For trees and bipartite graphs the proportion of restricted λ-strong-
unfaithful distributions is similar to the proportion of λ-strong-unfaithful
distributions shown in Figures 6, 7 and 9, whereas the behavior for cy-
cles regarding the proportion of restricted λ-strong-unfaithful distributions
is similar to trees. We omit these plots here, but remark that they nicely
agree with the theoretical bounds for restricted λ-strong-faithfulness and
λ-adjacency-faithfulness derived in Section 5.

Fig. 10. Comparison of theoretical lower bounds and approximated proportion of

λ-strong-unfaithful distributions for trees, cycles and bipartite graphs K2,p−2.
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Fig. 11. Proportion of λ-adjacency-unfaithful distributions for 10-node DAGs.

7. Discussion. In this paper, we have shown that the (restricted) strong-
faithfulness assumption is very restrictive, even for relatively small and
sparse graphs. Furthermore, the proportion of strong-unfaithful distribu-
tions grows with the number of nodes and the number of edges. We have
also analyzed the restricted strong-faithfulness assumption introduced by
Spirtes and Zhang [17], a weaker condition than strong-faithfulness, which
is essentially a necessary condition for uniform or high-dimensional consis-
tency of the popular PC-algorithm and of the conservative PC-algorithm. As
seen in this paper, our lower bounds on restricted strong-unfaithful distribu-
tions are similar to our bounds for strong faithfulness, implying inconsistent
estimation with the PC-algorithm for a relatively large class of DAGs.

For trees, due to the special structure of the polynomials defining the hy-
persurfaces of unfaithful distributions, if the causal parameters are large, the
partial correlations tend to stay away from these hypersurfaces and strong-
faithfulness holds for a large proportion of distributions. However, as soon
as there are cycles in the graph (even for sparse graphs), the polynomials
can cancel out also for large causal parameters, and the strong-faithfulness
assumption does not hold. More precisely, if the skeleton is a single cycle,
our lower bounds on the proportion of restricted strong-unfaithful distribu-
tions is of the same order of magnitude as for trees. However, if the skeleton
consists of multiple cycles as, for example, for bipartite graphs, the lower
bounds for restricted strong-unfaithful distributions are as bad as for plain
strong-unfaithful distributions.

Assuming our framework and in view of the discussion above, in the
presence of cycles in the skeleton, the (conservative) PC-algorithm is not
able to consistently estimate the true underlying Markov equivalence class
when p is large relative to n, even for large causal parameters (large edge
weights). Some special assumptions on the sparsity and causal parameters
might help, but without making such assumptions, the limitation is in the
range where p= pn = o(

√

n/ log(n)). This constitutes a severe limitation of
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the PC-algorithm. As an alternative method, the penalized maximum like-
lihood estimator (cf. [3]) does not require strong-faithfulness but instead a
stronger version of a beta-min condition (i.e., sufficiently large causal param-
eters) [15]. This “permutation beta-min” condition has been shown to hold
for AR(1) models in [15], page 8. However, a thorough analysis of the “per-
mutation beta-min” condition and a comparison to the strong-faithfulness
condition more generally is quite challenging and remains an interesting
open problem.

Throughout the paper, we have assumed that the causal parameters are
uniformly distributed in the hypercube [−1,1]|E|. Since all hypersurfaces
corresponding to unfaithful distributions go through the origin, a prior dis-
tribution which puts more mass around the origin (e.g., a Gaussian dis-
tribution) would lead to a higher proportion of strong-unfaithful distribu-
tions, whereas a prior distribution which puts more mass on the boundary
of the hypercube [−1,1] would reduce the proportion of strong-unfaithful
distributions. Computing and comparing these measures for different priors
would be an interesting extension of our work. Another interesting problem
would be to extend our results to the case of general error variances [i.e.,
var(εj) = σ2

j ]. Finally, very recently the k-triangle-faithfulness assumption
has been proposed [13] as a sufficient condition for uniform consistency for
inferring certain features of the causal structure. This assumption is less
restrictive than strong-faithfulness, at the cost of decreasing identifiability,
returning a statement “undecidable” for some cases. Analyzing how restric-
tive the k-triangle-faithfulness assumption is and what it means for the
high-dimensional setting represents an interesting future direction.

8. Proofs.

Proof of Proposition 4.1. Statement (i) follows from the matrix
inversion formula using the cofactor matrix, that is,

Σij =
1

det(K)
C(K)ij,

and the fact that the concentration matrix K is positive definite and there-
fore det(K)> 0. Statement (ii) is a well-known fact about the multivariate
Gaussian distribution.

Let A,B ⊂ V be two subsets of vertices. We denote by KAB the submatrix
of K consisting of the entries Kij , where (i, j) ∈A×B. Let KA denote the
concentration matrix in the Gaussian model, where we marginalized over
Ac = V \A. With these definitions, we have that

KA =Σ−1AA.

The correlation between Xi and Xj conditioned on S corresponds to the
(i, j)th entry in the matrix KQ. Using the Schur complement formula, we
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get that

KQ =KQQ −KQQc(KQcQc)−1KQcQ.(12)

Since KQcQc is positive definite, we can rewrite equation (12) as

det(KQcQc)KQ = det(KQcQc)KQQ −KQQcC(KQcQc)KQcQ,

from which statement (iii) follows. �

Proof of (10). We first note that the (i, j)th element of As consists
of the sum of the weights of all paths p = (p0, p1, . . . , ps) with p0 = i and
ps = j for which (pk−1, pk) ∈ E for all k = 1, . . . , s. This means that (As)ij
corresponds to all “forward” paths from i to j of length s. Analogously,
(AT )r corresponds to all “backward” paths from i to j of length r.

We decompose the covariance matrix using the Neumann power series.
We can do this since all eigenvalues of the matrix A are zero (because A is
upper triangular).

Σ = ((I −A)(I −A)T )−1

=

∞
∑

k=0

∑

r+s=k

(AT )rAs

=

2p−2
∑

k=0

∑

r+s=k,
r,s≤p−1

(AT )rAs.

For the last inequality, we used the assumption that the underlying graph is
acyclic. Using the path interpretation it is clear that for acyclic graphs the
matrix As is the zero-matrix for all s≥ p. �

Proof of Corollary 4.3. To prove (a), we first consider the special
case where G is a directed line on p nodes, where all edges point in the same
direction, that is, (i, i + 1) ∈ E for 1 ≤ i < p. The following argument can
then easily be generalized to directed trees Tp.

Let i, j ∈ V and without loss of generality we assume that i < j. Since
there are no colliders in G, it follows from (9) that

Kij =

{

−aij , if j is a child of i,
0, otherwise,

Σij corresponds to all collider-free paths from i to j and therefore

Σij = (1 + a2i−1,i(1 + a2i−2,i−1(· · · (1 + a212))))

j−1
∏

k=i

ak,k+1.(13)



GEOMETRY OF FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE 27

Fig. 12. Subgraphs ĜPi
, where G is a directed line and Pi = {1,2, . . . ,5}.

The first term corresponds to the value of all collider-free loops from i to i
and the second term to the value of the path from i to j.

Let S ( V \{i, j} and Q= S ∪{i, j}. If there exists an element s ∈ S such
that i < s < j, then the CI relation Xi ⊥⊥Xj |XS is already entailed by the
Markov condition. We can therefore assume without loss of generality that
there is no s ∈ S such that i < s < j. Since there are no colliders in G, it
follows from Proposition 4.1(iii) that the corresponding polynomial is of the
form







−det(KQcQc)aij, if j is a child of i,

−
∑

p,q∈Qc

aipC(KQcQc)pqaqj, otherwise.(14)

The corresponding symmetrized and reweighted graph Ĝ for p = 5 is
shown in Figure 12(a). Note that there is a unique self-avoiding path be-
tween any two vertices. As a consequence, the polynomial corresponding to
the CI relation Xi ⊥⊥Xj |XS in (14) can be written as

−
(

1 +

|P |
∑

k=1

∑

m1+···+ms=k

(−1)sµ(cm1) · · ·µ(cms)

)

j−1
∏

k=i

ak,k+1,(15)

where P =Qc \ {i+ 1, . . . , j − 1}.
We now analyze the cycles in P . We decompose P into intervals P = P1 ∪

· · · ∪ Ps, where Pi = {p−i , p−i +1, . . . , p+i }. We need to distinguish two cases.

If p+i = p, then the subgraph ĜPi
is of the form as shown in Figure 12(a)

(for p−i = 1 and p+i = 5). Otherwise the subgraph is of the form as shown in
Figure 12(b) (for p−i = 1 and p+i = 5).

We note that all cycles are either of length 1 (with value −a2k,k+1) or of

length 2 (with value a2k,k+1). In the case where p+i = p all cycles of length 1

cancel with the cycles of length 2. In the case where p+i < p, however, the
cycle of length 1 with value −a2

p+i ,p+i +1
does not cancel and therefore neither
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does the combination of k cycles

k−1
∏

j=0

(−a2
p+
i
−j,p+

i
−j+1

)

for any k ∈ {1, . . . , p+i −p−i }. As a consequence, the polynomial corresponding
to the CI relation Xi ⊥⊥Xj |XS in (15) can be written as

−
s
∏

i=1

(1 + a2
p+
i
−1,p+

i

(1 + a2
p+
i
−2,p+

i
−1

(· · · (1 + a2
p−
i
,p−

i
+1

))))

j−1
∏

k=i

ak,k+1.

The proofs for (b) and (c) are analogous and basically require understand-

ing the cycles in Ĝ. �
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