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Abstract

Information geometry applies concepts in differential metry to probability and statistics and is
especially useful for parameter estimation in exponefdiailies where parameters are known to lie on
a Riemannian manifold. Connections between the geometijmepties of the induced manifold and sta-
tistical properties of the estimation problem are welbbfished through the Cramér-Rao lower bound.
However developing first-order methods that scale to lapgeblems has been less of a focus in the
information geometry community. The best known algorithrattincorporates manifold structure is
the natural gradient descent algorithm introduced by Amari, which ieond-order method. On the
other hand, stochastic approximation methods have ledet@¢vwelopment of first-order methods for
optimizing noisy objective functions. The classical Rat®hMonro and Keifer-Wolfowitz algorithms
are the basis for many stochastic approaximation algosthfnrecent generalization of the Robbins-
Monro algorithm known as mirror descent, developed by Newsiki and Yudin is a first order method
that induces non-Euclidean geometries. However curreadiysis of mirror descent does not precisely
characterize the induced non-Euclidean geometry nor daemsider performance in terms of statis-
tical relative efficiency. In this paper, we prove that mirdescent induced by Bregman divergences
is equivalent to thenatural gradient descent algorithm on tleal Riemannian manifold. Using this
equivalence between natural gradient descent and mirsged¢ it follows that (1) mirror descent is the
steepest descent direction along the Riemannian manifdalteexponential family; (2) mirror descent
with log-likelihood loss applied to parameter estimatioekponential families asymptotically achieves
the classical Cramér-Rao lower bound and (3) natural gradiescent for manifolds corresponding to
exponential families can be implemented as a first-ordehatethrough mirror descent.

1 Introduction

Information geometry, which marries concepts from diffégt@ geometry with statistical decision theory
was born out of the pioneering work of Rad]. Along with Cramér, Rao proved the classical Cramér-Rao
bound [.2, 18] and showed that the Fisher information matrix for paraméamilies induces a Riemannian
manifold. Detailed characterizations of the differenti@ometric properties for various statistical mani-
folds are provided ing]. Work by Amari and other authors in recent years has pravidether signifcant
contributions to information geometry by making links téarmation theory and incorporating ideas from
optimization and online learning (see e.g,. 3, 4]).

In particular Amari proposedatural gradient descent’] as an online learning algorithm that incor-
porates manifold structure. The algoirthm generalizesergradient descent by multiplying the gradient
update by the inverse of the Riemannian metric. For regudsarpetric families, the Riemannian metric
corresponds to the inverse of the Fisher information matrixportantly, Amari proves that using the nat-
ural gradient descent step asymptotically satisfies then€rd&rao lower bound for parameter estimation
in exponential families. However, the natural gradientcées algorithm is a second-order method since it
requires inversion of the Hessian or Fisher-informatioririm&orrepsonding to the Riemannian manifold.
When the number of parameters is large, second-order ne#iiedften a significant computational burden.
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On the other hand, there has recently been a strong focusvetoding first-order methods to estimate
noisy objective functions in the machine learning communithe idea of stochastic updates or stochastic
optimization procedures has a long history in optimizingtistical objectives going back to Robbins and
Monro [20] and Kiefer and Wolfowitz 16]. The widely used online gradient descent algorithm is $mp
a special case of the Robbins-Monro algorithm. More regeNémirovski and Yudin developed a gener-
alization of online or stochastic gradient descent knowmasor descent [7]. The mirror descent algo-
rithm allows non-Euclidean geometries to be induced viactiwce of a proximity function (see e.@.d).
Importantly mirror descent is a first-order method and hdsagently received significant attention (see
e.g. [L, 8, 13, 23]). However, to the best of our knowledge, the mirror desdigertature has generally not
addressed two important issues: (i) developing a preciaeacterization of the non-Euclidean geometry
induced by mirror descent and (ii) statistical analysishwispect to a model that considers variance and
efficiency properties of the mirror descent update.

In this paper we consider mirror descent updates where thérpity function is aBregman divergence
[10] or equivalently, the Kullback-Leibler divergence for axpenential family. Bregman divergences are
differentiable functions oR? x R? indexed by strictly convex differentiable functiods Bregman di-
vergences induce Riemannian manifolds and for each Breglivargence, there existsdual Bregman
divergence inducing a dual Riemannain manifold (see Anmrati@ichocki [3] for details). Using this con-
nection, we prove that mirror descent with Bregman divecgens equivalent to natural gradient descépt [
along thedual Riemannian manifold. An immediate consequence of thisvadgrice between mirror de-
scent with Bregman divergences and natural gradient deatiews us to make three novel statements about
mirror descent. Firstly, the mirror descent step is thedtioa of steepest descent in the dual Riemannian
manifold corresponding to the Bregman diveregence. Ségousing the one-to-one correspondence be-
tween Bregman divergences and exponential families (se¢te.7]), mirror descent applied to parameter
estimation in the exponential family corresponding to tlieddnan divergence asymptotically achieves the
Cramér-Rao lower bound.?, 18]. Hence we address both of the stated issues for mirror desdeen
the proximity function is a Bregman divergence. Thirdlye quivalence proves that mirror descent with
Bregman divergences is a first-order implementation ofrahtyradient descent along the dual Riemannian
manifold.

We also discuss connections between mirror descent, hatadient descent and other online algo-
rithms that directly impose a Riemannian structure. Thadsed gradient descent step on a Riemannian
manifold requires applying the exponential map to the gnasidupdate (see e.?]). Since computation of
the exponential map is challenging in general, approxionatito the exponential map are used. We prove
that natural gradient descent (and consequently mirraresielsis equivalent to standard Riemannian gradi-
ent descent with the exponential map approximated by itsdider Taylor approximation. Hence mirror
descent and natural gradient descent can be motivatedtasréies approximations to the computationally
intensive Riemannian gradient descent step.

The remainder of the paper is organized as follows: In Se@iwe introduce the basic concepts in-
cluding mirror descent, Bregman divergences, convex gu&iemannian manifolds and natural gradient
descent. Sectiofl presents the main result on the equivalence between miesmett and natural gradient
descent as well as consequences for statistical estimatidrconnections to other online algorithms for
Riemannian manifolds. The discussion and conclusion samted in Sectiod.



2 Background and preliminaries

We begin by introducing the notation and problem setup ftinerconvex optimization as defined in Shalev-
Shwartz P7]. Let {f;}72, denote a sequence of convex differentiable cost functfpns ® — R where

© C RP?is a convex set. The online learning problem is to predictoaisece of vector$d, }°, and incur

a lossf(0;) at each iteraté. The sum of Iosseifz1 f+(0¢) is referred to as theegretat 7" and the goal

is to construct a sequence with the smallest possible redietre is a large body of work on providing

bounds on regret for various online algorithms (see é,d.d, 23]), however the main focus of this paper is
understanding the geometry of the mirror descent algoriththe context of a generative statistical model
by proving an equivalence to natural gradient descent.

2.1 Mirror descent with Bregman divergences and convex dudly

The most common approach to construct a sequéfgé®, is based on online or stochastic gradient de-
scent. The online gradient descent update is:

9t+1 =0y — atvft(gt)7 (1)

where(a; )72, denotes a sequence of step-sizes. Note that the onlineegtattiscent step can alternatively
be expressed as:

1
Opq = in< (0 0 — 10— 6,12 Y.
o1 = argyin { (0.91:00) + 510 - 013

By re-expressing the stochastic gradient step in this waynikbvski and Yudin 17] introduced a general-
ization of gradient descent as follows: Denote pneximity function ¥ : R x R? — R™, strictly convex in
the first argument, then define therror descent step as:

Or+1 = argmin {(6, V £i(6:)) + V(0,01)} - )

SettingV (0, 6¢') = %HH — ¢'||3 yields the standard gradient descent update, heBE& & generalization of
online gradient descent.

A standard choice for the proximity functiob is the so-calleBregman divergencsince they corre-
spond to the Kullback-Leibler divergence for an exponeéffiaily. In particular, letG : © — R denote a
strictly convex twice-differentiable function, the digence introduced by Bregmah(] Bg : ©x 0 — RT
is:

Bg(0,0) = G() — G(0") — (VG(¢),0 - 0').

Bregman divergences are widely used in statistical inf@eaptimization, machine learning, and informa-
tion geometry (see e.g3[7]). Letting ¥(-,-) = Bga(+, ), the mirror descent step defined is:

01 = arg mein {(9, Vfi(6)) + O%Bg(@,ﬂt)} ) (3)

Examples ofG and the induced Bregman divergences are listed in Table da Rwore extensive list, see
e.g. [/]. There is a one-to-one correspondence between Bregmargdivces and exponential familieg] [
which we exploit later when we discuss estimation in exptiaefamilies.

The concept of convex conjugate functions is central to tagmesult in the paper. The convex conju-
gate function of7 is defined to be:

H(n) = Zgg{w,m —G(0)}.



G(9) Ba(6,6")

219113 210 — 0113

exp(6) exp(f) — exp(¢') — (exp(¢'), 6 — 6")
log(1 + exp(6)) log<11:::,> — <%,9 -6

Table 1: Bregman divergence examples

G(9) H(n) Br(n,n')
2113 213 sl =113
exp(0) (n,logn) —n nlog 7

log(1 +exp(0)) | nlogn + (1 —mn)log(1 —n) | (1 —mn) 10g<11__;7,> +nlog 7

Table 2: Dual Bregman divergence examples

If G is lower semi-continuoug;s is the convex conjugate dff, implying a dual relationship betwee®
and H. Further, since7 is strictly convex and twice differentiable, so #6. Note also that iff = VG
andh = VH, g = h~!. For additional properties and motivation for the converjagate function, see
Rockafeller p1].

Letn = g(#) € ® be the point at which the supremum for the dual function igir¢id represent the
dual co-ordinate system t6. The dual Bregman divergendgy : ® x & — R is:

By(n,n')=H(n) —H®') = (VH® ),n—1).

Using the dual co-ordinate relationship, it is straightfard to show thaBBy(n,n') = Bg(h(1), h(n))
and B;(0,6") = Br(g(0'),9(0)). Dual functions and Bregman divergences for examples iteTalare
presented in Table 2. For more examples see Banerjee él.al. |

2.2 Riemannian manifolds and natural gradient descent

Let (M, H) be ap-dimensional Riemannian manifold with metric teng¢r= (h;;) and M C RP. For a
thorough introduction to Riemannian manifolds, see do@dfim].

Now, define a sequence of functiofig }5°, on the Riemannian manifol : M — R. Thenatural
gradient descent step introduced in Amatiip:

M1 = — o H ™ () V fi (), (4)

where?{~! is the inverse of the Riemannian mentkc= (hjx). Theorem 1in ¥] proves that the natural
gradient algorithm steps in the direction of steepest deésdeng the Riemannian manifoldV1, #). Hence

the name natural gradient descent. The choice of notatiomth to parameterize elements of the Riemannian
manifold M and the dual co-ordinates= ¢() is intended to pre-empt the link between natural gradient
descent and mirror descent.



2.3 Bregman divergences and Riemannian manifolds

Now we explain how every Bregman divergence and its dualdedia pair of Riemannian manifolds as
described in Amari and CichockB]. For the Bregman divergencB; : © x © — RT induced by the
convex function?, define the Riemannian metric @, G = V2@ (i.e. the Hessian matrix). Sindg is

a strictly convex twice differentiable functio/?G(6) is a positive definite matrix for a# € ©. Hence
Beg(+,-) induces the Riemannian manifolé, V2G). Now let ® be the image 0® under the continuous
mapg = VG. By : ®x® — Rt induces a Riemannian manifold, ), where{ = V2H. Let(0, V2Q)
denote theprimal Riemannian manifold ang®, V2 H) denote thelual Riemannian manifold.

3 Equivalence of algorithms

In this section we present our main result, the equivaleficeiwor descent and natural gradient descent.
We also discuss consequences and implications.

Theorem 1. The mirror descent stef®) with Bregman divergence defined Gyapplied to the sequence of
functions(f;);2, in the spaced is equivalent to the natural gradient stefd) along the dual Riemannian
manifold (®, V2H).

The proof follows by stating mirror descent in the dual Rieman manifold and simple applications of
the chain rule.

Proof. Recall that the mirror descent update is:

. 1
011 = arg min {(9, Vfi(6)) + a—Bg(G,Ht)} )
t
Finding the minimum by differentiation yields the step:

9(0r+1) = 9(0r) — Vg fi(64),

whereg = VG. In terms of the dual variablg = g(¢) and noting that = h(n) = VH(n),

Nig1 =M — Vo fe(h(n)).

Applying the chain rule tov,, f;(h(n)) = V,h(n) Ve fi(h(n)) implies that

Vo fe(h(n)) = [Vnh(nt)]_lvnft(h(nt))-

Therefore
M1 = 0 — o [V2H ()]~ Vo fo(h(me),
which corresponds to the natural gadient descent step.cbhgletes the proof. O

In the subsequent sections, we discuss how this connedtiertlg yields optimal efficiency results for
mirror descent and discuss connections to other onlingitigoon Riemannian manifolds.



G(0) Bg(0,6) Family
11613 26 —o'3 Gaussian
exp(h) exp(6) — exp(0') — (exp(#’),0 — ') | Poisson
log(1 + exp(0)) log<11::;,> - <%Ze,, 6—4¢) Bernoulli

Table 3: Exponential famililes and Bregman divergences

3.1 Efficient parameter estimation in exponential families

In this section we exploit the connection between mirrocdasand natural gradient descent to study the ef-
ficiency of mirror descent from a statistical perspectivéoRRvork on the statistical theory of mirror descent
has largely focussed on regret analysis and we are not afvanalysis on statistical efficiency. We will see
that Fisher efficiencyll4, 15, 19 which is an optimality criterian on the covariance of a paeger estimate
is an immediate consequence of the equivalence betweearmescent and natural gradient descent.

The statistical problem we consider is parameter estimati@xponential families. Considematural
parameterexponential family with density:

p(y 1 0) = h(y)exp((0,y) — G(0)),

wheref) € RP andG : RP — R is a strictly convex differentiable function. The probajidensity function
can be re-expressed in terms of the Bregman diverg&ade, -) as follows:

p(y | 8) = h(y) exp(—Ba(0, h(y))),

where recall that = VH and H is the conjugate dual function 6f. The distribution can be expressed in
terms of themean parameten = ¢(6) and the dual Bregman divergensg; (-, -):

p(y | n) = h(y) exp(— B (y,n)).

There is a one-to-one correspondence between exponemtidiels and Bregman divergencé, [/]. Table
3 displays the exponential families corresponding to thenfan divergences in Table 2.

Consider the mirror descent update for the natural parametéth proximty function B;(+,-) when
the function to be minimized is the standard log loss:

ft(0;y1) = —logp(y: | 0) = Ba(0, h(yr)).
Then the mirror descent step is:
. 1
Ht—i-l = arg Hl(gln{ (97 VQBG(9> h(yt))|9=9t> + CJZ_tBG(H’ 9t)>} (5)

Now if we consider the natural gradient descent step for tekamparametey, the function to be minimized
is again the standard log-loss in theo-ordinates:

fe(nsye) = —logp(ys | 1) = Br(ye,n)-
Using Theorend (or by showing it directly), the natrual gradient step is:

New1 = e — o [V2H] ' By (ye, me). (6)
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A parallel argument holds if the mirror descent step wasesged in terms of the mean parameter and the
natural gradient step in terms of the natural parameter.

Now we use Theorem 2 in Amar] to prove that mirror descent yields an asymptotically Erséffi-
cient forn. The Cramér-Rao theorem states that any unbiased estibveed oril” independent samples
y1, Y2, ..., y7 Of n, which we denote byj, satisfies the following lower bound:

El(fr — )i —n)"] = 2 VH,

where>- refers to the standard matrix inequality. A sequence ofregtrs(7; )2, is asymptotically Fisher
efficient if:

lim TE[(#r —n)(@r —n)"] — V?H.

T—o00

Now by using a result from Amari’] for natural gradient descent, we prove that mirror destefRisher
efficient, thus achieving the same asymptotic efficiencyngdatch-mode method. The following corollary
is a direct consequence of Theorem 2 in Amali [

Corollary 1. The mirror descent step applied to the log I¢5% with step-sizesy = % asymptotically
achieves the Craér-Rao lower bound.

For a more detailed discussion on the statistical progedieatural gradient see Amati][ Here we
have illustrated how the equivalence between mirror déseitim Bregman divergences and natural gradient
descent gives second-order optimality properties of mitescent.

3.2 Connection to other online methods on Riemannian manifds

In this section, we discuss connections between naturdiegradescent, mirror descent and online algo-
rithms developed in Bonnabed][that directly use Riemannian manifold structures. To daeftme online
gradient descent step for general Riemannian manifolds insBonnabel §], we need to define the expo-
nential map and differentiation in curved spaces.

Theexponential mag@t a pointy € M is a mapexp,, : 1, M — M whereT; M is the tangent space
at each point) € M (see e.g.11]). Consider the geodesic curve: [0,1] — M, with v(0) = n and
¥(0) = v, wherev € T M thenexp, (v) = 7(1).

Now we define differentiation. Lef : M — R be a differentiable function opm. The gradient vector
field 7 f takes the formyaf () = o (f(exp,(v)))lv=0 noting thatf (exp, (v)) is @ smooth function
onT,M.

For the sequence of functiofy; };°, wheref, : M — R the online gradient descent step analyzed in
Bonnabel §] is:

Ne+1 = expy, (—aeVaa fe(m)). (7)

The key reason why the update’) (s the standard gradient descent step instead of the hgna@dient
descent step introduced by Amari is thyat; is always guaranteed to lie on the manifdld for (7), but not
for the natural gradient descent step. Unfortunately, ¥p@ential map is extremely difficult to evaluate in
general since it is the solution of a system of second-oriffarential equations11].

Consequently a standard strategy is to use a computéetion R, : 7, M — RP of the exponential
map which yields the approximate gradient descent step:

Ner1 = Ry, (= Var fe(ne)). (8)



The retractionR,, (v) = 1 + v corresponds to the first-order Taylor approximation of tkgomential map
and yields the natural gradient descent step in AnidriTherefore as pointed out in Bonnabé],[natural
gradient descent can be cast as an approximation to grathsoent for Riemannian manifolds. Conse-
guently mirror descent can be viewed as an easily computiasterder approximation to gradient descent
for any Riemannian manifold induced by a Bregman divergence

4 Discussion

In this paper we prove that mirror descent with proximity dtion ¥ equal to a Bregman divergence is
equivalent to the natural gradint descent algorithm aldreggdual Riemannian manifold. Based on this
equivalence, we use results developed by AmZritd conclude that mirror descent is the direction of
steepest in the corresponding Riemannian space and fanpamaestimation in exponential families with
the associated Bregman divergence, mirror descent ashibeeCramér-Rao lower bound. Furthermore,
this connection proves that the natural gradient step campplemented as a first-order method using mirror
descent which has computational gains for larger datasets.

Following on from this connection, there are a number ofregtng and open directions. Firstly, one
of the important issues for any online learning algorithnecheice of step-size. Using the connection be-
tween mirror descent and natural gradient, it would be @stng to determine whether adaptive choices of
step-sizes proposed in Amad][that exploit the Riemannian structure can improve perforoe of mirror
descent. It would also be useful to determine a precise cteization of the geometry of mirror descent for
other proximity functions such as-norms and explore links online algorithms such as progegtadient
descent.

Acknowledgements

GR was partially supported by the NSF under Grant DMS-112781he Statistical and Applied Mathemat-
ical Sciences Institute. SM was supported by grants: NIH{&ys Biology): 5P50-GM081883, AFOSR:
FA9550-10-1-0436, and NSF CCF-1049290.

References

[1] J. Abernethy, A. Agarwal, P. Bartlett, and A. Rakhlin. foshastic view of optimal regret through
minimax duality. InProceedings of COLT2009.

[2] S. Amari. Natural gradient works efficiently in learniniyeural Computation10(2):251-276, Febru-
ary 1998.

[38] S. Amari and A. Cichocki. Information geometry of diverce functions. Bulletin of the Polish
Academy of Sciences: Technical Scien&@¢1):183—-195, March 2010.

[4] S. Amari and H. Nagaokaviethods of information geometnAMS, Providence, RI, 2000.

[5] S.-I Amari, O. E. Barndoff-Nielsen, R. E. Kass, S. L. Lazen, and C. R. RadDifferential geometry
in statistical inferencelMS Lecture Notes - Monograph Series, Hayward, CA, 1987.

[6] K. S. Azoury and M. K. Warmuth. Relative loss bounds forlme density estimation with the expo-
nential family of dsitributionsMachine Learning43(3):211-246, 2001.

8



[7] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Glusig with bregman divergencedournal of
Machine Learning Research:1705-1749, 2005.

[8] A. Beck and M. Taboulle. Mirror descent and nonlinearjpoted subgradient methods for convex
optimization. Operations Research Lette!31:167-175, 2003.

[9] S. Bonnabel. Stochastic gradient descent on Riemamimifiolds. Technical report, Mines Paris
Tech, November 2011.

[10] L. M. Bregman. The relaxation method for finding the coamrpoint of convex sets and its appli-
cation to the solution of problems in convex programmingSSR Computational Mathematics and
Mathematical Physi¢s7:191-204, 1967.

[11] M. P. Do Carmo.Riemannian Geometnspringer Series in Statistics. Birkhauser, Boston, MA2.9
[12] H. Cramér.Mathematical Methods of StatisticBrinceton University Press, 1946.

[13] J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewarbniposite objective mirror descent. Gon-
ference on Learning Theory (COLT010.

[14] B. Efron. Defining the Curvature of a Statistical Prabléwith Applications to Second Order Effi-
ciency). Annals of Statistigs3(6):1189-1242, 1975.

[15] R.A. Fisher. Theory of statistical estimatiaMathematical Proceedings of the Cambridge Philosoph-
ical Society 22:700-725, 1925.

[16] J. Kiefer and J. Wolfowitz. Stochastic estimation of tmaximum of a regression functioAnnals of
Mathematical Statistic23:452—466, 1952.

[17] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimizatiofiley,
1983.

[18] C. R. Rao. Information and accuracy obtainable in tharegion of statistical parameter®8ulletin
Calcutta Math. So¢.37:81-91, 1945.

[19] C.R. Rao. Asymptotic efficiency and limiting informaiti. InFourth Berkeley Symposium on Mathe-
matical Statistics and Probabilityolume 1, pages 531-546. 1961.

[20] H. Robbins and S. Monro. A stochastic optimization noeth Annals of Mathematical Statistics
22:400-407, 1951.

[21] R. T. Rockafeller.Convex AnalysisPrinceton University Press, Princeton, 1970.

[22] S. Shalev-Shwartz. Online learning and online convatinaization. Foundations and Trends in Ma-
chine Learning4(2):107-194, 2011.

[23] N. Srebro, K. Sridharan, and A. Tewari. On the univatgaif online mirror descent. Ifroceedings
of the NIPS Conferenc&ancouver, Canada, 2011.



	1 Introduction
	2 Background and preliminaries
	2.1 Mirror descent with Bregman divergences and convex duality
	2.2 Riemannian manifolds and natural gradient descent
	2.3 Bregman divergences and Riemannian manifolds

	3 Equivalence of algorithms
	3.1 Efficient parameter estimation in exponential families
	3.2 Connection to other online methods on Riemannian manifolds

	4 Discussion

