
PULasso: High-dimensional variable
selection with presence-only data

Hyebin Song
Department of Statistics, University of Wisconsin-Madison

and
Garvesh Raskutti ∗

Department of Statistics, University of Wisconsin-Madison

November 22, 2017

Abstract

In various real-world problems, we are presented with positive and unlabelled data,
referred to as presence-only responses and where the number of covariates p is large.
The combination of presence-only responses and high dimensionality presents both
statistical and computational challenges. In this paper, we develop the PUlasso algo-
rithm for variable selection and classification with positive and unlabelled responses.
Our algorithm involves using the majorization-minimization (MM) framework which
is a generalization of the well-known expectation-maximization (EM) algorithm. In
particular to make our algorithm scalable, we provide two computational speed-ups
to the standard EM algorithm. We provide a theoretical guarantee where we first
show that our algorithm is guaranteed to converge to a stationary point, and then
prove that any stationary point achieves the minimax optimal mean-squared error of
s log p
n , where s is the sparsity of the true parameter. We also demonstrate through

simulations that our algorithm out-performs state-of-the-art algorithms in the mod-
erate p settings in terms of classification performance. Finally, we demonstrate that
our PUlasso algorithm performs well on a biochemistry example.

Keywords: PU-learning, majorization-minimization, non-convexity, regularization.

∗Both HS and GR were partially supported by NSF-DMS 1407028. GR was also partially supported
by ARO W911NF-17-1-0357 and NGA HM0476-17-1-2003.

1

1 Introduction

In many classification problems, we are presented with the problem where it is either

prohibitively expensive or impossible to obtain negative responses and we only have pos-

itive and unlabelled presence-only responses (see e.g. Ward et al. [2009]). For example,

presence-only data is prevalent in geographic species distribution modeling in ecology where

presences of species in specific locations are easily observed but absences are difficult to

track (see e.g. Ward et al. [2009]), text mining (see e.g. Liu et al. [2003]), bioinformatics

(see e.g. Elkan and Noto [2008]) and many other settings. Classification with presence-

only data is sometimes referred to as PU-learning(learning with positive and unlabelled

responses)(Liu et al. [2003], Elkan and Noto [2008]).

1.1 Motivating application: Biotechnology

Although the theory and methodology we develop applies generally, a concrete application

that motivated this work arises from biological systems engineering. In particular recent

high-throughput technologies generate millions of biological sequences from a library for a

protein or enzyme of interest (see e.g. Fowler and Fields [2014], Hietpas et al. [2011]). In

Section 5 the enzyme of interest is beta-glucosidase (BGL) which is used to decompose of

di-saccharydes into glucose which is an important step in the process of converting plants

to bio-fuels (Romero et al. [2015]). The performance of the BGL enzyme is measured

by the concentration of glucose that is produced and a positive response arises when the

di-saccharyde is decomposed to glucose and a negative response arises otherwise. Hence

there are two scientific goals, firstly to determine how the sequence structure influences

the biochemical functionality and secondly, using this relationship to engineer and design

BGL sequences with improved functionality. Presence-only responses arise naturally in

2

this setting because the high-throguhput technologies used produce functional (positive)

sequences and unlabelled sequences (see e.g. Romero et al. [2015] for more details).

Given these two scientific goals, we are interested in both the variable selection and

classification problem since we want to determine which positions in the sequence most

influence positive responses as well as classify which protein sequences would be functional.

Furthermore, the number of variables here is large since we need to model long and complex

biological sequences. Hence our variable selection problem is high-dimensional. In Section 5

we present this application in greater detail and demonstrate the success of our algorithm.

1.2 Problem Setup

To state the problem formally, we have two sets of samples. The first set consists of nℓ

positive and labelled observations, and a second set that contains nu observations randomly

drawn from the population with only covariates not the responses being observed. Further-

more, we assume the true positive prevalence π := P (y = 1) is known. In our biotechnology

example, π can be estimated extremely precisely using an alternative experiment. If the

information of true prevalence is unavailable, it may be estimated and in fact several algo-

rithms recently emerged in the literature (see e.g. Blanchard et al. [2010], Du Marthinus

et al. [2015], Jain et al. [2016]). For the ith sample point, zi = 1 if the subject is labelled

and it clearly follows that yi = 1 since all labelled samples are positive. Otherwise, we let

zi = 0 which indicates that the sample is unlabelled meaning yi = 0 or yi = 1. We use

xi ∈ Rp for the associated covariates within each sample. To incorporate the covariates,

we model the relationship between the probability of a response being positive and (x, θ)

using the standard logistic regression model:

P (y = 1|x; θ) = ex
T θ

1 + exT θ
(1)

3

where θ ∈ Rp where x refer to the covariates and θ refer to the unknown parameters. Since

one of our goals is variable selection, we want to estimate θ given samples (xi, zi)
n
i=1, and

(yi)
n
i=1 are unobserved variables. In the biological sequence engineering examples (xi)

n
i=1

correspond to binary covariates of biological sequences. In the BGL example, for each of

the d positions, there are M possible categories or aminos acids, so covariates correspond

to the indicator of an amino acid appearing in a given position p = O(dM) , as well as

pairs of amino acids p = O(d2M2), and so on. Here d = O(1000) and M ≈ 20 making the

problem high-dimensional.

From a computational perspective, high-dimensional PU-learning presents computa-

tional challenges since the standard logistic regression objective leads to a non-convex

likelihood when we have positive and unlabelled data. To address this challenge, we build

on the expectation-maximization (EM) procedure developed in Ward et al. [2009] and

provide two computational speed-ups. In particular we introduce the PUlasso for high-

dimensional variable selection with positive and unlabelled data. Prior work that involves

the EM algorithm in the low-dimensional setting in Ward et al. [2009] involves solving a

logistic regression model at the M-step. To adapt to the high-dimensional setting and make

the problem scalable, we include an ℓ1-sparsity or ℓ1/ℓ2-group sparsity penalty and provide

two speed-ups. Firstly we use a quadratic majorizer of the logistic regression objective,

and secondly we use techniques in linear algebra to exploit sparsity of the design matrix X

which commonly arises in the applications we are dealing with. Our PUlasso algorithm fits

into the majorization-minimization (MM) framework (see e.g. Lange et al. [2000], Ortega

and Rheinboldt [2000]) for which the EM algorithm is a special case.

1.3 Our contributions

In this paper, we make the following major contributions:

4

• Develop the PUlasso algorithm for doing variable selection and classification with

presence-only data. In particular we build on the existing EM algorithm developed

in Ward et al. [2009] and add two computational speed-ups, quadratic majorization

and exploiting sparse matrices. These two speed-ups improve speed by several orders

of magnitude and allows our algorithm to scale to datasets with millions of samples

and covariates.

• Provide theoretical guarantees for our algorithm. First we show that our algorithm

is guaranteed to converge to a stationary point of the non-convex objective, and then

show that any stationary point achieves the minimax optimal mean-squared error of

s log p
n

. To provide statistical guarantees we extend the exisiting results of general-

ized linear model with canonical link (Negahban et al. [2012], Loh and Wainwright

[2013]) to non-canonical link and show optimality of stationary points of non-convex

objectives in high-dimensional statistics. To the best of our knowledge the PUlasso

is the first algorithm where PU-learning is provably optimal in the high-dimensional

setting.

• Demonstrate through a simulation study that our algorithm performs well in terms

of classification compared to state-of-the-art PU-learning methods in Du Marthinus

et al. [2015], Elkan and Noto [2008], Liu et al. [2003], both for low-dimensional and

high-dimensional problems.

• Demonstrate that our PUlasso algorithm allows us to develop improved protein-

engineering approaches. In particular we apply our PUlasso algorithm to sequences

of BGL (beta-glucosidase) enzymes to determine which sequences are functional. We

demonstrate that sequences selected by our algorithm have statistically significant

mutations and we also provide a scientific experiment which shows that the variables

5

selected lead to BGL proteins that are engineered with improved functionality.

The remainder of the paper is organized as follows: Section 2 we provide the back-

ground and introduce the PUlasso algorithm, including our two computational speed-ups

and provide algorithmic guarantees that our algorithm converges to a stationary point; in

Section 3 we provide statistical mean-squared error guarantees for our PUlasso algorithm

that achieve the minimax rate; Section 4 provides a comparison in terms of classification

performance of our PUlasso algorithm to state-of-the-art PU-learning algorithms; finally in

Section 5, we apply our PUlasso algorithm to the BGL data application and provide both

a statistical validation and simple scientific validation for our selected variables.

2 PUlasso Algorithm

In this section, we introduce our PUlasso algorithm. First, we discuss the prior EM algo-

rithm approach developed in Ward et al. [2009] and apply a simple regularization scheme.

We then discuss our two computational speed-ups, the quadratic majorization for the M-

step and exploiting sparse matrices. We prove that our algorithm has the descending prop-

erty and is guaranteed to converge to a stationary point, and show that our two speed-ups

increase speed by several orders of magnitude.

2.1 Prior approach: EM algorithm with regularization

First we use the prior result in Ward et al. [2009] to determine the observed log-likelihood

(in terms of the zi’s) and the full log-likelihood (in terms of the unobserved yi’s and zi’s).

An important underlying assumption in our setup and the following lemma is that the

unlabeled samples are assumed to be randomly drawn from the original population. This

6

means we are in the case-control sampling scheme (Lancaster and Imbens [1993], Ward

et al. [2009]) as opposed to the single-training sampling scheme (Elkan and Noto [2008])

for which the positive and unlabeled samples together are assumed to be a random sample

from the joint population of (x, y, z). For biotechnology application the case-control setting

is appropriate since the high-throughput technology leads to the unlabelled samples being

drawn from the original population (see Romero et al. [2015] for details). The following

lemma, derived in Ward et al. [2009], gives the form of the observed and the full log-

likelihood which is based on the conditional probabilities given the covariates and the

case-control sampling scheme.

Lemma 2.1 (Ward et al. [2009]). The observed log-likelihood logL(θ;x, z) for our presence-

only model in terms of (xi, zi)
n
i=1 is:

logL(θ; x, z) = log

(∏
i

Pθ(zi|xi)

)
(2)

=
n∑
i=1

(
zi

(
log

nℓ
πnu

+ xTi θ − log(1 + ex
T
i θ)

)
− log

(
1 + elog

nℓ
πnu

+xTi θ−log(1+ex
T
i θ)

))
.

(3)

The full log-likelihood logLf (θ;x, y, z) in terms of (xi, yi, zi)
n
i=1 is

logLf (θ; x, y, z) =
n∑
i=1

logPθ(yi, zi|xi) (4)

∝
n∑
i=1

[yi(x
T
i θ + log

nℓ + πnu
πnu

)− log(1 + exp(xTi θ + log
nℓ + πnu

πnu
))] (5)

where nℓ, nu as the number of positive and unlabelled observations and π = Pθ∗(y = 1)

where θ∗ is the true parameter.

In the setting where p is large, we add a regularization term, which means our overall

7

optimization problem we are solving is:

θ̂ ∈ argmin
θ∈Θ0

{
− 1

n

n∑
i=1

logL(θ; xi, zi) + Pλ(θ)

}
(6)

where logL(θ; xi, zi) is the observed log-likelihood and Pλ : Rp → R is a regularizer. The

penalty function is indexed by a regularization parameter λ > 0. Θ0 ⊂ Θ is a subspace

of Θ. For the penalty Pλ(θ) we consider a group lasso penalty with J groups and and an

unpenalized intercept where (K0, K1, ..., KJ) form a partition of {0, 1, . . . , p− 1}.

Pλ(θ) = λ
J∑
j=1

√
|Kj|∥θKj

∥2, θKj
∈ R|Kj | (7)

We note that lasso is a special case when J = p−1 andKj = {j}. In the original proposal by

Yuan and Lin [2006], groups Xj are assumed to be orthonormal. If group matrices are not

orthonormal, however, it is unclear whether we should orthonormalize group matrices prior

to application of the group lasso. This question was addressed in Simon and Tibshirani

[2012], and the authors provide a compelling argument that prior orthonormalization has

both theoretical and computational advantages. In particular, Simon and Tibshirani [2012]

demonstrated that the following orthonormalization procedure is intimately connected with

the uniformly most powerful invariant testing for inclusion of a group. To describe this

orthonormalization explicitly, we obtain standardized group matrices Qj and scale matrices

Rj using the QR-decomposition such that

P0Xj = QjRj and QT
j Qj = nI|Kj |×|Kj | (8)

where P0 = (In×n − 1n1
T
n

n
) is the projection matrix into the orthogonal space of 1n. Let-

ting Q := [1n, Q1, . . . , QJ] = [qT1 , . . . , q
T
n]
T , the original optimization problem (6) can be

expressed in terms of qi’s becomes:

argmin
ν

{
− 1

n

n∑
i=1

logL(ν; qi, zi) + λ
J∑
j=1

√
|Kj|∥νj∥2

}
(9)

8

where we use the transformation θ to ν:

θj =

ν0 −
∑J

j=1 P0XjR
−1
j νj j = 0

R−1
j νj j ≥ 1

(10)

For notational convenience we denote the overall objective as L(θ) as

L(θ) := − 1

n

n∑
i=1

logL(θ; xi, zi) + Pλ(θ) (11)

and our goal is to minimize L(θ). A standard approach to performing this minimization is

to use the EM-algorithm approach developed in Ward et al. [2009]. In particular we treat

(yi)
nu
i=1 as hidden variables, estimate these in E-step and then use the full log-likelihood

logLf (θ;x, y, z) in the M-step. Let θnull = [log π
1−π , 0, 0, ..., 0]

T denote the θ corresponding

to the intercept-only model.

Algorithm 1: Regularized EM algorithm for the optimization problem (6)

1 Input: an initialization θ0 such that L(θ0) ≤ L(θnull)

2 for m=0,1,2,. . . , do

3 while converged do
• E-step : estimate yi at θ = θm by

ŷi(θ
m) =

(
ex

T
i θ

m

1 + ex
T
i θ

m

)1−zi

(12)

• M-step : obtain θm+1 by

θm+1 = argmin
θ

{
− 1

n

n∑
i=1

ŷi(θ
m)
(
xTi θ + b

)
+ log

(
1 + ex

T
i θ+b

)
+ Pλ(θ)

}
(13)

where b := log
nℓ + πnu

πnu

4 end

5 end

9

The E-step follows since Eθm [yi|z, x, s = 1] =

(
ex

T
i θ

m

1 + ex
T
i θ

m

)1−zi

since zi = 1 implies

yi = 1 and when zi = 0, observations in the unlabelled data are random draws from the

population. An initialization θ0 can be any Rp vector such that L(θ0) ≤ L(θnull) where θnull

is the parameter corresponding to the intercept-only model. The condition L(θ0) ≤ L(θnull)

is considered to prevent the algorithm from starting where the objective function value is

worse that that of the null model. The condition is not restrictive, as we expect any

reasonable estimate of θ would perform as well as the null model. If we are provided with

no additional information, we may use θnull for the initialization. We use θ0 = θnull as

the initialization for the remainder of the paper. For the M-step we may use a regularized

logistic regression solver such as the glmnet R package. We discuss a computationally

more efficient way of solving (13) in the subsequent section.

2.2 PUlasso : A Quadratic Majorization for the M-step

Now we develop our PUlasso algorithm which is a faster algorithm for solving (6) by using

quadratic majorization for the M-step. The main computational bottleneck in algorithm

1 is the M-step which requires minimizing a regularized logistic regression loss at each

step. However, the most impotant property of the M-step is that it is a majorizer to the

likelihood which ensures the descending property (see e.g. Lange et al. [2000]). Hence we use

a computationally faster quadratic majorizer of the logistic loss function. Our approach is

an exmple of the more general majorization-minimization (MM) algorithm (see e.g. Lange

et al. [2000], Ortega and Rheinboldt [2000]) which also has the descending property.

More concretely, using the MM framework we construct the set of functions Q(θ; θm)

having following two properties

Q(θm; θm) = Q(θm; θm), Q(θ; θm) ≤ Q(θ; θm),∀θ (14)

10

where we define Q as Q(θ; θm) := n−1Eθm [logLc(θ)|z, x, s = 1].

Using a Taylor expansion of Q(θ; θm) at θ = θm, we obtain Q(θ; θm)

= Q(θm; θm) +
1

n
[XT (ŷi(θ

m)− µ∗(θm))]T∆m −
1

2n

∫ 1

0

∆T
mX

TW (θ + s(θ − θm))X∆mds

≥ Q(θm; θm) +
1

n
(ŷi(θ

m)− µ∗(θm))TX∆m −
1

8n
∆T
mX

TX∆m

where ∆m := θ − θm, µ∗(θm) := [µ∗(θm)1, . . . , µ
∗(θm)n], µ

∗(θm)i :=
ex

T
i θ

m+b

1 + ex
T
i θ

m+b
, and W

is a diagnoal matrix with [W ∗(θ)]ii := µ∗(θ)i(1 − µ∗(θ)i) . The inequality follows from

W (θ) ≺ 1
4
In×n, ∀ θ. Thus setting Q as follows:

Q(θ; θm) := Q(θm; θm) +
1

n
(ŷi(θ

m)− µ∗(θm))T (Xθ −Xθm)− 1

8n
(θ − θm)TXTX(θ − θm),

it naturally follows that Q satisfies both conditions in (14). Also with some algebra, it

follows that

Q(θ; θm) = − 1

8n
(4(ŷ(θm)−µ∗(θm))+Xθm−Xθ)T (4(ŷ(θm)−µ∗(θm))+Xθm−Xθ)+c(θm)

for some c(θm) which does not depend on θ. Hence −Q acts as a quadratic majorizers of

−Q which replaces our M-step for the original EM algorithm. Hence our PUlasso algorithm

can be represented as follows in algorithm 2.

Now we state the following proposition to show that both the regularized EM and

PUlasso algorithms have the desirable descending property and are guaranteed to conver

to a stationary point. We let S be the set of stationary points which satisfy the first order

optimality condition, i.e.,

S := {θ′;▽L(θ′)T (θ − θ′) ≥ 0}, ∀ θ ∈ Θ0. (15)

11

Algorithm 2: PUlasso : QM-EM algorithm for the optimization problem (6)

1 Input: an initialization θ̃0 such that L(θ̃0) ≤ L(θnull)

2 for m=0,1,2,. . . , do

3 while converged do

• E-step : estimate yi at θ = θ̃m by

ŷi(θ̃
m) =

(
ex

T
i θ̃

m

1 + ex
T
i θ̃

m

)1−zi

(16)

• QM-EM step : obtain θ̃m+1 by

1. create a working response vector u(θ̃m) at θ = θ̃m

u(θ̃m) := 4(ŷ(θ̃m)− µ∗(θ̃m)) +Xθ̃m (17)

2. solve a quadratic loss problem with a penalty

θ̃m+1 = argmin
θ

{
1

2n
(u(θ̃m)−Xθ)T (u(θ̃m)−Xθ) + 4Pλ(θ)

}
(18)

4 end

5 end

Proposition 2.1. The sequence of estimators {θm} obtained by Algorithms (1) or (2)

satisfy

(i) L(θm) ≥ L(θm+1) where L defined in (11).

(ii) L(θm) > L(θm+1) if θm ̸∈ S.

(iii) L(θm) converges monotonically to L(θ∗) for some θ∗ ∈ S.

Proposition 2.1 shows that both the regularized EM algortihm and our PUlasso algo-

rithm are guaranteed to converge to a stationary point of the objective (11). The proof

12

uses the standard arguments based on Jensen’s inequality, convergence of EM algorithm

and MM algorithms and is deferred to the supplementary material. In Fig. 1 we provide

an example of iterations of the PUlasso algorithm based on our logistic regression model.

λ was chosen by 10-fold cross validation, and at such lambda level (λ = 0.00750), model

was refitted starting from the intercept only model. We see that the algorithm finds a true

support, and as iteration goes we obtain latent responses closer to their true probabilities.

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5

x

R
es

po
ns

e

iteration = 1

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5

x
R

es
po

ns
e

iteration = 10

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5

x

R
es

po
ns

e

iteration = 50

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5

x

R
es

po
ns

e

y=z=1
y=1,z=0
y=z=0

final iteration

Figure 1: A simple illustration of iterations of the PUlasso algorithm when nℓ = nu =

10000, p = 10, π = 0.654, and one active variable. The x-axis represents the active vari-

able, and y- axis represents estimated latent responses at each iteration. The solid curve

represents true probabilities and the samples are represented at the specidied iterations in

the plot.

13

2.2.1 Block Coordinate Descent Algorithm for M-step and Sparse Calculation

In this section, we discuss the specifics of finding a minimizer for the M-step (18) for each

iteration of our PUlasso algorithm. After pre-processing the design matrix as described

in (9), (10), we solve the following optimization problem using a standard block-wise coor-

dinate descent algorithm (see e.g. Simon and Tibshirani [2012], Breheny and Huang [2013]).

argmin
ν

{
1

2n
∥u−Qν∥2 + 4λ

J∑
j=1

√
|Kj|∥νKj

∥2

}
(19)

Algorithm 3: Fitting (19) using Block Coordinate Descent

1 Given initial parameter ν = [ν0, . . . , νJ]
T , r = u−

∑p
j=1 Qjνj

2 ν ′
0 ← 1

T
nu+ ν0

3 r′ ← r + 1n(ν0 − ν ′
0)

4 r ← r′, ν0 ← ν ′
0

5 while converged do

6 for j=1,. . . ,J do

7 zj = n−1QT
j r + νj (20)

ν ′
j ← S(zj, 4λ

√
|Kj|) (21)

r′ ← r +Qj(νj − ν ′
j) (22)

r ← r′, νj ← ν ′
j (23)

8 end

9 end

S(., λ) is the soft thresholding operator defined as follows:

S(z, λ) :=


(∥z∥2 − λ)

z

∥z∥2
if ∥z∥2 > λ

0 otherwise.

Note that we do not need to update the intercept since Qj are orthogonal to 1n. For more

14

details, see for e.g. Breheny and Huang [2013].

For our biochemistry example and many other examples, X is a sparse matrix. In Al-

gorithm 3, we do not exploit this sparsity since Q will not be sparse even when X is sparse.

If we want to exploit sparse X we use the following algorithm.

Algorithm 4: Fitting (19) and exploiting sparse X

1 Given initial parameter ν = [ν0, . . . , νJ]
T , r = u− P0(

∑p
j=1XjR

−1
j νj)

2 ν ′
0 ← 1

T
nu+ ν0

3 r′ ← r + 1n(ν0 − ν ′
0)

4 r̃ ← r′, ν0 ← ν ′
0

5 while converged do

6 for j=1,. . . ,J do

7
zj = n−1R−1

j XT
j r̃ −R−1

j

(
XT
j 1n

n

)(
1
T
n r̃

n

)
+ νj (24)

ν ′
j ← S(zj, 4λ

√
|Kj|) (25)

r̃′ ← r̃ +XjR
−1
j (νj − ν ′

j) (26)

aj ←
1
T
n

n
XjR

−1
j (νj − ν ′

j) (27)

r̃ ← r̃′, νj ← ν ′
j (28)

8 end

9 r̃ ← r̃ − (
∑J

j=1 aj)1n

10 end

To explain the changes to this algorithm, we modify (20), (22) to exploit the sparsity

of X. Using (8), we first substitute Qj with P0XjR
−1
j to obtain

zj = n−1R−1
j XT

j P0r + νj (29)

r′ ← r + P0XjR
−1
j (νj − ν ′

j) (30)

If Xj are not centered, P0Xj ̸= Xj. Therefore, at least an additional 2|Kj|n operations are

15

required in (29), (30) compared to (20), (22). For a more efficient calculation, we carry

out calculations as if Xj are centered and do the correction all at once. Suppose we have

calculated (20)-(22) replacing Qj with XjR
−1
j . Then, the calculated residual r̃ is off by a

constant vector, as we see below:

r + P0XjR
−1
j (νj − ν ′

j) = r +XjR
−1
j (νj − ν ′

j)− 1n
1
T
n

n
XjR

−1
j (νj − ν ′

j) (31)

= r +XjR
−1
j (νj − ν ′

j)− aj1n (32)

where aj :=
1
T
n

n
XjR

−1
j (νj − ν ′

j), since P0 = (In×n − 1n1
T
n

n
).

Now we show that (29) correctly calculates zj. Since P01n = 0, we have P0r̃ = P0r.

Therefore,

zj = n−1R−1
j XT

j P0r̃ + νj (33)

= n−1R−1
j XT

j r̃ −R−1
j

(
XT
j 1n

n

)(
1
T
n r̃

n

)
+ νj (34)

In (34) ,
(
XT

j 1n

n

)
= [Xj,1, . . . , Xj,|Kj |]

T can be pre-calculated during the QR decomposition.

Thus for the additional term in (34) calculating mean of r̃ is needed, whcih takes n + 1

operations. Also, since both terms are |Kj| × 1 vectors, subtracting the second term from

the first term is cheap as well. At the end of the cycle, we correct the residual vector all at

once by r ← r̃ − (
∑J

j=1 aj)1n. Note that aj are scalars, so this involves only n operations.

2.3 R Package details

We provide a publicly available R implementation of our algorithm in the PUlasso pack-

age. For a fast and efficient implementation, all underlying computation is implemented in

C++. The package uses warm start and strong rule (Friedman et al. [2007], Tibshirani et al.

16

[2012]), and a cross-validation function is provided as well for the selection of the regulariza-

tion parameter λ. Our package supports a parallel computation through OpenMP, which is

an application programming interface(API) supporting a multi-threading programming in

C++. Also, for a scalable computing, the package allows for users to use memory-mapped

files for the data larger than memory size. This functionality is implemented using the R

package bigmemory, which provides memory-mapped data structures in R.

2.4 Run-time improvement

We illustrate the improvements in run-time for our two speed-ups. Note that we only

include p up to 100 so that we can compare to the original regularized EM algorithm. For

our example that involves p = O(104) and n = O(106) the regularized EM algorithm is

too slow to run efficiently. It is clear from our results that the quadratic majorization step

is several orders of magnitude faster than the original EM algorithm, and exploiting the

sparsity of X provides a further 30% speed-up.

(n,p) PUlasso EM time reduction(%)

Dense matrix n=1000, p=10 0.94 443.72 99.79

n=5000, p=50 2.52 1844.98 99.86

n=10000, p=100 9.45 5066.86 99.81

Sparse matrix n=1000, p=10 0.40 196.86 99.80

n=5000, p=50 2.01 614.65 99.67

n=10000, p=100 4.29 1201.09 99.64

Table 1: Timings (in seconds). Sparsity level in X = 0.95, nℓ/nu = 0.5. Total time for

100λ values, averaged over 3 runs.

17

(n,p) sparse calculation dense calculation time reduction(%)

n=10000, p=100 12.91 19.24 32.89

n=30000, p=100 25.64 38.73 33.79

n=50000, p=100 39.47 57.18 30.97

Table 2: Timings (in seconds) using sparse and dense calculation for fitting the same

simulated data. Sparsity level in X = 0.95, nℓ/nu = 0.5. Total time for 100λ values,

averaged over 3 runs.

3 Statistical Guarantee

We now turn our attention to statistical guarantees for our PUlasso algorithm under the

statistical model (1). In particular we provide error bounds for any stationary point of the

non-convex optimization problem (6) and note that Proposition 2.1 guarantees that our

PUlasso algorithm converges to a stationary point.

First note that the observed likelihood (2) is in an exponential family with non-canonical

link and subsequently define the collection of functions F = {fθ(·); fθ(x) = log
nℓ
πnu

+xT θ−

log(1+ex
T θ), θ ∈ Θ} where Θ is a convex subset of Rp. The negative observed log-likelihood

function is used as the loss function, which is denoted as γfθ(x, z) = − logL(θ;x, z) =

−zfθ(x)+log(1+efθ(x)). Note that the link function fθ(x) is not the canonical linear function

anymore, which makes (6) a non-convex problem. The theoretical risk is defined as R(θ) :=

E[γfθ(X,Z)], and corresponding empirical risk is defined as Rn(θ) :=
1
n

∑n
i=1 γfθ(Xi, Zi).

We consider a regularized M-estimator of the form

θ̂ = argmin
∥θ∥1≤Rn,∥θ∥2≤r0

{Rn(θ) + Pλ(θ)} (35)

following a similar framework to that developed in Loh and Wainwright [2013]. Note that

the ℓ1 and ℓ2-constraints is in addition to the regularizer for theoretical convenience. The

18

ℓ1-constraint is also used in prior work in Loh and Wainwright [2013]. Our analysis here

focuses on the case Pλ(θ) = λ∥θ∥1. We note that Negahban et al. [2012] has shown that if

the loss and regularization functions satisfy restricted strong convexity and decomposabil-

ity properties, the arguments used to analyze ℓ1-regularizers can be generalized to other

decomposable regularizers, including ℓ1/ℓ2 norms. Thus the results that we establish in the

following section will have analogous generalizations to the group sparsity setting.

3.1 Assumptions

We impose the following assumptions.

Assumption 1. The rows xi , i = 1, 2, . . . , n of the design matrix are i.i.d. samples from

a sub-Gaussian distribution with parameter σx. Moreover, Σx := E[XXT] is a positive

definite and with minimum eigenvalue λmin(Σx) > 0.

This independent design assumption is standard and is needed to prove the restricted

strong convexity assumption to follow (see e.g. Raskutti et al. [2010] for details) .

Assumption 2. For any r > 0 such that ∥θ− θ∗∥2 ≤ r, there is a constant K(r) such that

maxi |xTi θ| ≤ K for all θ and all 1 ≤ i ≤ n.

Assumption 2 is a mild assumption that ensures that within a compact ball around θ−θ∗,

|xTi θ| is also bounded which ensures that the probability (1 + e−x
T
i θ)−1 is between 0 and

1. This assumption is required for standard generalized linear models (see e.g. Negahban

et al. [2012], Loh and Wainwright [2013]) to ensure that the curvature of the likelihood is

bounded above and below.

Assumption 3. The ratio of the number of labelled to unlabelled data , i.e. nℓ/nu is lower

bounded away from 0 and upper bounded for all n = nℓ + nu. Equivalently, there is a

constant K2 such that | log (nℓ/πnu) | ≤ K2

19

Assumption 3 ensures that the number of labelled samples nℓ is not too small or large

relative to n. The reason why nℓ can not be too large is that the labelled samples are

only positive and we need a reasonable number of negative samples which are a part of the

unlablled samples. Finally we define the restricted strong convexity assumption for a loss

function following the definition in Loh and Wainwright [2013].

Definition 3.1 (Restricted strong convexity). We say Rn satisfies restricted strong con-

vexity (RSC) condition with respect to θ∗ with curvature α > 0 and tolerance function τ

over Θ0 if the following inequality is satisfied for all θ ∈ Θ0:

(▽Rn(θ)− ▽Rn(θ
∗))T ∆ ≥ α∥∆∥22 − τ(∥∆∥1) (36)

where ∆ := θ − θ∗ and τ(∥∆∥1) = τ1∥∆∥21
log p

n
+ τ2∥∆∥1

√
log p

n
.

Similar RSC conditions were discussed in Negahban et al. [2012] and Loh and Wain-

wright [2013] with different τ,Θ0. One of the important steps in our proof is to prove that

RSC holds for the objective function Rn(θ).

3.2 Guarantee

With Assumptions 1-3, we will show in Theorem 3.3 that RSC holds with high probability

over Θ0 := {θ; ∥θ∥2 ≤ r0} for a fixed r0. Under the RSC assumption, the following lemma,

which is a modification of Theorem 1 in Loh and Wainwright [2013], provides ℓ1 and ℓ2

bounds of an error vector ∆̂ := θ̂ − θ∗.

Lemma 3.1. Suppose the empirical loss Rn satisfies the RSC condition (36) with τ(∥∆∥1) =

τ1∥∆∥21
log p

n
+ τ2∥∆∥1

√
log p

n
over Θ0 where Θ0 is feasible region for the objective (35) and

20

θ∗ ∈ Θ0. Consider λ such that

4max

{
∥▽Rn(θ

∗)∥∞,

(
τ1
2Rn log p

n
+ τ2

√
log p

n

)}
≤ λ

Let θ̂ be a stationary point of (35). Then the following error bounds

∥∆̂∥2 ≤
3
√
sλ

2α
and ∥∆̂∥1 ≤

6sλ

α
, (37)

hold where s := ∥θ∗∥0, the number of non-zero elements in θ∗.

The proof for Lemma 3.1 is deferred to the supplementary material. From (37), note

that the squared ℓ2-error grows proportionally with s and λ2. The random quantity

∥▽Rn(θ
∗)∥∞ can be bounded with high probability by O

(√
log p

n

)
by Lemma 3.2. Thus

we obtain
log p

n
rate by choosing λ proportional to

√
log p

n
and Rn proportional to

√
n

log p
.

Lemma 3.2. P

(
∥▽Rn(f

∗
θ)∥∞ ≥ c

√
log p

n

)
≤ c1exp(−c2 log p).

Now we state our main theorem in this section which shows that RSC condition holds

uniformly over a neighborhood of the true parameter.

Theorem 3.3. There exist strictly positive constants α, τ1 and τ2 depending on σx, λmin(Σx),

r, ∥θ∗∥2 such that

(▽Rn(θ)− ▽Rn(θ
∗))T ∆ ≥ α∥∆∥22 − τ1∥∆∥21

log p

n
− τ2∥∆∥1

√
log p

n
for ∥∆∥2 ≤ r (38)

holds with probability at least 1 − c′ exp(−c′′n), where α, τ1 and τ2 are defined as α :=

L0

4
λmin(Σx), τ1 :=

16L0c21τ
2

λmin(Σx)
, τ2 = c1(9+K)

4
, where L0 := inf |u|≤K2+min{T∥θ∗∥2+τr,3K}A

′′(u)/(1 +

emin{T∥θ∗∥2+τr,3K})2 and c1 is a universal constant and τ, T are constants depending only on

σx and λmin(Σx).

21

There are a couple of notable remarks about Theorem 3.3 and Lemma 3.1.

• The mean-squared error s log p
n

is verified below in Fig. 2 and both the mean-squared

error and ℓ1 errorare minimax optimal for high-dimensional linear regression Raskutti

et al. [2011].

• Suppose we want to achieve ℓ2 error less than ϵ > 0. Let Rn :=

√
K0n

4 log p
for some

K0. We assume that K0, r0 are carefully chosen so that ∥θ∗∥1 ≤ Rn, ∥θ∗∥2 ≤ r0/2.

Applying Theorem 3.3 with r := r0/2, (38) holds for θ such that ∥θ − θ∗∥2 ≤ r0/2

with probability at least 1 − c′ exp(−c′′n), which implies that RSC condition over

{θ; ∥θ∥2 ≤ r0} by triangle inequality. Now in light of Lemma 3.1, we set λ such that

λ :=
2αϵ

3
√
s
. The conditions of Lemma 3.1 requires τ1

2R log p

n
+τ2

√
log p

n
≤ λ

4
=

αϵ

6
√
s
,

which is ensured if we set each term less than
αϵ

12
√
s
. Therefore

16L0c
2
1τ

2

λmin(Σx)

√
K0 log p

n
≤ ϵL0λmin(Σx)

48
√
s

and
c1(9 +K)

4

√
log p

n
≤ ϵL0λmin(Σx)

48
√
s

.

Therefore a sufficient condition to achieve ℓ2-error less than ϵ in terms of n is

min

{
c′
τ 4K0s log p

ϵ2λ4
min(Σx)

, c′′
(9 +K)2s log p

ϵ2L2
0λ

2
min(Σx)

}
≤ n (39)

for universal constants c′, c′′. We note from (39) that the required sample size is

inversely related with ϵ and λmin(Σx) and proportional to K0, r0 and K since L0 is

inversely related to r0.

To validate the mean-squared error upper bound of s log p
n

in Section 3, a synthetic

dataset was generated according to our logistic regression model with p = 500 covariates

and X ∼ N(0, I500×500). Varying s and n were considered to study the rate of convergence

of ∥θ̂ − θ∗∥2. The ratio nℓ/nu was fixed to be 1. For each dataset, θ̂ was obtained by

22

applying PUlasso algorithm with a lambda sequence λn := Ks

√
log p
n

for a suitably chosen

Ks for each s. We repeated the experiment 100 times and average ℓ2−error was calculated.

●

●

●

●

●

●

●

●

0.3

0.6

0.9

0.02 0.04 0.06 0.08

slogp n

Ê
 θ̂

−
θ*

2
● s=3

s=5
s=7

Figure 2: Ê[∥θ̂ − θ∥2] plotted against
√
s log p/n with fixed p=500 and varying s and n

In Figure 2, we illustrate the rate of convergence of ∥θ̂ − θ∗∥2. In particular, ∥θ̂ − θ∗∥2
against

√
s log p
n

is plotted with varying s and n. The error appears to be linear in
√

s log p
n

,

and thus we also empirically conclude that our algorithm achieves the optimal
√

s log p
n

rate.

4 Simulation study: Classification performance

In this section, we provide a simulation study whih validates the classification performance

for PUlasso. In particular we provide a comparison in terms of classification performance

to state-of-the-art methods developed in Du Marthinus et al. [2015], Elkan and Noto [2008],

Liu et al. [2003]. The focus of this section is classification rather than variable selection

since the state-of-the-art methods we compare to are developed mainly for classification

and are not developed for variable selection.

23

4.1 Setup

We consider a number of different simulation settings: (i) small and large p to distinguish

the low and high-dimensional setting; (ii) probabilistic and deterministic responses based on

the original samples; and (iii) weakly and strongly separated populations. More precisely,

in the deterministic scheme we draw covariates xi from positive or negative population,

Ppos := N(µ, Ip×p) or Pneg := N(−µ, Ip×p), and assign yi = 1 or 0 respectively. It is

assumed that 50% of the population comes from Ppos. Since the response y no longer

follows a logistic model given x in this scheme, it is a misspecified model for the PUlasso

algorithm. To make only the first s variables active, we let the centers of the first s

variables of µ to be non-zero and take values of µ0, i.e. µ = (µ0, . . . , µ0, 0, . . . , 0)
T . To

address the effect of separation between the positive and negative samples, we consider

µ0 ∈ {0.5, 1, 2}. To compare performances both in low and high dimensional setting, we

consider (p = 10, s = 2) and (p = 10000, s = 5). We set the sample size nℓ = nu = 1000 is

used in both cases.

In the probabilistic scheme, we generate the X matrix in the same way (i.e. xi ∼ Ppos

or xi ∼ Pneg), but further simulate the response y based on model (1). In order to make

only the first s variables active, we let θ∗ = [θ0, . . . , θs, 0, . . . , 0]
T . Non-zero θi are sampled

from uniform distribution Unif [0.5, 1].

4.2 Comparison methods

Our experiments compare six algorithms: (i) logistic regression model assuming we know

the true responses (oracle estimator); (ii) our PUlasso algorithm; (iii) a bias-corrected

logistic regression algorithm in Elkan and Noto [2008]; (iv) a second algorithm from Elkan

and Noto [2008] that is effectively a one-step EM algorithm (v) the biased SVM algorithm

24

from Liu et al. [2003] and (vi) the PU-classification algorithm based on assymetric loss

functions from Du Marthinus et al. [2015]. We briefly describe algorithms (iii) - (vi) here.

To avoid potential confusion with notation from the original papers, we use the same

notations in original papers and denote negative samples as 0 in algorithms (i)-(iv) and −1

in algorithms (v)-(vi).

The biased SVM algorithm from Liu et al. [2003] involves solving the following opti-

mization problem:

minimize:
1

2
wTw + C+

k−1∑
i=1

ξi + C−

n∑
i=k

ξi subject to: yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,

where C+, C− are tuning parameters. By setting C+ and C− differently, positive errors

and negative errors are penalized differently. Since having larger values of C would increase

the “cost” of misclassification, we impose C+ ≥ C−. C+ and C− are chosen by a two-

dimensional grid search based on its performance on the validation data.

Elkan and Noto [2008] provided two algorithms for the PU-learning classification prob-

lem; Their first algorithm estimates P (z = 1|x) using observed data, then corrects the bias

because of using z′s instead of y′s via estimation of selection probability P (z = 1|y = 1).

The noiseless assumption in positive samples, i.e. P (y = 1|x) = 1,∀x ∼ Ppos is crucial

to estimate P (z = 1|y = 1). Their second method is a modification of the first method;

a unit weight is assigned to each labeled sample, and each unlabeled example is treated

as a combination of a positive and negative example with weight P (y = 1|x, z = 0) and

1 − P (y = 1|x, z = 0), respectively. Then classifier is built using augmented positive

and negative examples with associated weights. The second algorithm can be viewed as a

one-step iteration of the EM algorithm in Section 2.

To be more concrete, we consider augmented data (x̃i)
nℓ+2nu

i=1 , (ỹi)
nℓ+2nu

i=1 :

25

x̃i =

xi, for 1 ≤ i ≤ nℓ + nu

xi−nu , for nℓ + nu + 1 ≤ i ≤ nℓ + 2nu

ỹi =

1, for 1 ≤ i ≤ nℓ + nu

0, for nℓ + nu + 1 ≤ i ≤ nℓ + 2nu

and weights (wi)
nℓ+2nu

i=1

wi(θ
m) =


1, for 1 ≤ i ≤ nℓ

Pθm(y = 1|x), for nℓ + 1 ≤ i ≤ nℓ + nu

1− Pθm(y = 1|x), for nℓ + nu + 1 ≤ i ≤ nℓ + 2nu

Then logistic regression model with non integer responses ŷi(θ
m) is

Q(θ; θm) =

nℓ+nu∑
i=1

ŷi(θ
m)(xTi θ + b)− log(1 + ex

T
i θ+b)

=

nℓ+2nu∑
i=1

wi(θ
m)
[
ỹi(x

T
i θ + b)− log(1 + ex

T
i θ+b)

]
.

Recent work in Du Plessis and Sugiyama [2014], Du Marthinus et al. [2015] suggests

asymmetric loss functions to cancel the bias induced by separating positive and unlabelled

samples rather than positive and negative samples. More concretely, authors considered

following optimization problem

g∗ = argmin
α,b

πÊ1[L(g(x))− L(−g(x))] + Êx[L(−g(x))] +
λ

2
αTα

where g(x) = αTx+ b, L is a surrogate convex loss function of 0-1 loss. There is a publicly

available matlab implementation of the algorithm when L is a squared loss on the author’s

webpage and since we use their code and implementation, squared loss is considered.

Algorithm (v) involves a two-dimensional grid search to determine C+ and C−. In the

original paper Liu et al. [2003], C− ∈ {0.01, 0.03, 0.05, . . . , 0.61} and C+/C− ∈ {10, 20, 30, . . . , 200}

26

were considered. C+/C− encodes the relative cost of misclassification the resulting classi-

fication is more sensitive to the ratio than the absolute value of C−. Also when samples

are weakly separated, the resulting classification tends to have a very high proportion of

positives in because of the assymetric costs of misclassification. Therefore in our simulation

setting we use a wider range of C+/C− ratio while making C− more spread out. Specifically,

we considered C+/C− ∈ {1, 2, . . . , 200} for each C− ∈ {0.01, 0.16, 0.31, 0.46, 0.61}. In the

high dimensional setting, we excluded algorithm (v) since (v) requires a grid search over

two dimension, which makes the computational cost prohibitive.

4.3 Classification comparison

We use two criteria, mis-classification rate and F1 score, to evaluate performances. F1 is the

harmonic mean of the precision and recall, which is calculated as F1 := 2∗ precision+recall

precision*recall
.

Experiments are repeated 10 times and the average score is reported. The best and equiv-

alent results (5% z-test) are in bold and the best is underlined. The results were stable

over the 10 repetitions. For concise presentation we do not include error bars.

Results are displayed in Tables 3-4. Not surprisingly the oracle estimator has the best

accuracy in all cases. PUlasso and algorithm (vi) performs almost as well as the oracle in

the low-dimensional setting, and better than remaining methods in most cases. It must

be pointed out that both PUlasso and algorithm (vi) use additional knowledge π of the

true prevalence of positives in unlabelled samples. In contrast, the performance of PUlasso

is significantly better than algorithm (vi) in the high-dimensional setting as estimation

errors can be greatly reduced by imposing many 0’s on the estimates in PUlasso due to the

ℓ1-penalty (compared to ℓ2-penalty in algorithm (vi)).

The performance of (iii)-(v) are greatly improved in the deterministic case, especially

when samples are strongly separated as algorithms (iii)-(v) depend on no noise assumption

27

weak separation medium separation strong separation

(µ0 = .5) (µ0 = 1) (µ0 = 2)

low-d error rate F1 score error rate F1 score error rate F1 score

(i) Reference 31.2% 0.7507 26.0% 0.7888 12.1% 0.8842

(ii) PUlasso 32.1% 0.7471 26.4% 0.7826 12.2% 0.8830

(iii) EN-1 39.9% 0.7485 39.1% 0.7551 19.1% 0.8453

(iv) EN-2 38.5% 0.7537 36.3% 0.7668 19.2% 0.8426

(v) Biased SVM 40.0% 0.7480 37.5% 0.7562 12.0% 0.8848

(vi) PNS 32.9% 0.7453 27.4% 0.7872 12.1% 0.8846

high-d error rate F1 score error rate F1 score error rate F1 score

(i) Reference 28.4% 0.7743 18.3% 0.8356 5.1% 0.9492

(ii) PUlasso 32.3% 0.7540 19.1% 0.8225 5.2% 0.9485

(iii) EN-1 39.9% 0.7491 38.2% 0.7459 5.4% 0.9470

(iv) EN-2 39.8% 0.7498 33.6% 0.7680 5.8% 0.9427

(vi) PNS 39.9% 0.7479 41.9% 0.7275 30.3% 0.7676

Table 3: Average misclassification rate and F1 score in probabilistic scheme

weak separation medium separation strong separation

(µ0 = .5) (µ0 = 1) (µ0 = 2)

low-d error rate F1 score error rate F1 score error rate F1 score

(i) Reference 23.9% 0.7593 7.7% 0.9239 0.3% 0.9975

(ii) PUlasso 24.1% 0.7518 7.8% 0.9217 0.4% 0.9955

(iii) EN-1 40.2% 0.7093 11.4% 0.8966 0.3% 0.9968

(iv) EN-2 36.1% 0.7284 11.6% 0.8949 0.3% 0.9974

(v) Biased SVM 27.1% 0.7304 9.1% 0.9134 0.2% 0.9979

(vi) PNS 24.2% 0.7576 7.9% 0.9219 0.3% 0.9973

high-d error rate F1 score error rate F1 score error rate F1 score

(i) Reference 13.9% 0.8599 1.3% 0.9873 0.0% 1.0000

(ii) PUlasso 16.4% 0.8172 3.5% 0.9639 0.2% 0.9980

(iii) EN-1 32.9% 0.7515 2.2% 0.9786 0.0% 0.9998

(iv) EN-2 27.2% 0.7839 2.3% 0.9774 0.0% 0.9999

(vi) PNS 48.7% 0.6702 43.9% 0.6966 24.2% 0.8062

Table 4: Average misclassification rate and F1 score in deterministic scheme28

in positive labels, i.e. P (y = 1|x) = 1, ∀x ∼ Ppos. Although methods (iii)-(v) slightly

out-perform PUlasso in the deterministic case with strong separation, it must be noted

that PUlasso is developed for the probabilistic scheme whilst the deterministic setting is

developed to suit methods (iii)-(v).

5 Analysis of beta-glucosidase sequence data

Our original motivation for developing the PUlasso algorithm was to analyze a large-

scale dataset with postive and unlablled responses developed by the lab of Dr.Philip

Romero (Romero et al. [2015]). Prior approaches did not scale to the size of this dataset

and in this section, we discuss the performance of our PUlasso algorithm on a dataset in-

volving mutations of a natural beta-glucosidase (BGL) enzyme. To provide context, BGL

is a hydrolytic enzyme involved in the deconstruction of biomass into fermentable sugars

for biofuel production. Functionality of the BGL enzyme is measured in terms of whether

the enzyme deconstructs d-saccharides into glucose or not. Dr. Romero used a microfluidic

screen to generate a BGL dataset containing millions of sequences (Romero et al. [2015]).

Three different validation schemes are used for the PUlasso algorithm on the BGL

dataset. Firstly in Section 5.2 we discuss a method for validating the selected features

by developing a test statistic and corresponding p-value. We also test the classification

performance using a modified ROC and AUC approach. Finally a scientific validation

is performed based on a follow-up experiment conducted by the Romero lab which used

the variables selected by PUlasso to design a new BGL enzyme and the performance is

compared to the original natural BGL enzyme.

29

5.1 Data Description

The dataset consists of nℓ = 2647877 labelled and functional sequences and nu = 1567203

unlabelled sequences where for each of the observation of length p = 500. Each of the

position takes one of M = 21 discrete values, which correspond to the 20 amino acids in

the DNA code and an extra to include the possibility of a gap. Another important as-

pect of the millions of sequences generated is that a “base wild-type BGL sequence” was

considered and known to be functional (y = 1), and the millions of sequences were gener-

ated by mutating the base sequence. Single mutations (changing one position from the base

sequence) and double mutations (changing two positions) from the base sequence were com-

mon but higher-order mutations were not prevalent using the high-throughput sequencing

approach (Romero et al. [2015]). Hence the sequences generated were not random sam-

ples across the entire enzyme sequence space, but rather very local sequences around the

wild-type sequence. Hence the number of possible sequences is also reduced dramatically

and we labeled the base sequence as the 0-vector. With this dataset, we want to determine

which mutations should we apply to the wild-type BGL sequence.

Although there are in principle p ≈ d(M − 1) variables for a main-effects logistic re-

gression model and p ≈ d2(M − 1)2 if we include main-effects and two-way interactions,

there are many amino acids that never appear in any position or appear only once, and

these are removed from the feature space. Using this basic pre-processing we obtained only

3075 corresponding to single mutations and 930 binary variables corresponding to double

mutations and 500 unique positions and 820 two-way interactions between positions re-

spectively. Higher-order interactions were not modeled as they did not frequently arise.

We use both main-effect and two-way interaction logistic regression models.

30

In summary, we consider following two models and corresponding design matrices

Xmain := [Intercept(1)+ main effects(3075)] ∈ {0, 1}4215080×3076

Xint := [Intercept(1)+ main effects(3075)+ two way interactions(930)] ∈ {0, 1}4215080×4006

and the response vector z = [1, . . . , 1, 0, . . . , 0]T ∈ {0, 1}4215080.

5.2 Variable selection validation

In this section we develop a variable selection validation method which we apply to the

selected models for our BGL example. One of the challenges is that variables are adaptively

chosen, so a typical chi-squared test to test the significance of an additional variable between

two nested models would be too liberal. Lockhart et al. [2014] suggested the covariance

test statistic and Cai and Yuan [2014] proposed an alternative test statistic which both

make a correction of the difference of the deviances Rj between a reduced model XA and

a full model XA∪{j}. Although those two test statistics are mainly discussed in the context

of linear model, the latter can be extended to generalized linear model, thus here we follow

the approach by Cai and Yuan [2014]. The basic idea is for a given subset A, if we have

an orthogonal design, the next selected index j can be identified with Tj = maxm∈Ac Rm

where Rm := 2(logL(θA∪{m})− logL(θA)). Under the null hypothesis (a variable is not in

the model), Rm ∼ χ2(1), if we assume XTX = Ip×p, we have

Tj − 2 log |Ac|+ log log(|Ac|) d→ Gumbel(− log π, 2) (40)

. Even though XTX ̸= Ip×p, it can be shown that the limiting distribution is still Gumbel.

For a more detailed discussion, see Cai and Yuan [2014].

Now we extend this result to group sparsity case. Let the set of groups G be {K0, K1, . . . , KJ}

where Km is a collection of indices for group m. Given a collection of grouped indices Km

31

and a reduced model XA where A is an union of some Km, Tj := maxm∈G\ARm, but now

Rm has |Km| degrees of freedom rather than 1. The derivation of asymptotic distribution

of T is rather cumbersome as Rm are not identical anymore. Instead, we can consider T̃j

which bounds Tj almost surely and has a tractable asymptotic distribution.

Lemma 5.1. Under H0 : supp(θ
∗) ⊂ A, there is T̃j such that Tj ≤ T̃j a.s. and

T̃j − 2 log |G \ A| − (Kmax − 2) log log(|G \ A|) d→ Gumbel(−2 log Γ(Kmax/2), 2) (41)

Proof. Define Kmax := maxj |Kj|. Introducing a random variable U such that U is inde-

pendent of Rm and U ∼ χ2(Kmax − |Km|), we can construct R̃m := Rm + U such that

R̃m ∼ χ2(Kmax) and Rm ≤ R̃m almost surely. Now we denote T̃j as T̃j := maxm∈G\A R̃m.

Then obviously Tj ≤ T̃j. The claimed asymptotic distribution is based on the asymp-

totic result about the distribution of Gamma random variables. In particular, if Mn :=

maxnXn, Xn ∼ Gamma(α, 1
β
), then

β(Mn −
1

β
(log n+ (α− 1) log log n− log Γ(α)))

d→ Gumbel(0, 1)

For more details about this asymptotic result, see for example, p. 156 in Embrechts et al.

[1997]. Our desired result is a special case when α = Kmax

2
and β = 1

2
.

We note that (40) is a special case of (41) when Kmax = 1. By (41), we can test the

significance of adding another variable or a group of variables by comparing Tj or T̃j with

1− α quantile of Gumbel(− log π, 2) or Gumbel(−2 log Γ(Kmax

2
), 2).

We considered two models for the BGL enzyme: a main-effect model where we use

the standard ℓ1-penalty (i.e. Pλ(θ) =
∑3075

j=1 |θj|) and a main-effect model plus two-way

interactions with group ℓ1/ℓ2-penalty (i.e. Pλ(θ) =
∑1320

j=1

√
|Kj|∥θKj

∥2 where θj ∈ R|Kj |)

where 1320 comes from the sum of 500 positions plus 820 pairs of positions along the

32

sequence. In the main-effects models, we aimed to select the important positions and

corresponding amino acids in terms of the functionality of the BGL enzyme and design

a particular functional sequence using a fitting result with the first model. On the other

hand, for the interaction models we tried to identify a group of variables corresponding to

a particular position or interaction with the second model.

First 5 selected states

State Group Size Statistic p-value

F288L 1 4322.1 0.000

W286R 1 3854.0 0.000

F263L 1 3239.5 0.000

W24R 1 2921.3 0.000

W47R 1 2830.0 0.000

First 5 selected states with positive Co-efs

State Group Size Statistic p-value

G327A 1 224.8 0.000

E495G 1 128.3 0.000

D164E 1 131.5 0.000

S486P 1 103.7 0.000

T478S 1 87.6 0.000

Table 5: Main effect model

First 5 selected positions

Position Group Size Statistic p-value∗

288 6 7882.7 0.000

263 6 6857.4 0.000

307 7 6968.3 0.000

293 6 5214.5 0.000

286 6 4055.3 0.000

First 5 selected interactions

Interaction Group Size Statistic p-value∗

384/400 1 143.2 0.000

427/435 1 123.8 0.000

288/289 1 96.9 0.000

231/234 1 234.4 0.000

288/293 1 135.3 0.000

Table 6: Main effect+Interaction model

p-value∗s are upper bounds of conditional p-values which indicate significance of adding addi-

tional grouped variables and were obtained by comparing test statistics with null distribution of

Gumbel(−2 log Γ(Kmax
2), 2), when Kmax = 8.

33

In Tables 5 and 6 we report the 5 most influential variables and variables with positive

coefficients using the main-effects model , and the 5 most influential positions and inter-

actions using the main effect plus interaction model. The reason we are interested in the

mutations with positive co-efficients is because the ultimate scientific goal is to improve

functionality, so we seek mutations that are more likley to predict a 1. We note that the

test statistics for variables with positive coefficients in the main effect model or interac-

tions in the main effect plus interaction model are much smaller. Mutations of the BGL

sequence in general decrease the functionality of the enzyme from the original base sequence

(which is functional). Also only a small number of two-way interactions are observed in

the experiments, thus the parameter values for the interaction terms are small.

We also examined the stability of the selected features for both models as the train-

ing data changes. Following the methodology of Kalousis et al. [2007], we measure

similarity between two subsets of features s, s′ using S(s, s′) defined as SS(s, s
′) := 1 −

|s|+ |s′| − 2|s ∪ s′|
|s|+ |s′| − |s ∪ s′|

. Ss takes values in [0, 1], where 0 means that there is no overlap be-

tween the two sets, and 1 that the two sets are identical. For each of cross-validation

training folds, we obtain a set of selected features. Ss is computed for each pair of two

training folds (i.e. we have 9·10
2

pairs) and finally we use the average Ss over all pairs.

Feature selection turned out to be very stable across all tuning parameter λ values:

on average we had about 95% overlap of selection in main effect model (M) and about

99% overlap in main effect+interaction model (M+I). Stability score is higher in the latter

model since we do a feature selection on groups, whose number is much less than individual

variables (1320 groups versus 3076 individual variables).

34

Model 1Q Median Mean 3Q

M 93.3% 94.9% 94.9% 96.8%

M+I 98.5% 99.7% 99.2% 100.0%

Table 7: Summary of stability scores across all tuning parameter λ values

5.3 Classification validation

Next we validate the classification performance for both the main-effect and two-way in-

teraction models. We use Area Under the ROC Curve (AUC) to evaluate the classification

performance. Since positive and negative samples are mixed in the unlabelled test dataset

this is a non-trivial task with presence-only responses. A standard approach is to treat

unlabelled samples as negative and estimate AUC, but if we do so, the AUC is inevitably

downward-biased since the maximum AUC is 1− π/2. To adjust such bias, we follow the

methodology suggested in Jain et al. [2017] and adjust AUC using the following equation:

AUCadj =
AUCPU − π/2

1− π

where π is the prevalence of positive samples.

As Fig. 3 shows, we have a significant improvement in AUC from random assignment

(AUC = 0.5). A small improvement in AUC occurs when we consider the two-way inter-

action model (M+I) compared to the main-effect model (M). This can be explained by the

fact that only a small number of two-way interactions are observed in the experiments.

5.4 Scientific validation: Designed BGL sequence

Finally we provide scientific validation of the mutations estimated by our PUlasso algo-

rithm. In particular, using the mutations with positive estimated coefficients because we

are interested in mutations that enhance the performance of the sequence, Dr. Romero’s lab

35

●●
●●
●
●
●

●

●

●

●

●
●
●
●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●

0.5

0.6

0.7

0.8

0.025 0.075

%deviance

A
U

C

● M
M+I

Figure 3: Plots of AUC scores of main effect model (M) and main effect+interaction

model (M+I) over deviance ratio on the validation set. Deviance ratio is calcu-

lated as %deviance := 1 − deviance(model)/deviance(null), where deviance(model) :=

−2 logL(θmodel), and θnull = [log π
1−π , . . . , 0]

T . Deviance ratio serves as a measurement

of the degree of model saturation; we use it as the x axis to approximately put both main

effect and main effect+interaction model on the same scale.

36

designed the BGL sequence with the 10 positive mutations from Table 8. This sequence

was synthesized, expressed, and assayed for its hydrolytic activity. Hence the designed

sequence has 10 mutations compared to the wild-type (base) BGL sequence.

Figure 4 shows that the designed sequence has increased activity relative to the wild-

type enzyme. These promising results suggest that our variable selection method is able

to identify positions of the wild-type sequences with improved functionality.

Base/Position/Mutated

T197P E495G

K300P A38G

G327A S486P

A150D T478S

D164E D481N

Table 8: Ten positive mutations Figure 4: kinetics

10 positive mutations used in the lab(Base state/Position/Mutated state) and kinetics of

designed BGL enzyme versus wild-type (WT) BGL sequence. The designed BGL enzyme

based on mutations from Table 8 displays faster kinetics than the wild-type (WT) BGL

sequence.

6 Conclusion

In this paper we developed the PUlasso algorithm for both variable selection and clas-

sification for high-dimensional classification with presence-only responses. Theoretically,

37

we showed that our algorithm converges to a stationary point and every stationary points

achieves optimal mean squared error (up to constant). We also demonstrated that our

algorithm performs well on both simulated and real data. In particular, our algorithm

produces more accurate results than the existing techniques in simulations and performs

well on a real biochemistry application.

References

G. Blanchard, G. Lee, and C. Scott. Semi-Supervised Novelty Detection. Journal of

Machine Learning Research, 11:2973–3009, 2010.

P. Breheny and J. Huang. Group descent algorithms for nonconvex penalized linear and

logistic regression models with grouped predictors. Statistics and Computing, 25(2):

173–187, 2013.

T. T. Cai and M. Yuan. Discussion: A significance test for the lasso. The Annals of

Statistics, 42(2):478–482, apr 2014.

P. Du Marthinus, G. Niu, and M. Sugiyama. Convex Formulation for Learning from Positive

and Unlabeled Data. Proceedings of The 32nd International Conference on Machine

Learning, pages 1386–1394, 2015.

M. C. Du Plessis and M. Sugiyama. Class prior estimation from positive and unlabeled

data. IEICE Transactions on Information and Systems, E96-D(5):1358–1362, 2014.

C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. In

Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery

38

and Data Mining, KDD ’08, pages 213–220, New York, NY, USA, 2008. ACM. ISBN

978-1-60558-193-4.

P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1997. ISBN 978-3-642-08242-9.

D. M. Fowler and S. Fields. Deep mutational scanning: a new style of protein science.

Nature Methods, 11:801–807, 2014.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.

The Annals of Applied Statistics, 1(2):302–332, 2007.

R. T. Hietpas, J. D. Jensen, and D. N. A. Bolon. Experimental illumination of a fitness

landscape. Proceedings of the National Academy of Sciences of the United States of

America, 108(19):7896–7901, 2011.

S. Jain, M. White, M. W. Trosset, and P. Radivojac. Nonparametric semi-supervised

learning of class proportions. CoRR, abs/1601.01944, 2016.

S. Jain, M. White, and P. Radivojac. Recovering true classifier performance in positive-

unlabeled learning. In AAAI, 2017.

A. Kalousis, J. Prados, and M. Hilario. Stability of feature selection algorithms: A study

on high-dimensional spaces. Knowl. Inf. Syst., 12(1):95–116, May 2007.

T. Lancaster and G. Imbens. Case-control studies with contaminated controls. 71:145–160,

02 1993.

K. Lange, D. R. Hunter, and I. Yang. Optimization Transfer Using Surrogate Objective

Functions. Journal of Computational and Graphical Statistics, 9(1):1–20, 2000.

39

M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes.

Classics in Mathematics. Springer Berlin Heidelberg, 2013. ISBN 9783642202124.

B. Liu, Y. Dai, X. Li, W. S. Lee, and P. Yu. Building Text Classifiers Using Positive and

Unlabeled Examples. Proceedings of the Third IEEE International Conference on Data

Mining (ICDM’03), 2003.

R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani. A significance test for the

lasso. Ann. Statist., 42(2):413–468, 04 2014.

P.-L. Loh and M. J. Wainwright. Regularized M-estimators with nonconvexity: Statistical

and algorithmic theory for local optima. Journal of Machine Learning Research, 1:1–9,

2013.

S. N. Negahban, R. Pradeep, B. Yu, and M. J. Wainwright. A Unified Framework for

High-Dimensional Analysis of M-Estimators with Decomposable Regularizers. Statistica

Sinica, 27(4):538–557, 2012.

J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several

variables. Classics in applied mathematics. SIAM, New York, 2000.

G. Raskutti, M. J. Wainwright, and B. Yu. Restricted eigenvalue conditions for correlated

Gaussian designs. Journal of Machine Learning Research, 11:2241–2259, 2010.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-

dimensional linear regression over ℓq-balls. IEEE Trans. on Information Theory, 57

(10):6976–6994, 2011.

40

P. A. Romero, T. M. Tran, and A. R. Abate. Dissecting enzyme function with microfluidic-

based deep mutational scanning. Proceedings of the National Academy of Sciences of the

United States of America, 112(23):7159–7164, 2015.

N. Simon and R. Tibshirani. Standardization and the Group Lasso Penalty. Statistica

Sinica, 22(3):1–21, 2012.

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshi-

rani. Strong rules for discarding predictors in lasso-type problems. Journal of the Royal

Statistical Society. Series B: Statistical Methodology, 74(2):245–266, 2012.

A. W. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes: With Ap-

plications to Statistics. Springer Series in Statistics. Springer, 1996. ISBN 9780387946405.

G. Ward, T. Hastie, S. Barry, J. Elith, and J. R. Leathwick. Presence-only data and the

em algorithm. Biometrics, 65(2):554–563, 2009.

C. F. J. Wu. On the convergence properties of the em algorithm. Ann. Statist., 11(1):

95–103, 03 1983.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.

J. R. Statist. Soc. B, 68(1):49–67, 2006.

W. I. Zangwill. Nonlinear programming: a unified approach. Prentice-Hall international

series in management. Prentice-Hall, 1969.

41

SUPPLEMENTARY MATERIAL

1.1 Proof of Proposition 1

We first discuss the proof for Algorithm (1). Define Q,H, Q̃ as follows:

Q(θ; θm) :=
1

n
Eθm [logLf (θ)|z, x]

H(θ; θm) :=
1

n
Eθm [logPθ(y|z, x)|z, x]

Q̃(θ; θm) := −Q(θ; θm) + Pλ(θ).

Note that for any θm, L(θ) = Q̃(θ; θm) + H(θ; θm) holds and H(θm; θm) ≥ H(θ; θm) by

Jensen’s inequality. Also since θm+1 is a (unique) minimizer of Q̃(θ; θm), we have

L(θm+1) = Q̃(θm+1; θm) +H(θm+1; θm) ≤ Q̃(θm; θm) +H(θm; θm) = L(θm). (42)

Now we show that the inequality is strict if θm ̸∈ S.

▽L(θ) = −▽Q(θ; θm) + ▽Pλ(θ) + ▽H(θ; θm).

Since θm is a maximizer of H(·; θm), ▽H(θm; θm) = 0. Thus ▽L(θm) = −▽Q(θm; θm) +

▽Pλ(θm) = ▽Q̃(θm; θm) and by (15), θm is not a stationary point of Q̃(·; θm). Since θm+1

minimizes Q̃(·; θm), Q̃(θm+1; θm) < Q̃(θm; θm). Then the result follows from (42). Finally

we show that {L(θm)}∞m=0 converges to a stationary point of L. Using the same argument

as in Wu [1983], we appeal to the global convergence theorem stated below as Theorem 1.3

in Zangwill [1969] with A = Q̃,Γ = S and α = L. Condition (iii) in Theorem 1.3 follows

from the continuity of Q̃(θ, θ′) in both θ, θ′. Thus, if we show {θm}∞m=0 lie in a compact set

in Rp, the result follows. Let θ := [θ0, θ1 . . . , θp−1]
T and θ−0 := [θ1 . . . , θp−1]

T . Firstly, we

state the following lemma.

42

Lemma 1.1. {θ0;L(θ0, . . . , θp−1) ≤ L(θnull)} is compact for any given θ−0 where θnull =

(log π
1−π , 0, 0, ..., 0)

T .

Proof. We claim limθ0→−∞L(θ) = +∞ and limθ0→∞ L(θ) = c(θ−0) > L(θnull). Then the

result follows from the continuity of L(θ). Defining ui(θ−0) as ui(θ−0) := xi,1θ1 + · · · +

xi,p−1θp−1,

L(θ) = − 1

n

{∑
i;zi=0

log(1− pi(θ)) +
∑
i;zi=1

log pi(θ)

}
+ λ

J∑
j=1

√
|Kj|∥θKj

∥2

where pi(θ) =

nℓ

πnℓ
eθ0+ui(θ−0)

1 + (1 + nℓ

πnu
)eθ0+ui(θ−0)

. Since

lim
θ0→−∞

pi(θ) = 0, lim
θ0→∞

pi(θ) =
nℓ

nℓ + πnu

, limθ0→−∞L(θ) =∞ if there exists at least one zi such that zi = 1.

Defining g(p) := −
(
z̄ log

p

1− p
+ n log(1− p)

)
,

lim
θ0→∞

L(θ) = g

(
nℓ

nℓ + πnu

)
+ λ

J∑
j=1

√
|Kj|∥θKj

∥2 ≥ g

(
nℓ

nℓ + πnu

)
> g

(
nℓ

nℓ + nu

)
. The last strict inequality comes from the fact that g(p) achieves a unique minimum at

p = z̄ =
nl

nl + nu
. We note that L(θnull) = g

(
nl

nl + nu

)
, and a closed form of θnull can be

obtained by solving the equation z̄ =
nl

πnu
eθ0

1 + (1 + nl

πnu
)eθ0

for θ0.

Next we proceed to prove that iterates {θm}∞m=0 stay in a compact set.

Lemma 1.2. {θm}∞m=0 lies in a compact set in Rp.

Proof. By duality of the lasso problem, {θm−0}∞m=0 are constrained in the space

K(λ) := {(θm1 . . . , θmp−1);
J∑
j=1

√
|Kj|∥θmKj

∥2 ≤ t(λ)}

43

for some t(λ) . Then,

{θm0 } = {θm0 ;L(θm) ≤ L(θnull)}

⊂ {θm0 ; inf
θm−0∈K(λ)

L(θm0 , θ
m
−0) ≤ L(θnull)}

= {θm0 ;L(θm0 , θ̃−0) ≤ L(θnull)} (43)

for some θ̃−0 ∈ K(λ) such that infθm−0∈K(λ) L(θ
m
0 , θ

m
−0) = L(θm0 , θ̃−0). The existence of such

θ̃ is guaranteed by the extreme value theorem and continuity in θ. Applying Lemma 1.1 to

(43), {θm0 } is compact. The desired result follows as the product of compact set is compact

as well.

For Algorithm 2 (PUlasso algorithm), since θm+1 is a (unique) minimizer of −Q(θ; θm)+

Pλ(θ), combining with (14), we have

L(θm+1) = −Q(θm+1; θm) + Pλ(θ
m+1) +H(θm+1; θm)

≤ −Q(θm+1; θm) + Pλ(θ
m+1) +H(θm; θm)

≤ −Q(θm; θm) + Pλ(θ
m) +H(θm; θm)

= −Q(θm; θm) + Pλ(θ
m) +H(θm; θm) = L(θm).

The strict inequality follows from the fact that ▽Q(θm) = ▽Q(θm). The convergence of

{L(θm)}∞m=0 by applying 1.3 and verifying conditions (i)-(iii) similarly as in the proof for

the Algorithm 1. Specifically, condition (i) is satisfied, as lemma 1.1, 1.2 are directly

applicable as proofs of Lemma 1.1, 1.2 do not depend on the specific form of majorizing

function. We can take A = −Q + Pλ,Γ = S and α = L for condition (ii). Condition (iii)

follows from the fact that the function −Q(θ; θ′) + Pλ(θ) is jointly continuous in (θ, θ′).

44

Theorem 1.3 (Global Convergence Theorem, Zangwill [1969]). Let the sequence {xk}∞k=0

be generated by xk+1 ∈ A(xk), where A is a point-to-set map on X. Let a solution set

Γ ∈ X be given, and suppose that:

(i) The sequence {xk}∞k=0 ⊂ S for S ⊂ X a compact set.

(ii) There is a continuous function α on X such that (a) if x ̸∈ Γ, then α(y) < α(x) for

all y ∈ A(x). (b) if x ∈ Γ, then α(y) ≤ α(x) for all y ∈ A(x).

(iii) The mapping A is closed at all points of X \ Γ.

Then all the limit points of any convergent subsequence of {xk}∞k=0 are in the solution set

Γ and α(xk) converges monotonically to α(x) for some x ∈ Γ.

1.2 Proof of Theorem 3.3

Taking a derivate with respect to θ of Rn(θ), we obtain

▽Rn(θ) =
1

n

n∑
i=1

(−zi + µ(fθ(xi))) ḟθ(xi)

and

(▽Rn(fθ)− ▽Rn(f
∗
θ))

T ∆ =

(
1

n

n∑
i=1

(µ(fθ(xi))− zi) ḟθ(xi)− (µ(fθ∗(xi))− zi) ˙fθ∗(xi)

)T

∆

(44)

where we define

∆ := θ − θ∗ (45)

A(s) := log(1 + es), µ(s) = A′(s) (46)

fθ(x) = log
nℓ
πnu

+ xT θ − log(1 + ex
T θ) (47)

45

and ḟθ as the derivative of fθ with respect to θ.

To prove that LHS of (44) is positive with high probability, we decompose RHS into

the addition of two terms, whose first term has positive expectation and the second has

expectation zero. To do so, we add and subtract 1
n

∑n
i=1(µ(fθ∗(xi))− zi)ḟθ(xi) to the RHS

of (44) to obtain

RHS =
1

n

n∑
i=1

(µ(fθ(xi))− µ(fθ∗(xi)))ḟθ(xi)
T∆+ (µ(fθ∗(xi))− zi)(ḟθ(xi)− ḟθ∗(xi))

T∆.

Applying a Taylor expansion around θ∗, we obtain

(▽Rn(fθ)− ▽Rn(f
∗
θ))

T ∆ =
1

n

n∑
i=1

A′′(fθ∗(xi) + vi(fθ(xi)− fθ∗(xi)))(fθ(xi)− fθ∗(xi))ḟθ(xi)
T∆︸ ︷︷ ︸

I

+
1

n

n∑
i=1

(µ(fθ∗(xi))− zi)(ḟθ(xi)− ḟθ∗(xi))
T∆︸ ︷︷ ︸

II

for vi ∈ [0, 1].

We use a similar argument to Proposition 2 in Negahban et al. [2012] to obtain a lower

bound for the first term. The main difference is that we get the dependence on θ for a

curvature term, which is not the case for a canonical link fθ(x) = θTx. Since

fθ(x)− fθ∗(x) = xT θ − log(1 + ex
T θ)− (xT θ∗ − log(1 + ex

T θ∗)) =
xT (θ − θ∗)

1 + exT θ∗+vxT (θ−θ∗) (48)

for some v ∈ [0, 1] and ḟθ(x) =
x

1 + exT θ
, I becomes

I =
1

n

n∑
i=1

A′′(fθ∗(xi) + vi(fθ(xi)− fθ∗(xi)))
(xT∆)2

(1 + ex
T
i θ

∗+vixTi ∆)(1 + ex
T
i θ)

.

Now we lower bound I by

1

n

n∑
i=1

A′′(fθ∗(xi) + vi(fθ(xi)− fθ∗(xi)))(x
T∆)2

(1 + ex
T
i θ

∗+vixTi ∆)(1 + ex
T
i θ)

1{|θ∗Txi| ≤ T∥θ∗∥2, |∆
Txi| ≤ τ∥∆∥2}

46

for any τ, T ≥ 0, as A′′(u) ≥ 0,∀u. Defining L0 by

L0 := inf
|u|≤K2+min{T∥θ∗∥2+τr,3K}

A′′(u)

(1 + emin{T∥θ∗∥2+τr,3K})2
,

I can be further lower-bounded by

L0

n

n∑
i=1

(xT∆)21{|θ∗Txi| ≤ T∥θ∗∥2, |∆
Txi| ≤ τ∥∆∥2},

since on {|θ∗Txi| ≤ T∥θ∗∥2, |∆Txi| ≤ τ∥∆∥2}

θTxi ≤ |θ∗Txi|+ |∆Txi| ≤ min{T∥θ∗∥2 + τr, 3K}

and

|fθ∗(xi) + vi(fθ∗(xi)− fθ(xi))| ≤ |fθ∗(xi)|+ |(fθ∗(xi)− fθ(xi))|

≤
∣∣∣∣log nl

πnu

∣∣∣∣+ |θ∗Txi|+ |∆Txi|

≤ K2 + |θ∗Txi|+ |∆Txi|

by Assumption 3, equation (48) and the fact that xT θ − log(1 + ex
T θ) is 1-Lipschitz in θ.

For a truncation level τ > 0, we define the following function:

φτ (u) =


u2 if |u| ≤ τ

2

(τ − u)2 if τ
2
≤ |u| ≤ τ

0 otherwise

We now lower-bound I by 1
n

∑n
i=1 L0φτ∥∆∥2(∆

Txi1{|θ∗Txi| ≤ T∥θ∗∥2}) using the fact

that

(∆Txi)
2
1{|θ∗xi| ≤ T∥θ∗∥2, |∆

Txi| ≤ τ∥∆∥2} ≥ φτ∥∆∥2(∆
Txi1{|θ∗Txi| ≤ T∥θ∗∥2})

47

since (∆Txi)
2 ≤ τ∥∆∥2 ≥ φτ∥∆∥2(∆

Txi1{|θ∗Txi| ≤ T∥θ∗∥2}) is true on the event

|θ∗xi| ≤ T∥θ∗∥2, |∆
Txi| ≤ τ∥∆∥2 (49)

and both left and right-hand sides are 0 if the event (49) does not hold. Now we show

that the expectation of 1
n

∑n
i=1 φτ∥∆∥2(∆

Txi1{|θ∗Txi| ≤ T∥θ∗∥2}) is strictly positive with

a suitably chosen τ and T .

E
[
φτ∥∆∥2(∆

Tx1{|θ∗Tx| ≤ T∥θ∗∥2})
]
= E[(∆Tx)2]−E[(∆Tx)2−φτ∥∆∥2(∆

Tx1{|θ∗Tx| ≤ T∥θ∗∥2})]

E[(∆Tx)2] ≥ λmin(Σx)∥∆∥22

and

E[(∆Tx)2 − φτ∥∆∥2(∆
Tx1{|θ∗Tx| ≤ T∥θ∗∥2})]

≤ E

[
(∆Tx)21

{
|∆Tx| ≥ τ∥∆∥2

2

}]
+ E

[
(∆Tx)21{|θ∗Tx| ≥ T∥θ∗∥2}

]
.

Applying the Cauchy-Schwarz inequality, we obtain

E

[
(∆Tx)21{|∆Tx| ≥ τ∥∆∥2

2
}
]
≤
√

E(∆Tx)4

√
P (|∆Tx| ≥ τ∥∆∥2

2
)

E
[
(∆Tx)21{|θ∗Tx| ≥ T∥θ∗∥2}

]
≤
√
E(∆Tx)4

√
P (|θ∗Tx| ≥ T∥θ∗∥2).

Since ∆Tx ∼ subG(∥∆∥2σx), θ∗
Tx ∼ subG(∥θ∗∥2σx),√

E(∆Tx)4 ≤ 4∥∆∥22σ
2
x

√
E(∆Tx)4

√
P (|∆Tx| ≥ τ∥∆∥2

2
) ≤ 4

√
2∥∆∥22σ

2
x exp

(
− τ 2

16σ2
x

)
√
E(∆Tx)4

√
P (|θ∗Tx| ≥ T) ≤ 4

√
2∥∆∥22σ

2
x exp

(
− T 2

4σ2
x

)

48

Set τ 2 = 16σ2
xlog

32
√
2σ2

x

λmin(Σx)
and T 2 = 4σ2

x log
32
√
2σ2

x

λmin(Σx)
ensures

4
√
2

(
exp

(
− τ 2

16σ2
x

)
+ exp

(
− T 2

4σ2
x

))
≤ λmin(Σx)

4

. Then,

E
[
φτ∥∆∥2(∆

Tx1{|θ∗Tx| ≤ T∥θ∗∥2})
]

≥ ∥∆∥22
(
λmin(Σx)− 4

√
2σ2

x

(
exp

(
− τ 2

16σ2
x

)
+ exp

(
− T 2

4σ2
x

)))
≥ ∥∆∥22

3λmin(Σx)

4
.

We now prove that the first term, which is a random quantity is also positive with high

probability using the concentration property of an empirical process. Considering the set

S(t) := {∆ :
∥∆∥1
∥∆∥2

= t, ∥∆∥2 = δ}, we define

U1(t) := sup
∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

φτ∥∆∥2(∆
Txi1{|θ∗Txi| ≤ T∥θ∗∥2})− E

[
φτ∥∆∥2(∆

Tx1{|θ∗Tx| ≤ T∥θ∗∥2})
]∣∣∣∣∣ .

Since ∥φτ∥∆∥2∥∞ ≤
(τ∥∆∥2)2

4
≤ τ 2r2

4
, using the Azuma-Hoeffding inequality, we have

P (U1(t) ≥ EU1(t) + u∗
1(t)) ≤ exp(−2nu∗

1(t)
2

r4τ 4
).

Setting u∗
1(t) =

λmin(Σx)∥∆∥22
8

,

P (U1(t) ≥ EU1(t) +
λmin(Σx)

8
∥∆∥22) ≤ exp(−cn)

where c constant depending on λmin(Σx), r, τ, ∥∆∥2.

Now we calculate EU1(t). First we introduce the following two results from empirical

processe theory.

49

Theorem 1.4. (Symmetrization theorem[Lemma 2.3.6 in van der Vaart and Wellner

[1996]]) Let U1, . . . , Un be independent random variables vith values in U and {ϵi} be an

i.i.d. sequence of Rademacher variables, which take values ±1 each with probability 1/2.

Let Γ be a class of real-valued functions on U. then

E

(
sup
γ∈Γ

∣∣∣∣∣
n∑
i=1

{γ(Ui)− E(γ(Ui))}

∣∣∣∣∣
)
≤ 2E

(
sup
γ∈Γ

∣∣∣∣∣
n∑
i=1

ϵiγ(Ui)

∣∣∣∣∣
)
.

Theorem 1.5. (Contraction theorem[Theorem 4.12 in Ledoux and Talagrand [2013]]) Let

φi : R → R be contractions which satisfy |φi(s) − φi(t)| ≤ |s − t| and φi(0) = 0, ∀i ≤ N

Then for any bounded subeset T in RN ,

E

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

ϵiφi(ti)

∣∣∣∣∣
)
≤ 2E

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

ϵiti

∣∣∣∣∣
)
.

By Theorems 1.4,1.5 and Lemma 1.6 we have,

E[U1(t)] ≤ 2E

[
sup

∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

ϵiφτ∥∆∥2(∆
Txi1{|θ∗Txi| ≤ T∥θ∗∥2})

∣∣∣∣∣
]

≤ 4τ∥∆∥2E

[
sup

∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

ϵi∆
Txi1{|θ∗Txi| ≤ T∥θ∗∥2}

∣∣∣∣∣
]

≤ 4τ∥∆∥2

(
sup

∆∈S(t)
∥∆∥1

)
E

[
∥ 1
n

n∑
i=1

ϵixi1{|θ∗Txi| ≤ T∥θ∗∥2}∥∞

]

≤ 4c1τt∥∆∥22

√
log p

n
w.p. at least 1− 2 exp(−cn).

Note that φτ∥∆∥2 is a Lipschitz function with the Lipschitz constant = τ∥∆∥2 which allows

us to apply the Ledoux-Talagrand contraction theorem. Also let sup
∆∈S
↔ sup

∆T xi∈T
for a given

(x1, . . . , xn), where T is defined as T := T1 × . . . Tn and Ti := {∆Txi : ∆ ∈ S}. Ledoux-

Talagrand contraction theorem requires T to be a bounded subset of Rn which is satisfied

because |∆Txi| ≤ τr,∀i.

50

Lemma 1.6. E
[
∥ 1
n

∑n
i=1 ϵixi1{|θ∗

Txi| ≤ T∥θ∗∥2}∥∞
]
≤ c1

√
log p

n
w.p. at least 1−2 exp(−c′n).

Proof. Define uij := xij1{|θ∗Txi| ≤ T∥θ∗∥2}. Also consider the event T := { 1
n

∑n
i=1 u

2
ij ≤

C, ∀1 ≤ j ≤ p}. First, we show that the probability of T is large:

P (T) ≥ 1−pP (
1

n

n∑
i=1

u2
ij > C) ≥ 1−pP (

1

n

n∑
i=1

x2
ij > C) ≥ 1−2 exp(−cn+log p) ≥ 1−2 exp(−c′n).

Since we know x2
ij’s are i.i.d. sub-exponential random variables, letting K := ∥x2

ij∥ψ1
,

we have P (
∑

i x
2
ij > Cn) ≤ 2 exp[−c′′ min(

C2n2

K2n
,
Cn

K
)]. The last inequality follows since

n≫ log p

Now we show the suggested inequality is true on T

E

[
∥ 1
n

n∑
i=1

ϵixi1{|θ∗Txi| ≤ T∥θ∗∥2}∥∞|T

]
= E

[
E

[
∥ 1
n

n∑
i=1

ϵixi1{|θ∗Txi| ≤ T∥θ∗∥2}∥∞|X,T

]
|T

]
.

Conditioned on {Xi}ni=1, | 1n
∑n

i=1 ϵiuij| is sub-gaussian with a parameter bounded by 1
n

√∑
i u

2
ij,

since ϵi ∼ subG(1).

E

[
∥ 1
n

n∑
i=1

ϵixi1{|θ∗Txi| ≤ T∥θ∗∥2}∥∞|X,T

]
≤ c0

1

n
max
1≤j≤p

√∑
i

u2
ij

√
log p ≤ c1

√
log p

n
.

For the second term, define

g(∆Txi, θ
∗Txi, zi) := (µ(fθ∗(xi))− zi)(ḟθ∗+∆(xi)− ḟθ∗(xi))

T∆

=

(
nl

πnu
eθ

∗T xi

1 + (1 + nl

πnu
)eθ∗

T xi

)1−zi (
−1− eθ

∗T xi

1 + (1 + nl

πnu
)eθ∗

T xi

)zi

×
(

1

1 + e(θ∗+∆)T xi
− 1

1 + eθ∗
T xi

)
xTi ∆.

51

Then

II =
1

n

n∑
i=1

g(∆Txi, θ
∗Txi, zi) =

1

n

n∑
i=1

{
g(∆Txi, θ

∗Txi, zi)− E[g(∆Txi, θ
∗Txi, zi)]

}
, since E[g(∆Txi, θ

∗Txi, zi)] = 0,∀i, by E[Z|X = x] = µ(f ∗
θ (x)).

U2(t) := sup
∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

{
g(∆Txi, θ

∗Txi, zi)− E[g(∆Txi, θ
∗Txi, zi)]

}∣∣∣∣∣
. Similarly, we bound E(U2(t)) using symmetrization and contraction theorem. We first

prove that gi/L is a contraction map with a fixed constant L, where gi is defined as

gi(·) := g(·, θ∗Txi, zi).

Lemma 1.7. gi(s)/L is a contraction map with gi(0) = 0.

Proof. Sufficient to show |gi(s)− gi(t)| ≤ L|s− t| with L > 0, gi(0) = 0

|gi(s)− gi(t)| =
∣∣∣∣hi,θ∗ {(s

1 + eθ∗
T xi+s

− t

1 + eθ∗
T xi+t

)
− (s− t)

1 + eθ∗
T xi

}∣∣∣∣ (50)

≤ |hi,θ∗ |

∣∣∣∣∣
{
1− (t+ vi(s− t)− 1)eθ

∗T xi+t+vi(s−t)

(1 + eθ∗
T xi+t+vi(s−t))2

− 1

1 + eθ∗
T xi

}∣∣∣∣∣ |(s− t)|

(51)

for some vi ∈ [0, 1]. (51) follows from the Mean Value Theorem since

s

(1 + eθ∗
T xi+s)

=
t

(1 + eθ∗
T xi+t)

+
1− eθ

∗T xi+s̃(s̃− 1)

(1 + eθ∗
T xi+t)2

.

52

We bound the coefficient term independent of i.

|

∣∣∣∣∣
{
1− (t+ vi(s− t)− 1)eθ

∗T xi+t+vi(s−t)

(1 + eθ∗
T xi+t+vi(s−t))2

− 1

1 + eθ∗
T xi

}∣∣∣∣∣
≤ |
∣∣∣∣ 1

(1 + eθ∗
T xi+t+vi(s−t))2

∣∣∣∣+
∣∣∣∣∣(t+ vi(s− t)− 1)eθ

∗T xi+t+vi(s−t)

(1 + eθ∗
T xi+t+vi(s−t))2

∣∣∣∣∣+
∣∣∣∣ 1

1 + eθ∗
T xi

∣∣∣∣
≤ 2 +

∣∣∣∣∣(θ∗Txi + t+ vi(s− t)− 1)eθ
∗T xi+t+vi(s−t)

(1 + eθ∗
T xi+t+vi(s−t))2

− θ∗Txie
θ∗T xi+t+vi(s−t)

(1 + eθ∗
T xi+t+vi(s−t))2

∣∣∣∣∣
≤ 2 + max

u
| ueu

(1 + eu)2
|+max

u,i
| θ

∗Txie
u

(1 + eu)2
| ≤ 9 +K

4
,

where u := θ∗Txi + t+ vi(s− t). Since

max
u
| ueu

(1 + eu)2
| ≤ 1

4
, |hi,θ∗ | ≤

1

4

and

max
u,i
| θ

∗Txie
u

(1 + eu)2
| ≤ max

u,i
|θ∗Txi||

eu

(1 + eu)2
| ≤ K

4

we set lipschitz constant L :=
9 +K

16
. gi(0) = 0 is obvious from the form of gi.

Taking Ui = (Xi, Zi) in Theorem 1.4, a symmetrization argument gives

E(U2(t)) ≤ 2E

[
sup

∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

ϵig(∆
Txi, θ

∗Txi, zi)

∣∣∣∣∣
]
. (52)

Now we apply the contraction theorem with conditional expectation given {Xi, Zi} and

φi = gi/L to find

E

[
sup

∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

ϵig(∆
Txi, θ

∗Txi, zi)

∣∣∣∣∣|(X,Z)

]
≤ 2LE

[
sup

∆∈S(t)

∣∣∣∣∣ 1n
n∑
i=1

ϵi∆
Txi

∣∣∣∣∣ |(X,Z)

]
.

(53)

53

Combining (52) and (53),

E(U2(t)) ≤ 4LE

[
sup

∆∈S(t)

∣∣∣∣∣1n
n∑
i=1

ϵi∆
Txi

∣∣∣∣∣
]

≤ 4LE

[
sup

∆∈S(t)
∥∆∥1∥

1

n

n∑
i=1

ϵixi∥∞

]

≤ 4c1Lt∥∆∥2

√
log p

n
w.p at least 1− 2 exp(−cn).

Now we apply Azuma-Hoeffding inequality to show that U2(t) is close to E(U2(t)) with

probability at least 1−exp(−c′n). From the proof of lemma 1.7 we have ∥g∥∞ ≤ K(K+9)/8

since

∥g∥∞ = max
i,θ
|gi(xTi θ)− gi(0)| ≤ L|xTi θ − 0| ≤ 2LK.

Hence we obtain

P (U2(t) ≥ EU2(t) + u∗
2(t)) ≤ exp(−cnu∗

2(t)
2)

for some c. We set u∗
2(t) = L0

λmin(Σx)∥∆∥22
8

to have

P (U2(t) ≥ EU2(t) + L0
λmin(Σx)∥∆∥22

8
) ≤ exp(−c′n)

where c′ is a constant depending on λmin(Σx), ∥∆∥2 and K. Putting the pieces together,

with probability at least 1− c1 exp(−c2n) we have

(▽Rn(fθ)− ▽Rn(f
∗
θ))

T ∆

≥ L0
λmin(Σx)

2
∥∆∥22 − 4L0c1τt∥∆∥22

√
log p

n
− 4c1Lt∥∆∥2

√
log p

n

= κ1∥∆∥22 − κ2t∥∆∥22

√
log p

n
− κ3t∥∆∥2

√
log p

n

54

where κ1 := L0
λmin(Σx)

2
, κ2 := 4L0c1τ, κ3 := 4c1L.

Now we want to show that the probability of following event

E :=

{
(▽Rn(fθ)− ▽Rn(f

∗
θ))

T ∆ ≥ κ1∥∆∥22 − κ2∥∆∥1∥∆∥2

√
log p

n
− κ3∥∆∥1

√
log p

n

}
(54)

is large uniformly in the ratio of
∥∆∥1
∥∆∥2

. Defining functions f∆(x), g(t) as

f∆(x) := κ1∥∆∥22 − (▽Rn(fθ)− ▽Rn(f
∗
θ))

T ∆

g(t) := t∥∆∥2

√
log p

n
(κ2∥∆∥2 + κ3),

we have

P (f∆(x) ≥ g(t)) ≤ c1 exp(−c2n).

By the union bound,

P (Ec) =

(
M∪
m=1

{
f∆(x) ≥ g(

∥∆∥1
∥∆∥2

), 2m−1 ≤ ∥∆∥1
∥∆∥2

≤ 2m
})

≤
M∑
m=1

P (f∆(x) ≥ g(2m−1)) ≤Mc1 exp(−c2n)

where M := ⌈c log p⌉ since ∥∆∥1 ≤
√
p∥∆∥2. By the scaling of n ≫ log p, we have

c1 exp(−c2n+ logM) = c1 exp(−c′′n). Note that

κ2

√
log p

n
∥∆∥1∥∆∥2 ≤

1

2

(
κ1∥∆∥22 +

κ2
2

κ1

log p

n
∥∆∥21

)
. (55)

Applying (55) to (54), we have

(▽Rn(fθ)− ▽Rn(f
∗
θ))

T ∆ ≥ κ1

2
∥∆∥22 −

κ2
2

2κ1

∥∆∥21
log p

n
− κ3∥∆∥1

√
log p

n
for ∥∆∥2 ≤ r

as desired.

55

1.3 Proof of Lemma 3.1

The proof of this result follows similar lines to the proof of Theorem 1 in Loh and Wain-

wright [2013], which established the result with a diffrent tolerance function. Since θ∗ is

feasible, by first order optimality condition, we have the following inequality

(▽Rn(θ̂) + ▽Pλ(θ̂))T (θ∗ − θ̂) ≥ 0.

Letting ∆̂ := θ̂−θ∗, since θ̂ ∈ Θ0 by the setup of the problem, we can apply RSC condition

to obtain

α∥∆̂∥22 − τ(∥∆̂∥1) ≤ (−▽Pλ(θ̂)− ▽Rn(θ
∗))T ∆̂. (56)

On the other hand, convexity of Pλ(θ) implies

Pλ(θ
∗)− Pλ(θ̂) ≥ −Pλ(θ̂)T ∆̂. (57)

Combining (56)) with (57), we obtain

α∥∆̂∥22 − τ(∥∆̂∥1) ≤ (−▽Pλ(θ̂)− ▽Rn(θ
∗))T ∆̂

≤ Pλ(θ
∗)− Pλ(θ̂) + ∥▽Rn(θ

∗)∥∞∥∆̂∥1.

Since τ(∥∆̂∥1) = τ1
log p

n
∥∆̂∥21 + τ2

√
log p

n
∥∆̂∥1,

α∥∆̂∥22 ≤ Pλ(θ
∗)− Pλ(θ̂) + ∥∆̂∥1

(
τ1
log p

n
∥∆̂∥1 + τ2

√
log p

n
+ ∥▽Rn(θ

∗)∥∞

)
,

By the choice of λ,

τ1
log p

n
∥∆̂∥1 + τ2

√
log p

n
+ ∥▽Rn(θ

∗)∥∞ ≤
λ

2
.

56

Then by using the triangle inequality

α∥∆̂∥22 ≤ Pλ(θ
∗)− Pλ(θ̂) + ∥∆̂∥1

λ

2

≤ λ∥θ∗∥1 − λ∥θ̂∥1 +
λ

2
(∥θ∗∥1 + ∥θ̂∥1)

=
λ

2
(3∥θ∗∥1 − ∥θ̂∥1).

In particular, we have 3∥θ∗∥1−∥θ̂∥1 ≥ 0 and Lemma 5 in Loh and Wainwright [2013] gives

3∥θ∗∥1 − ∥θ̂∥1 ≤ 3∥∆̂A∥1 − ∥∆̂Ac∥1 where A denotes the index set of the s largest elements

of ∆̂ in magnitude. Thus we conclude

α∥∆̂∥22 ≤
λ

2
(3∥∆̂A∥1 − ∥∆̂Ac∥1) ≤

3λ

2
∥∆̂A∥1 ≤

3λ

2

√
s∥∆̂∥2

as desired. The ℓ1 upper bound follows from the ℓ2-bound and

∥∆̂∥1 ≤ ∥∆̂A∥1 + ∥∆̂Ac∥1 ≤ 4∥∆̂A∥1 ≤ 4
√
s∥∆̂∥2

.

1.4 Proof of Lemma 3.2

▽Rn(fθ∗) =
1

n

∑n
i=1 (−zi + µ(fθ∗(xi)))

1

1 + eθ∗
T xi

xi where µ, fθ as in (46), (47). For 1 ≤ i ≤

n, 1 ≤ j ≤ p, we define Vij := (−zi + µ(fθ∗(xi)))
1

1 + eθ∗
T xi

xij, and consider the event

E = {max
1≤j≤p

1

n

n∑
i=1

x2
ij ≤ C}

. Then

P

[
max
1≤j≤p

| 1
n

n∑
i=1

Vij| ≥ c

√
log p

n

]
≤ P (Ec) + P

[
max
1≤j≤p

| 1
n

n∑
i=1

Vij| ≥ c

√
log p

n
|E

]
P (E).

57

To use the Chernoff bound, we calculate the moment generating function of 1
n

∑n
i=1 Vij.

Defining ti :=
t

n(1 + eθ∗
T xi)

,

E

[
exp(

t

n
Vij)|xi

]
= E {exp (−tizixij) · exp (tiµ(fθ∗(xi))xij) |xi}

= E [exp (−tizixij) |xi] · exp (tiµ(fθ∗(xi))xij)

=

∫
exp (−tizxij) · exp(zfθ∗(xi)− A(fθ∗(xi))dz · exp (tiµ(fθ∗(xi))xij)

= exp {A(fθ∗(xi)− tixij)− A(fθ∗(xi)) + tiµ(fθ∗(xi))xij}

= exp

{
1

2
A′′(fθ∗(xi)− vitixij)(tixij)

2

}
≤ exp

{
1

8n2
(txij)

2

}
(∵ sup

u
A′′(u) =

1

4
, ti ≤

t

n
).

Therefore
n∏
i=1

E

[
exp(

t

n
Vij)|xi

]
≤ exp

(
t2

8n2

n∑
i=1

x2
ij

)
.

Conditioned on E, exp
(

t2

8n2

∑n
i=1 x

2
ij

)
≤ exp

(
t2C
8n

)
,

P

[
max
1≤j≤p

| 1
n

n∑
i=1

Vij| ≥ c

√
log p

n
|E

]
≤ 2p exp (−c′′ log p) .

P

[
max
1≤j≤p

| 1
n

n∑
i=1

Vij| ≥ c

√
log p

n

]
≤ 2 exp(−c′n) + 2 exp(−c′′ log p)(1− 2 exp(−c′n))

= c1 exp(−c2 log p).

2 Robustness to initialization

Since the PUlasso is an iterative algorithm and the objective can be non-convex, a natural

question is whether the algorithm is robust to this choice. To study the effect of different

58

initializations, we generated two sets of data in R100 following the probabilistic scheme

setup in section 4 with µ0 = 1.5 and nl = nu = 1000. All 100 variables are set to be active.

The model was fitted using Algorithm 2 with 10000 different initial parameters chosen

randomly within radius distance 5 of θ0 and θ∗. More specifically letting r0 := ∥θ0 − θ∗∥2,

we created an equally spaced sequence of length 100 from 0 to 5r0. Each radius defines

a contour, and we considered 100 different random θ on each contour. Figure 5 plots the

number of iterations needed until convergence and deviance at convergence. The number

of iterations increased as radius increased, which suggests that if we start from worse initial

points, we need more iterations until convergence. In all 10000 experiments, the algorithm

converged to the same stationary point.

0

2000

4000

6000

0.0 2.5 5.0 7.5

radius

ite
ra

tio
ns

Figure 5: Iterations needed until convergence. Solid line represents the median number of

iterations, and the band represents the inter-quartile range.

59

