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Abstract

In this paper we present a general convex optimization approach for solving high-

dimensional tensor regression problems under low-dimensional structural assumptions.

We consider using convex and weakly decomposable regularizers assuming that the

underlying tensor lies in an unknown low-dimensional subspace. Within our framework,

we derive general risk bounds of the resulting estimate under fairly general dependence

structure among covariates. Our framework leads to upper bounds in terms of two very

simple quantities, the Gaussian width of a convex set in tensor space and the intrinsic

dimension of the low-dimensional tensor subspace. These general bounds provide useful

upper bounds on rates of convergence for a number of fundamental statistical models

of interest including multi-response regression, vector auto-regressive models, low-rank

tensor models and pairwise interaction models. Moreover, in many of these settings

we prove that the resulting estimates are minimax optimal.
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1 Introduction

Many modern scientific problems involve solving high-dimensional statistical problems where

the sample size is small relative to the ambient dimension of the underlying parameter to be

estimated. Over the past few decades there has been a large amount of work on solving such

problems by imposing low-dimensional structure on the parameter of interest. In particular

sparsity, low-rankness and other low-dimensional subspace assumptions have been studied

extensively both in terms of the development of fast algorithms and theoretical guarantees.

See, e.g., Buhlmann and van de Geer (2011) and Hastie et al. (2015), for an overview. Most

of the prior work has focussed on scenarios in which the parameter of interest is a vector

or matrix. Increasingly common in practice, however, the parameter or object to be esti-

mated naturally has a higher order tensor structure. Examples include hyper-spectral image

analysis (Li and Li, 2010), multi-energy computed tomography (Semerci et al., 2014), radar

signal processing (Sidiropoulos and Nion, 2010), audio classification (Mesgarani et al., 2006)

and text mining (Cohen and Collins, 2012) among numerous others. It is much less clear

how the low dimensional structures inherent to these problems can be effectively accounted

for. The main purpose of this article is to fill in this void and provide a general and unifying

framework for doing so.

Consider a general tensor regression problem where covariate tensors X(i) ∈ Rd1×···×dM

and response tensors Y (i) ∈ RdM+1×···×dN are related through:

Y (i) = 〈X(i), T 〉+ ǫ(i), i = 1, 2, . . . , n. (1)

Here T ∈ Rd1×···×dN is an unknown parameter of interest, and ǫ(i)s are independent and

identically distributed noise tensors whose entries are independent and identically distributed

centered normal random variables. Further, for simplicity we assume the covariates (X(i))ni=1

are Gaussian, but with fairly general dependence assumptions. The notation 〈·, ·〉 will refer
throughout this paper to the standard inner product taken over appropriate Euclidean spaces.

Hence, for A ∈ Rd1×···×dM and B ∈ Rd1×···×dN :

〈A,B〉 =
d1∑

j1=1

· · ·
dM∑

jM=1

Aj1,...,jMBj1,...,jM ∈ R

is the usual inner product if M = N ; and if M < N , then 〈A,B〉 ∈ RdM+1×···×dN such that
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its (jM+1, . . . , jN ) entry is given by

(〈A,B〉)jM+1,...,jN
=

d1∑

j1=1

· · ·
dM∑

jM=1

Aj1,...,jMBj1,...,jM ,jM+1,...,jN .

The goal of tensor regression is to estimate the coefficient tensor T based on observations

{(X(i), Y (i)) : 1 ≤ i ≤ n}. In addition to the canonical example of tensor regression with

Y a scalar response (i.e., M = N), many other commonly encountered regression problems

are also special cases of the general tensor regression model (1). Multi-response regression

(see, e.g., Anderson, 1984), vector autoregressive model (see, e.g., Lütkepolhl, 2006), and

pairwise interaction tensor model (see, e.g., Rendle and Schmidt-Thieme, 2010) are some of

the notable examples. In this article, we provide a general treatment to these seemingly

different problems.

Our main focus here is on situations where the dimensionality dks are large when com-

pared with the sample size n. In many practical settings, the true regression coefficient tensor

T may have certain types of low-dimensional structure. Because of the high ambient dimen-

sion of a regression coefficient tensor, it is essential to account for such a low-dimensional

structure when estimating it. Sparsity and low-rankness are the most common examples of

such low dimensional structures. In the case of tensors, sparsity could occur at the entry-wise

level, fiber-wise level, or slice-wise level, depending on the context and leading to different

interpretations. There are also multiple ways in which low-rankness may be present when it

comes to higher order tensors, either at the original tensor level or at the matricized tensor

level.

In this article, we consider a general class of convex regularization techniques to exploit

either type of low-dimensional structure. In particular, we consider the standard convex

regularization framework:

T̂ ∈ argmin
A∈Rd1×···×dN

{
1

2n

n∑

i=1

‖Y (i) − 〈A,X(i)〉‖2F + λR(A)

}
, (2)

where the regularizer R(·) is a norm on Rd1×···×dN , and λ > 0 is a tuning parameter. Here-

after, for a tensor A, ‖A‖F = 〈A,A〉1/2. We derive general risk bounds for a family of so-called

weakly decomposable regularizers under fairly general dependence structure among the co-

variates. These general upper bounds apply to a number of concrete statistical inference
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problems including the aforementioned multi-response regression, high-dimensional vector

auto-regressive models, low-rank tensor models, and pairwise interaction tensors where we

show that they are typically optimal in the minimax sense.

In developing these general results, we make several contributions to a fast growing litera-

ture on high dimensional tensor estimation. First of all, we provide a principled approach to

exploit the low dimensional structure in these problems. In doing so, we extend the notion

of decomposability originally introduced by Negahban et al. (2012) for vector and matrix

models to weak decomposability which allows us to handle more delicate tensor models such

as the nuclear norm regularization for low-rank tensor models. Moreover, we provide, for

the regularized least squared estimate given by (2), a general risk bound under an easily

interpretable condition on the design tensor. The risk bound we derive is presented in terms

of merely two geometric quantities, the Gaussian width which depends on the choice of reg-

ularization and the intrinsic dimension of the subspace that the tensor T lies in. Finally,

our general results lead to novel upper bounds for several important regression problems

involving high-dimensional tensors: multi-response regression, multi-variate auto-regressive

models and pairwise interaction models, for which we also prove that the resulting estimates

are minimiax rate optimal with appropriate choices of regularizers.

The remainder of the paper is organized as follows: In Section 2 we introduce the gen-

eral framework of using weakly decomposable regularizers for exploiting low-dimensional

structures in high dimensional tensor regression. In Section 3 we present a general upper

bound for weakly decomposable regularizers and discuss specific risk bounds for commonly

used sparsity or low-rankness regularizers for tensors. In Section 4 we apply our general

result to three specific statistical problems, namely, multi-response regression, multivariate

autoregressive model, and the pairwise interaction model. We show that in each of the three

examples appropriately chosen weakly decomposable regularizers leads to minimax optimal

estimation of the unknown parameters. The proofs are presented in Section 5.
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2 Methodology

Recall the regularized least-squares objective:

T̂ = argmin
A∈Rd1×···×dN

{
1

2n

n∑

i=1

‖Y (i) − 〈A,X(i)〉‖2F + λR(A)

}
.

For brevity, we assume implicitly hereafter that the minimizer on its left hand side is uniquely

defined. Our development here actually applies to the more general case where T̂ can be

taken as an arbitrary element from the set of the minimizers. Of particularly interest here is

the so-called weakly decomposable convex regularizers, extending a similar concept introduced

by Negahban et al. (2012) for vectors and matrices.

Let A be an arbitrary linear subspace of Rd1×···×dN and A⊥ its orthogonal complement:

A⊥ := {A ∈ Rd1×···×dN | 〈A,B〉 = 0 for all B ∈ A}.

We call a regularizer R(·) weakly decomposable with respect to a pair (A,B) where B ⊆ A
if there exist a constant 0 < cR ≤ 1 such that for any A ∈ A⊥ and B ∈ B,

R(A +B) ≥ R(A) + cRR(B). (3)

In particular, if (3) holds for any B ∈ B = A, we say R(·) is weakly decomposable with

respect to A. Because R is a norm, by triangular inequality, we also have

R(A +B) ≤ R(A) +R(B).

Many of the commonly used regularizers for tensors are weakly decomposable, or decom-

posable for short. When cR = 1, our definition of decomposability naturally extends from

similar notion for vectors (N = 1) and matrices (N = 2) introduced by Negahban et al.

(2012). We also allow for more general choices of cR here to ensure a wider applicability. For

example as we shall see the popular tensor nuclear norm regularizer is decomposable with

respect to appropriate linear subspaces with cR = 1/2, but not decomposable if cR = 1.

We now described a catalogue of commonly used regularizers for tensors and argue that

they are all decomposable with respect to appropriately chosen subspaces of Rd1×···×dN . To

fix ideas, we shall focus in what follows on estimating a third-order tensor T , that is N = 3,

although our discussion can be straightforwardly extended to higher-order tensors.
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2.1 Sparsity Regularizers

An obvious way to encourage entry-wise sparsity is to impose the vector ℓ1 penalty on the

entries of A:

R(A) :=

d1∑

j1=1

d2∑

j2=1

d3∑

j3=1

|Aj1j2j3 |, (4)

following the same idea as the Lasso for linear regression (see, e.g., Tibshirani, 1996). This is

a canonical example of decomposable regularizers. For any fixed I ⊂ [d1]× [d2]× [d3] where

[d] = {1, 2, . . . , d}, write

A(I) = B(I) =
{
A ∈ Rd1×d2×d3 : Aj1j2j3 = 0 for all (j1, j2, j3) /∈ I

}
. (5)

It is clear that

A⊥(I) =
{
A ∈ Rd1×d2×d3 : Aj1j2j3 = 0 for all (j1, j2, j3) ∈ I

}
,

and R(A) defined by (4) is decomposable with respect to A with cR = 1.

In many applications, sparsity arises with a more structured fashion for tensors. For

example, a fiber or a slice of a tensor is likely to be zero simultaneously. Mode-1 fibers of a

tensor A ∈ Rd1×d2×d3 are the collection of d1-dimensional vectors

{
A·j2j3 = (A1j2j3, . . . , Ad1j2j3)

⊤ : 1 ≤ j2 ≤ d2, 1 ≤ j3 ≤ d3
}
.

Mode-2 and -3 fibers can be defined in the same fashion. To fix ideas, we focus on mode-1

fibers. Sparsity among mode-1 fibers can be exploited using the group-based ℓ1 regularizer:

R(A) =
d2∑

j2=1

d3∑

j3=1

‖A·j2j3‖ℓ2 , (6)

similar to the group Lasso (see, e.g., Yuan and Lin, 2006), where ‖ · ‖ℓ2 stands for the usual

vector ℓ2 norm. Similar to the vector ℓ1 regularizer, the group ℓ1-based regularizer is also

decomposable. For any fixed I ⊂ [d2]× [d3], write

A(I) = B(I) =
{
A ∈ Rd1×d2×d3 : Aj1j2j3 = 0 for all (j2, j3) /∈ I

}
. (7)

It is clear that

A⊥(I) =
{
A ∈ Rd1×d2×d3 : Aj1j2j3 = 0 for all (j2, j3) ∈ I

}
,
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and R(A) defined by (6) is decomposable with respect to A with cR = 1. Note that in

defining the regularizer in (6), instead of vector ℓ2 norm, other ℓq (q > 1) norms could also

be used. See, e.g., Turlach et al. (2005).

Sparsity could also occur at the slice level. The (1, 2) slices of a tensor A ∈ Rd1×d2×d3 are

the collection of d1 × d2 matrices

{A··j3 = (Aj1j2j3)1≤j1≤d1,1≤j2≤d2 : 1 ≤ j3 ≤ d3} .

Let ‖ · ‖ be an arbitrary norm on d1× d2 matrices. Then the following group regularizer can

be considered:

R(A) =

d3∑

j3=1

‖A··j3‖. (8)

Typical examples of the matrix norm that can be used in (8) include Frobenius norm and

nuclear norm among others. In the case when ‖ · ‖F is used, R(·) is again a decomposable

regularizer with respect to

A(I) = B(I) =
{
A ∈ Rd1×d2×d3 : Aj1j2j3 = 0 for all j3 /∈ I

}
. (9)

for any I ⊂ [d3].

Now consider the case when we use the matrix nuclear norm ‖ · ‖∗ in (8). Let P1j and

P2j , j = 1, . . . , d3 be two sequences of projection matrices on Rd1 and Rd2 respectively. Let

A(P1j, P2j : 1 ≤ j ≤ d3) =
{
A ∈ Rd1×d2×d3 : P⊥

1jA··jP
⊥
2j = 0, j = 1, . . . , d3

}
, (10)

and

B(P1j , P2j : 1 ≤ j ≤ d3) =
{
A ∈ Rd1×d2×d3 : A··j = P1jA··jP2j, j = 1, . . . , d3

}
. (11)

By pinching inequality (see, e.g., Bhatia, 1997), it can be derived that R(·) is decomposable

with respect to A(P1j, P2j : 1 ≤ j ≤ d3) and B(P1j , P2j : 1 ≤ j ≤ d3).

2.2 Low-rankness Regularizers

In addition to sparsity, one may also consider tensors with low-rank. There are multiple

notions of rank for higher-order tensors. See, e.g., Koldar and Bader (2009), for a recent
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review. In particular, the so-called CP rank is defined as the smallest number r of rank-one

tensors needed to represent a tensor A ∈ Rd1×d2×d3 :

A =

r∑

k=1

uk ⊗ vk ⊗ wk (12)

where uk ∈ Rd1 , vk ∈ Rd2 and wk ∈ Rd3 . To encourage a low rank estimate, we can consider

the nuclear norm regularization. Following Yuan and Zhang (2014), we define the nuclear

norm of A through its dual norm. More specifically, let the spectral norm of A be given by

‖A‖s = max
‖u‖ℓ2 ,‖v‖ℓ2 ,‖w‖ℓ2≤1

〈A, u⊗ v ⊗ w〉.

Then its nuclear norm is defined as

‖A‖∗ = max
‖B‖s≤1

〈A,B〉.

We shall then consider the regularizer:

R(A) = ‖A‖∗. (13)

We now show this is also a weakly decomposable regularizer.

Let Pk be a projection matrix in Rdk . Define

(P1 ⊗ P2 ⊗ P3)A =
r∑

k=1

P1uk ⊗ P2vk ⊗ P3wk.

Write

Q = P1 ⊗ P2 ⊗ P3 + P⊥
1 ⊗ P2 ⊗ P3 + P1 ⊗ P⊥

2 ⊗ P3 + P1 ⊗ P2 ⊗ P⊥
3 ,

and

Q⊥ = P⊥
1 ⊗ P⊥

2 ⊗ P⊥
3 + P⊥

1 ⊗ P⊥
2 ⊗ P3 + P1 ⊗ P⊥

2 ⊗ P⊥
3 + P⊥

1 ⊗ P2 ⊗ P⊥
3 ,

where P⊥
k = I − Pk.

Lemma 1. For any A ∈ Rd1×d2×d3 and projection matrices Pk in Rdk , k = 1, 2, 3, we have

‖A‖∗ ≥ ‖(P1 ⊗ P2 ⊗ P3)A‖∗ +
1

2
‖Q⊥A‖∗.
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Lemma 1 is a direct consequence from the characterization of sub-differential for tensor

nuclear norm given by Yuan and Zhang (2014), and can be viewed as a tensor version of the

pinching inequality for matrices.

Write

A(P1, P2, P3) =
{
A ∈ Rd1×d2×d3 : QA = A

}
, (14)

and

B(P1, P2, P3) =
{
A ∈ Rd1×d2×d3 : (P1 ⊗ P2 ⊗ P3)A = A

}
. (15)

By Lemma 1, R(·) defined by (13) is weakly decomposable with respect to A(P1, P2, P3) and

B(P1, P2, P3) with cR = 1/2. We note that a counterexample is also given by Yuan and Zhang

(2014) which shows that, for the tensor nuclear norm, we cannot take cR = 1.

Another popular way to define tensor rank is through the so-called Tucker decomposition.

Recall that the Tucker decomposition of a tensor A ∈ Rd1×d2×d3 is of the form:

Aj1j2j3 =

r1∑

k1=1

r2∑

k2=1

r3∑

k3=1

Sk1k2k3Uj1k1Vj2k2Wj3k3 (16)

so that U , V andW are orthogonal matrices, and the so-called core tensor S = (Sk1k2k3)k1,k2,k3

is such that any two slices of S are orthogonal. The triplet (r1, r2, r3) are referred to as

the Tucker ranks of A. It is not hard to see that if (12) holds, then the Tucker ranks

(r1, r2, r3) can be equivalently interpreted as the dimensionality of the linear spaces spanned

by {uk : 1 ≤ k ≤ r}, {vk : 1 ≤ k ≤ r}, and {wk : 1 ≤ k ≤ r} respectively. The following

relationship holds between CP rank and Tucker ranks:

max{r1, r2, r3} ≤ r ≤ min{r1r2, r2r3, r1r3}.

A convenient way to encourage low Tucker ranks in a tensor is through matricization.

Let M1(·) denote the mode-1 matricization of a tensor. That is M1(A) is a d1 × (d2d3)

matrix whose column vectors are the the mode-1 fibers of A ∈ Rd1×d2×d3 . M2(·) and M3(·)
can also be defined in the same fashion. It is clear

rank(Mk(A)) = rk(A).

A natural way to encourage low-rankness is therefore through nuclear norm regularization:

R(A) =
1

3

3∑

k=1

‖Mk(A)‖∗. (17)
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By the pinching inequality for matrices, R(·) defined by (17) is also decomposable with

respect to A(P1, P2, P3) and B(P1, P2, P3) with cR = 1.

3 Risk Bounds for Decomposable Regularizers

We now establish risk bounds for general decomposable regularizers. In particular, our

bounds are given in terms of the Gaussian width of a suitable set of tensors. Recall that the

Gaussian width of a set S ⊂ Rd1×d2×...×dN is given by

wG(S) := E

(
sup
A∈S

〈A,G〉
)
,

where G ∈ Rd1×d2×...×dN is a tensor whose entries are independent N (0, 1) random variables.

See, e.g., Gordon (1988).

Note that the Gaussian width is a geometric measure of the volume of the set S and can

be related to other volumetric characterizations (see, e.g., Pisier, 1989).We also define the

unit ball for the norm-regularizer R(.) as follows:

BR(1) := {A ∈ Rd1×d2×...×dN | R(A) ≤ 1}.

We impose the mild assumption that ‖A‖F ≤ R(A) which ensures that the regularizer R(·)
encourages low-dimensional structure.

Now we define a quantity that relates the size of the norm R(A) to the Frobenius norm

‖A‖F over the the low-dimensional subspace A. Following Negahban et al. (2012), for a

subspace A of Rd1×···×dN , define its compatibility constant s(A) as

s(A) := sup
A∈A/{0}

R2(A)

‖A‖2F
,

which can be interpreted as a notion of intrinsic dimensionality of A.

Now we turn our attention to the covariate tensor. Denote by X(i) = vec(X(i)) the

vectorized covariate from the ith sample. With slight abuse of notation, write

X = vec((X(1))⊤, . . . , (X(n))⊤) ∈ Rn.d1d2···dM

the concatenated covariates from all n samples. For convenience let DM = d1d2 · · · dM .

Further for brevity we assume a Gaussian design so that

X ∼ N (0,Σ)

10



where

Σ = cov(X,X) ∈ RnDM×nDM .

With more technical work our results may be extended beyond Gaussian designs. We note

that we do not require that the sample tensors X(i) be independent.

We shall assume that Σ has bounded eigenvalues which we later verify for a number of

statistical examples. Let λmin(·) and λmax(·) represent the smallest and largest eigenvalues

of a matrix, respectively. In what follows, we shall assume that

c2ℓ ≤ λmin(Σ) ≤ λmax(Σ) ≤ c2u, (18)

for some constants 0 < cℓ ≤ cu < ∞.

Note that in particular if all covariates {X(i) : i = 1, . . . , n} are independent and iden-

tically distributed, then Σ has a block diagonal structure, and (18) boils down to similar

conditions on cov(X(i), X(i)). However (18) is more general and applicable to settings in

which the X(i)’s may be dependent such as time-series models, which we shall discuss in

further detail in Section 4.

We are now in position to state our main result on the risk bounds in terms of both

Frobenius norm ‖ · ‖F and the empirical norm ‖ · ‖n where for a tensor A ∈ Rd1×···×dN , which

we define as:

‖A‖2n :=
1

n

n∑

i=1

‖〈A,X(i)〉‖2F .

Theorem 1. Suppose that (1) holds for a tensor T from a linear subspace A0 ⊂ Rd1×···×dN

where (18) holds. Let T̂ be defined by (2) where the regularizer R(·) is decomposable with

respect to A and A0 for some linear subspace A ⊇ A0. If

λ ≥ 2cu(3 + cR)

cR
√
n

wG[BR(1)], (19)

then there exists a constant c > 0 such that with probability at least 1− exp{−cw2
G[BR(1)]},

max
{
‖T̂ − T‖2n, ‖T̂ − T‖2F

}
≤ 6(1 + cR)

3 + cR

9c2u
c2ℓ

s(A)λ2, (20)

when n is sufficiently large, assuming that the right hand side converges to zero as n increases.
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As stated in Theorem 1, our upper bound boils down to bounding two quantities, s(A)

and wG[BR(1)] which are both purely geometric quantities. To provide some intuition,

wG[BR(1)] captures how large the R(·) norm is relative to the ‖ · ‖F norm and s(A) captures

the low dimension of the subspace A.

Note that wG[BR(1)] can be expressed as expectation of the dual norm of G. According

to R (see, e.g., Rockafellar, 1970, for details), the dual norm R∗(·) is given by:

R∗(B) := sup
A∈BR(1)

〈A,B〉,

where the supremum is taken over tensors of the same dimensions as B. It is straightforward

to see that wG[BR(1)] = E[R∗(G)].

Now we develop upper bounds on both quantities in different scenarios. As in the previous

section, we shall focus on third order tensor in the rest of the section for the ease of exposition.

3.1 Sparsity regularizers

We first consider sparsity regularizers described in the previous section.

3.1.1 Entry-wise and fiber-wise sparsity

Recall that vectorized ℓ1 regularizer:

R1(A) =

d1∑

j1=1

d2∑

j2=1

d3∑

j3=1

|Aj1j2j3 |,

could be used to exploit entry-wise sparsity. Clearly,

R∗
1(A) = max

j1,j2,j3
|Aj1j2j3|.

It can then be shown that:

Lemma 2. There exists a constant 0 < c < ∞ such that

wG[BR1
(1)] ≤ c

√
log(d1d2d3). (21)

Let

Θ1(s) =

{
A ∈ Rd1×d2×d3 :

d1∑

j1=1

d2∑

j2=1

d3∑

j3=1

I(Aj1j2j3 6= 0) ≤ s

}
.

12



For an arbitrary A ∈ Θ1(s), write

I(A) = {(j1, j2, j3) ∈ [d1]× [d2]× [d3] : Aj1j2j3 6= 0} .

Then R1(·) is decomposable with respect to A(I(A)) as defined by (5). It is easy to verify

that for any A ∈ Θ1(s),

s1(A(I)) = sup
B∈A(I(A))/{0}

R2
1(B)

‖B‖2F
≤ s. (22)

In light of (22) and (21), Theorem 1 implies that

sup
T∈Θ1(s)

max
{
‖T̂1 − T‖2n, ‖T̂1 − T‖2F

}
.

s log(d1d2d3)

n
,

with high probability by taking

λ ≍
√

log(d1d2d3)

n
,

where T̂1 is the regularized least squares estimate defined by (2) when using regularizer R1(·).
A similar argument can also be applied to fiber-wise sparsity. To fix ideas, we consider

here only sparsity among mode-1 fibers. In this case, we use a group Lasso type of regularizer:

R2(A) =

d2∑

j2=1

d3∑

j3=1

‖A·j2j3‖ℓ2 .

Then

R∗
2(A) = max

j2,j3
‖A·j2j3‖ℓ2 .

Lemma 3. There exists a constant 0 < c < ∞ such that

wG[BR2
(1)] ≤ c

√
max{d1, log(d2d3)}. (23)

Let

Θ2(s) =

{
A ∈ Rd1×d2×d3 :

d2∑

j2=1

d3∑

j3=1

I(A·j2j3 6= 0) ≤ s

}
.

Similar to the previous case, for an arbitrary A ∈ Θ1(s), write

I(A) = {(j2, j3) ∈ [d2]× [d3] : A·j2j3 6= 0}.
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Then R2(·) is decomposable with respect to A(I(A)) as defined by (7). It is easy to verify

that for any A ∈ Θ2(s),

s2(A(I)) = sup
B∈A(I(A))/{0}

R2
2(B)

‖B‖2F
≤ s. (24)

In light of (24) and (30), Theorem 1 implies that

sup
T∈Θ2(s)

max
{
‖T̂2 − T‖2n, ‖T̂2 − T‖2F

}
.

smax{d1, log(d2d3)}
n

,

with high probability by taking

λ ≍
√

max{d1, log(d2d3)}
n

,

where T̂2 is the regularized least squares estimate defined by (2) when using regularizer R2(·).
Comparing with the rates for entry-wise and fiber-wise sparsity regularization, we can

see the benefit of using group Lasso type of regularizer R2 when sparsity is likely to occur

at the fiber level. More specifically, consider the case when there are a total of s1 nonzero

entries from s2 nonzero fibers. If an entry-wise ℓ1 regularization is applied, we can achieve

the risk bound:

‖T̂1 − T‖2F .
s1 log(d1d2d3)

n
.

On the other hand, if fiber-wise group ℓ1 regularization is applied, then the risk bound

becomes:

‖T̂2 − T‖2F .
s2max{d1, log(d2d3)}

n
.

When nonzero entries are clustered in fibers, we may expect s1 ≈ s2d1. In this case, T̂2

enjoys performance superior to that of T̂1.

3.1.2 Slice-wise sparsity and low-rank structure

Now we consider slice-wise sparsity and low-rank structure. Again, to fix ideas, we consider

here only sparsity among (1, 2) slices. As discussed in the previous section, two specific types

of regularizers could be employed:

R3(A) =

d3∑

j3=1

‖A··j3‖F,
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and

R4(A) =

d3∑

j3=1

‖A··j3‖∗,

where recall that ‖.‖∗ denotes the nuclear norm of a matrix, that is the sum of all singular

values.

Note that

R∗
3(A) = max

1≤j3≤d3
‖A··j3‖F.

Then we have the following result:

Lemma 4. There exists a constant 0 < c < ∞ such that

wG[BR3
(1)] ≤ c

√
max{d1d2, log(d3)}. (25)

Let

Θ3(s) =

{
A ∈ Rd1×d2×d3 :

d3∑

j3=1

I(A··j3 6= 0) ≤ s

}
.

For an arbitrary A ∈ Θ1(s), write

I(A) = {j3 ∈ [d3] : A··j3 6= 0}.

Then R3(·) is decomposable with respect to A(I(A)) as defined by (9). It is easy to verify

that for any A ∈ Θ3(s),

s3(A(I(A))) = sup
B∈A(I(A))/{0}

R2
3(B)

‖B‖2F
≤ s. (26)

Based on (26) and (25), Theorem 1 implies that

sup
T∈Θ3(s)

max
{
‖T̂3 − T‖2n, ‖T̂3 − T‖2F

}
.

smax{d1d2, log(d3)}
n

,

with high probability by taking

λ ≍
√

max{d1d2, log(d3)}
n

,

where T̂3 is the regularized least squares estimate defined by (2) when using regularizer R3(·).
Alternatively, for R4(·),

R∗
4(A) = max

j3
‖A··j3‖s,

we have the following:
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Lemma 5. There exists a constant 0 < c < ∞ such that

wG[BR4
(1)] ≤ c

√
max{d1, d2, log(d3)}. (27)

Now consider

Θ4(r) =

{
A ∈ Rd1×d2×d3 :

d3∑

j3=1

rank(A··j3) ≤ r

}
.

For an arbitrary A ∈ Θ4(r), denote by P1j and P2j the projection onto the row and column

space of A··j respectively. It is clear that A ∈ B(P1j , P2j : 1 ≤ j ≤ d3) as defined by (11).

In addition, recall that R4 is decomposable with respect to B(P1j , P2j : 1 ≤ j ≤ d3) and

A(P1j, P2j : 1 ≤ j ≤ d3) as defined by (10). It is not hard to see that for any A ∈ Θ4(r),

A(P1j, P2j : 1 ≤ j ≤ d3) ⊂ Θ4(2r), from which we can derive that:

Lemma 6. For any A ∈ Θ4(r),

s4(A(P1j, P2j : 1 ≤ j ≤ d3)) ≤ sup
B∈A/{0}

R2
4(B)

‖B‖2F
≤ 2r. (28)

In light of (28) and (27), Theorem 1 implies that

sup
T∈Θ4(r)

max
{
‖T̂4 − T‖2n, ‖T̂4 − T‖2F

}
.

rmax{d1, d2, log(d3)}
n

,

with high probability by taking

λ ≍
√

max{d1, d2, log(d3)}
n

,

where T̂4 is the regularized least squares estimate defined by (2) when using regularizer R4(·).
Comparing with the rates for estimates with regularizers R3 and R4, we can see the

benefit of using R4 when the nonzero slices are likely to be of low-rank. In particular,

consider the case when there are s1 nonzero slices and each nonzero slice has rank up to r.

Then applying R3 leads to risk bound:

‖T̂3 − T‖2F .
s1max{d1d2, log(d3)}

n
,

whereas applying R4 leads to:

‖T̂4 − T‖2F .
s1rmax{d1, d2, log(d3)}

n
.

It is clear that T̂4 is a better estimator when r ≪ d1 = d2 = d3.

16



3.2 Low-rankness regularizers

We now consider regularizers that encourages low rank estimates. We begin with the tensor

nuclear norm regularization:

R5(A) = ‖A‖∗.

Recall that R∗
5(A) = ‖A‖s.

Lemma 7. There exists a constant 0 < c < ∞ such that

wG[BR5
(1)] ≤ c

√
(d1 + d2 + d3). (29)

Now let

Θ5(r) =
{
A ∈ Rd1×d2×d3 : max{r1(A), r2(A), r3(A)} ≤ r

}
.

For an arbitrary A ∈ Θ5(r), denote by P1, P2, P3 the projection onto the linear space spanned

by the mode-1, -2 and -3 fibers respectively. As we argued in the previous section, R5(·) is
weakly decomposable with respect to A(P1, P2, P3) and B(P1, P2, P3), and A ∈ B(P1, P2, P3)

where A(P1, P2, P3) and B(P1, P2, P3) are defined by (14) and (15) respectively. It can also

be shown that

Lemma 8. For any A ∈ Θ5(r),

s5(A(P1, P2, P3)) = sup
B∈A(P1,P2,P3)/{0}

R2
5(B)

‖B‖2F
≤ r2.

Lemmas 7 and 8 show that

sup
T∈Θ5(r)

max
{
‖T̂5 − T‖2n, ‖T̂5 − T‖2F

}
.

r2(d1 + d2 + d3)

n
,

with high probability by taking

λ ≍
√

d1 + d2 + d3
n

,

where T̂5 is the regularized least squares estimate defined by (2) when using regularizer R5(·).
Next we consider the low-rankness regularization via matricization:

R6(A) =
1

3
(‖M1(A)‖∗ + ‖M2(A)‖∗ + ‖M3(A)‖∗) .

It is not hard to see that

R∗
6(A) = 3max {‖M1(A)‖s, ‖M2(A)‖s, ‖M3(A)‖s} .
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Lemma 9. There exists a constant 0 < c < ∞ such that

wG[BR6
(1)] ≤ c

√
max{d1d2, d2d3, d1d3}. (30)

On the other hand,

Lemma 10. For any A ∈ Θ5(r),

s6(A(P1, P2, P3)) = sup
B∈A(P1,P2,P3)/{0}

R2
6(B)

‖B‖2F
≤ r.

Lemmas 9 and 10 suggest that

sup
T∈Θ5(r)

max
{
‖T̂6 − T‖2n, ‖T̂6 − T‖2F

}
.

rmax{d1d2, d2d3, d1d3}
n

,

with high probability by taking

λ ≍
√

max{d1d2, d2d3, d1d3}
n

.

where T̂6 is the regularized least squares estimate defined by (2) when using regularizer R6(·).
Comparing with the rates for estimates with regularizers R5 and R6, we can see the

benefit of using R5. For any T ∈ Θ5(r), If we apply regularizer R5, then

‖T̂5 − T‖2F .
r2(d1 + d2 + d3)

n
.

This is to be compared with the risk bound for matricized regularization:

‖T̂6 − T‖2F .
rmax{d1d2, d2d3, d1d3}

n
.

Obviously T̂5 always outperform T̂6 since r ≤ min{d1, d2, d3}. The advantage of T̂5 is typically

rather significant since in general r ≪ min{d1, d2, d3}. On the other hand, T̂6 is more

amenable for computation.

Both upper bounds on Frobenius error on T̂5 and T̂6 are novel results and comple-

ment the existing results on tensor completion Gandy et al. (2011); Mu et al. (2014) and

Yuan and Zhang (2014).
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4 Specific Statistical Problems

In this section, we apply our results to several concrete examples where we are attempting to

estimate a tensor under certain sparse or low rank constraints, and show that the regularized

least squares estimate T̂ is typically minimiax rate optimal with appropriate choices of

regularizers.

4.1 Multi-Response regression with large p

The first example we consider is the multi-response regression model:

Y
(i)
k =

p∑

j=1

m∑

ℓ=1

X
(i)
jℓ Tjℓk + ǫ

(i)
k ,

where 1 ≤ i ≤ n represents the index for each sample, 1 ≤ k ≤ m represents the index for

each response and 1 ≤ j ≤ p represents the index for each feature. For the multi-response

regression problem we have N = 3, M = 2, d1 = d2 = m which represents the total number

of responses and d3 = p, which represent the total number of parameters.

Since we are in the setting where p is large but only a small number s are relevant, we

define the subspace:

T1 =

{
A ∈ Rm×m×p |

p∑

j=1

I(‖A··j‖F 6= 0) ≤ s

}
.

Furthermore for each i we assume X(i) ∈ Rm×p where each entry ofX(i), [X(i)]k,j, corresponds

to the jth feature for the kth response. For simplicity, we assume the X(i)’s are independent

Gaussian with covariance Σ̃ ∈ Rmp×mp. The penalty function we are considering is:

R(A) =

p∑

j=1

‖A··j‖F, (31)

and the corresponding dual function applied to the i.i.d. Gaussian tensor G is:

R∗(G) = max
1≤j≤p

‖G..j‖F.

Theorem 2. Under the multi-response regression model with T ∈ T1 and independent Gaus-

sian design where c2ℓ ≤ λmin(Σ̃) ≤ λmax(Σ̃) ≤ c2u, if

λ ≥ 3cu

√
max{m2, log p}

n
,
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such that
√
sλ converges to zero as n increases, then there exist some constants c1, c2 > 0

such that with probability at least 1− p−c1

max
{
‖T̂ − T‖2n, ‖T̂ − T‖2F

}
≤ c2c

2
u

c2ℓ
sλ2,

when n is sufficiently large, where T̂ is the regularized least squares estimate defined by (2)

with regularizer given by (31). In addition,

min
T̃

max
T∈T1

‖T̃ − T‖2F ≥ c3smax{m2, log p/s}
c2un

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken over all

estimators T̃ based on data {(X(i), Y (i)) : 1 ≤ i ≤ n}.

Theorem 2 shows that when taking

λ ≍
√

max{m2, log p}
n

,

the regularized least squares estimate defined by (2) with regularizer given by (31) achieves

minimax optimal rate of convergence over the parameter space T1.

Alternatively, there are settings where the effect of covariates on the multiple tasks may

be of low rank structure. In such a situation, we may consider

T2 =

{
A ∈ Rm×m×p |

p∑

j=1

rank(A..j) ≤ r

}
.

An appropriate penalty function in this case is:

R(A) =

p∑

j=1

‖A..j‖∗, (32)

and the corresponding dual function applied to G is:

R∗(G) = max
1≤j≤p

‖G..j‖s.

Theorem 3. Under the multi-response regression model with T ∈ T2 and independent Gaus-

sian design where c2ℓ ≤ λmin(Σ̃) ≤ λmax(Σ̃) ≤ c2u, if

λ ≥ 3cu

√
max{m, log p}

n
,
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such that
√
rλ converges to zero as n increases, then there exist some constants c1, c2 > 0

such that with probability at least 1− p−c1,

max
{
‖T̂ − T‖2n, ‖T̂ − T‖2F

}
≤ c2c

2
u

c2ℓ
rλ2

when n is sufficiently large, where T̂ is the regularized least squares estimate defined by (2)

with regularizer given by (32). In addition,

min
T̃

max
T∈T2

‖T̃ − T‖2F ≥ c3rmax{m, log(p/r)}
c2un

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken over all

estimators T̃ based on data {(X(i), Y (i)) : 1 ≤ i ≤ n}.

Again Theorem 3 shows that by taking

λ ≍
√

max{m, log p}
n

,

the regularized least squares estimate defined by (2) with regularizer given by (32) achieves

minimax optimal rate of convergence over the parameter space T2. Comparing with opti-

mal rates for estimating a tensor from T1, one can see the benefit and importance to take

advantage of the extra low rankness if the true coefficient tensor is indeed from T2.

4.2 Multivariate Sparse Auto-regressive Models

Now we consider the setting of vector auto-regressive models. In this case, our generative

model is:

X(t+p) =

p∑

j=1

AjX
(t+p−j) + ǫ(t), (33)

where 1 ≤ t ≤ n represents the time index, 1 ≤ j ≤ p represents the lag index, {X(t)}n+p
t=0

is an m-dimensional vector, ǫ(t) ∼ N (0, Im×m) represents the additive noise. Note that the

parameter tensor T is anm×m×p tensor so that T··j = Aj , and Tkℓj represents the co-efficient

of the kth variable on the ℓth variable at lag j. This model is studied by Basu and Michailidis

(2015) where p is relatively small (to avoid introducing long-range dependence) and m is

large. Our main results allow more general structure and regularization schemes than those

considered in Basu and Michailidis (2015).

21



Since we assume the number of series m is large, and there are m2 possible interactions

between the series we assume there are only s ≪ m2 interactions in total.

T3 =

{
A ∈ Rm×m×p |

m∑

k=1

m∑

ℓ=1

I(Akℓ· 6= 0) ≤ s

}
. (34)

The penalty function we are considering is:

R(A) =
m∑

k=1

m∑

ℓ=1

‖Akℓ·‖ℓ2, (35)

and the corresponding dual function applied to G is:

R∗(G) = max
1≤k,ℓ≤m

‖Gk,ℓ,.‖ℓ2.

The challenge in this setting is that the X ’s are highly dependent and we use the results

developed in Basu and Michailidis (2015) to prove that (18) is satisfied.

Prior to presenting the main results, we introduce concepts developed in Basu and Michailidis

(2015) that play a role in determining the constants c2u and c2ℓ which relate to the stability

of the auto-regressive processes. A p-variate Gaussian time series is defined by its auto-

covariance matrix function

ΓX(h) = Cov(X(t), X(t+h)),

for all t, h ∈ Z. Further, we define the spectral density function:

fX(θ) :=
1

2π

∞∑

ℓ=−∞

ΓX(ℓ)e
−iℓθ, θ ∈ [−π, π].

To ensure the spectral density is bounded, we make the following assumption:

M(fX) := ess sup
θ

Λmax(fX(θ)) < ∞.

Further, we define the matrix polynomial

A(z) = Im×m −
p∑

j=1

Ajz
j

where {Aj}pj=1 denote the back-shift matrices, and z represents any point on the complex

plane. Note that for a stable, invertible AR(p) process,

fX(θ) =
1

2π
A−1(e−iθ)A−1(e−iθ).
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We also define the lower extremum of the spectral density:

m(fX) := ess inf
θ

Λmin(fX(θ)).

Note that m(fX) and M(fX) satisfy the following bounds:

m(fX) ≥
1

2πµmax(A)
, and M(fX) ≤

1

2πµmin(A)
,

where

µmin(A) := min
|z|=1

Λmin(A(z)A(z))

and

µmax(A) := max
|z|=1

Λmax(A(z)A(z)).

From a straightforward calculation, we have that for any fixed ∆:

1

µmax

‖∆‖2F ≤ E
[
‖∆‖2n

]
≤ 1

µmin

‖∆‖22. (36)

Hence c2u = 1/µmin and c2ℓ = 1/µmax. Now we state our main result for auto-regressive

models.

Theorem 4. Under the vector auto-regressive model defined by (33) with T ∈ T3, if

λ ≥ 3

√
max{p, 2 logm}

nµmin
,

such that
√
sλ converges to zero as n increases, then there exist some constants c1, c2 > 0

such that with probability at least 1−m−c1,

max
{
‖T̂ − T‖2n, ‖T̂ − T‖2F

}
≤ c2µmax

µmin
sλ2,

when n is sufficiently large, where T̂ is the regularized least squares estimators defined by (2)

with regularizer given by (35). In addition,

min
T̃

max
T∈T3

‖T̃ − T‖2F ≥ c3µmin
smax{p, log(m/

√
s)}

n
,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken over all

estimators T̃ based on data {X(t) : t = 0, . . . , n+ p}.
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Theorem 4 provides, to our best knowledge, the only lower bound result for multivariate

time series, and the upper bound is different from Proposition 4.1 in Basu and Michailidis

(2015) since we impose sparsity only on the large m directions and not over the p lags.

Our framework also extends to any low-dimensional structure on the tensor A defined by

matricization, whereas Basu and Michailidis (2015) impose sparsity through vectorization.

Note that Proposition 4.1 in Basu and Michailidis (2015) follows directly from Lemma 2

with d1 = p and d2 = d3 = m.

4.3 Pairwise interaction tensor models

Finally, we consider the tensor regression (1) where T follows a pairwise interaction model.

More specifically, (X(i), Y (i)), i = 1, 2, . . . , n are independent copies of a random couple

X ∈ Rd1×d2×d3 and Y ∈ R such that

Y = 〈X, T 〉+ ǫ

and

Tj1j2j3 = A
(12)
j1j2

+ A
(13)
j1j3

+ A
(23)
j2j3

.

Here A(k1,k2) ∈ Rdk1×dk2 such that

A(k1,k2)1 = 0, and (A(k1,k2))⊤1 = 0.

The pairwise interaction was used originally by Rendle et al. (2009); Rendle and Schmidt-Thieme

(2010) for personalized tag recommendation, and later analyzed in Chen et al. (2013). Hoff

(2003) briefly introduced a single index additive model (amongst other tensor models) which

is a sub-class of the pairwise interaction model. The regularizer we consider is:

R(A) = ‖A(12)‖∗ + ‖A(13)‖∗ + ‖A(23)‖∗. (37)

It is not hard to see that R defined above is decomposable with respect to A(P1, P2, P3) for

any projection matrices.

Let

T4 = {A ∈ Rd1×d2×d3 : Aj1j2j3 = A
(12)
j1j2

+ A
(13)
j1j3

+ A
(23)
j2j3

, A(k1,k2) ∈ Rdk1×dk2 ,

A(k1,k2)1 = 0, and (A(k1,k2))⊤1 = 0

max
k1,k2

rank(A(k1,k2)) ≤ r}.
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For simplicity, we assume i.i.d. Gaussian design so c2ℓ = c2u = 1.

Theorem 5. Under the pairwise interaction model with T ∈ T4, if

λ ≥ 3

√
max{d1, d2, d3}

n
,

such that
√
rλ converges to zero as n increases, then there exist constants c1, c2 > 0 such

that with probability at least 1−min{d1, d2, d3}−c1,

max
{
‖T̂ − T‖2n, ‖T̂ − T‖2F

}
≤ c2rλ

2,

when n is sufficiently large, where T̂ is the regularized least squares estimate defined by (2)

with regularizer given by (37). In addition,

min
T̃

max
T∈T4

‖T̃ − T‖2F ≥ c3rmax{d1, d2, d3}
n

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken over all

estimate T̃ based on data {(X(i), Y (i)) : 1 ≤ i ≤ n}.

As in the other settings, Theorem 5 establishes the minimax optimality of the regularized

least squares estimate (2) when using an appropriate convex decomposable regularizer.

5 Proofs

In this section, we present the proofs to our main results.

5.1 Proof of Theorem 1

The initial steps exploit weak decomposability and are similar to those from Negahban et al.

(2012). After the initial steps, we use properties of Gaussian random variables and suprema

of Gaussian processes to derive our general upper bound. Throughout R(A) refers to the

weakly decomposable regularizer over the tensor A. For a tensor A, we shall write A0 and

A⊥ as its projections onto A0 and A⊥ with respect to the Frobenius norm, respectively.

Since T̂ is the empirical minimizer,

1

2n

n∑

i=1

‖Y (i) − 〈X(i), T̂ 〉‖2F + λR(T̂ ) ≤ 1

2n

n∑

i=1

‖Y (i) − 〈X(i), T 〉‖2F + λR(T ).
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Substituting Y (i) = 〈X(i), T 〉+ ǫ(i) and ∆ = T̂ − T ,

1

2n

n∑

i=1

‖〈X(i),∆〉‖2F ≤ 1

n

∣∣∣∣∣

n∑

i=1

〈ǫ(i) ⊗X(i),∆〉
∣∣∣∣∣+ λ(R(T )−R(T̂ ))

≤ R∗

(
1

n

n∑

i=1

ǫ(i) ⊗X(i)

)
R(∆) + λ(R(T )−R(T̂0)− cRR(T̂⊥))

≤ R∗

(
1

n

n∑

i=1

ǫ(i) ⊗X(i)

)
R(∆) + λ(R(∆0)− cRR(∆⊥)),

where the second inequality follows from the decomposability and the last one follows from

triangular inequality.

Let G ∈ Rd1×d2×...×dN be an tensor where each entry is i.i.d. N (0, 1). Recall the definition

of Gaussian width:

wG[BR(1)] = E[R∗(G)].

For simplicity let

ηR =
3 + cR
2cR

and recall that λ ≥ 2cuηRn
−1/2E[R∗(G)]. We have the following Lemma:

Lemma 11. If λ ≥ 2cuηRn
−1/2E[R∗(G)], then

λ ≥ ηRR∗

(
1

n

n∑

i=1

ǫ(i) ⊗X(i)

)
,

with probability at least 1− exp{−η2RE[R∗(G)]2/4}

The proof relies on Gaussian comparison inequalities and concentration inequalities.

Proof of Lemma 11. Recall that we have set:

λ ≥ 2ηRcu√
n

E[R∗(G)].

First we show that λ ≥ 2cuηRn
−1/2R∗(G) with high probability using concentration of

Lipschitz functions for Gaussian random variables (see Theorem 8 in Appendix A). First we

prove that f(G) = R∗(G) = supA∈BR(1)〈G,A〉 is a 1-Lipschitz function in terms of G. In

particular note that:

f(G)− f(G′) = sup
A:R(A)≤1

〈G,A〉 − sup
A:R(A)≤1

〈G′, A〉.
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Let Ã := argmaxA:R(A)≤1〈G,A〉. Then

sup
A:R(A)≤1

〈G,A〉 − sup
A:R(A)≤1

〈G′, A〉 = 〈G, Ã〉 − sup
R(A)≤1

〈G′, A〉

≤ 〈G, Ã〉 − 〈G′, Ã〉

≤ 〈G−G′, Ã〉
≤ sup

A:R(A)≤1

〈G−G′, A〉

≤ sup
A:‖A‖F≤1

〈G−G′, A〉

≤ ‖G−G′‖F,

where recall that ‖A‖F ≤ R(A) which implies the second last inequality. Therefore f(G) is a

1-Lipschitz function with respect to the Frobenius norm. Therefore, by applying Theorem 8

in Appendix A,

P

{∣∣∣∣∣ sup
A∈BR(1)

〈G,A〉 − E[ sup
A∈BR(1)

〈G,A〉]
∣∣∣∣∣ > wG(BR(1))

}
≤ 2 exp

(
−1

2
w2

G[BR(1)]

)
.

Therefore

λ ≥ ηRcu√
n
R∗(G)

with probability at least 1− 2 exp{−w2
G[BR(1)]/2}.

To complete the proof, we use a Gaussian comparison inequality between the supremum

of the process cun
−1/2〈G,A〉 and n−1

∑n
i=1〈ǫ(i) ⊗X(i), A〉 over the set BR(1). Recall that:

R∗

(
1

n

n∑

i=1

ǫ(i) ⊗X(i)

)
= sup

A∈BR(1)

〈
A,

1

n

n∑

i=1

ǫ(i) ⊗X(i)

〉
.

Recall that each ǫ(i) ∈ RdM+1×dM+2×...×dN is an i.i.d. standard Gaussian tensor and

vec(X) ∈ Rnd1d2···dM is a Gaussian vector covariance Σ ∈ R(nDM )×(nDM ). Further let {w(i) :

i = 1, . . . , n} be i.i.d. standard normal Gaussian tensors where w(i) ∈ Rd1×d2×...×dM . As-

suming (18) and using a standard Gaussian comparison inequality due to Lemma 13 in

Appendix A proven earlier in Anderson (1955), we get

P

{
sup

A:R(A)≤1

1

n

n∑

i=1

〈ǫ(i) ⊗X(i), A〉 > x

}
≤ P

{
sup

A:R(A)≤1

1

n

n∑

i=1

〈ǫ(i) ⊗ w(i), A〉 > x

cu

}
,
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since

Cov(vec(X)) = Σ � c2uI(nDM )×(nDM ).

Now we apply Slepian’s lemma (Slepian, 1962) to complete the proof. For completeness,

Slepian’s lemma is included in Appendix A. Clearly for any A,

1

n

n∑

i=1

〈E[ǫ(i) ⊗ w(i)], A〉 = 0.

Further a simple calculation shows that for any A,

Var

(
1

n

n∑

i=1

〈[ǫ(i) ⊗ w(i)], A〉
)

=
‖A‖2F
n

,

where we have exploited independence between across all samples and fibers, and the fact

that ǫ and w are independent. Further, for all A,A′,

Var

(
1

n

n∑

i=1

〈[ǫ(i) ⊗ w(i)], A−A′〉
)

=
‖A− A′‖2F

n
.

Now let G ∈ Rd1×d2×...×dN be an i.i.d. standard normal tensor and define the zero-mean

Gaussian process,
1√
n
〈G,A〉,

for any A ∈ BR(1). It is straightforward to show that,

Var

(
1√
n
〈G,A〉

)
=

‖A‖2F
n

,

and

Var

(
1√
n
〈G,A− A′〉

)
=

‖A− A′‖2F
n

,

for all A,A′. Therefore, directly applying Slepian’s lemma (Lemma 14 in Appendix A),

P

{
sup

R(A)≤1

1

n

n∑

i=1

〈ǫ(i) ⊗ w(i), A〉 > x

}
≤ P

{
sup

R(A)≤1

1√
n
〈G,A〉 > x

}
,

for all x > 0. Substituting x by x/cu means that

P

{
R∗

(
1

n

n∑

i=1

〈ǫ(i) ⊗ w(i), A〉
)

> x

}
≤ P

{
cu√
n
R∗(G) > x

}
,

for any x > 0. This completes the proof.
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In light of Lemma 11, for the remainder of the proof, we can condition on the event that

λ ≥ ηRR∗

(
1

n

n∑

i=1

ǫ(i) ⊗X(i)

)
.

Under this event,

1

2n

n∑

i=1

‖〈X(i),∆〉‖2F ≤ 1

ηR
λR(∆) + λ(R(∆0)− cRR(∆⊥))

≤
(
1 +

1

ηR

)
λR(∆0)−

(
cR − 1

ηR

)
λR(∆⊥).

Since
1

2n

n∑

i=1

‖〈∆, X(i)〉‖2F ≥ 0,

we get

R(∆⊥) ≤ 3

cR
R(∆0).

Hence we define the cone

C =
{
∆ | R(∆⊥) ≤ 3c−1

R R(∆0)
}
,

and know that ∆ ∈ C. Hence

1

2n

n∑

i=1

‖〈X(i),∆〉‖2F ≤ 3(1 + cR)

3 + cR
λR(∆0) ≤

3(1 + cR)

3 + cR

√
s(A)λ‖∆‖F.

Recall that
1

n

n∑

i=1

‖〈X(i),∆〉‖2F = ‖∆‖2n.

Thus,

‖∆‖2n ≤ 6(1 + cR)

3 + cR

√
s(A)λ‖∆‖F.

For convenience, in the remainder of this proof let

δn :=
6(1 + cR)

3 + cR

√
s(A)λ.

Now we split into three cases. (i) If ‖∆‖n ≥ ‖∆‖F, then

max{‖∆‖n, ‖∆‖F} ≤ δn.
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On the other hand if (ii) ‖∆‖n ≤ ‖∆‖F and ‖∆‖F ≤ cu
cℓ
δn, then

max{‖∆‖n, ‖∆‖F} ≤ cu
cℓ
δn.

Hence the only case we need to consider is (iii) ‖∆‖n ≤ ‖∆‖F and ‖∆‖F ≥ cuc
−1
ℓ δn. Now we

follow a similar proof technique to the proof for Theorem 1 in Raskutti et al. (2012).

Let us define the following set:

C(δn) :=
{
∆ ∈ Rd1×d2×···×dN | R(∆⊥) ≤ 3c−1

R R(∆0), ‖∆‖n ≤ ‖∆‖F
}
.

Further, let us define the event:

E(δn) :=
{
‖∆‖2n ≥ 1

4
‖∆‖2F | ∆ ∈ C(δn), ‖∆‖F ≥ cu

cℓ
δn

}
.

Let us define the alternative event:

E ′(δn) := {‖∆‖2n ≥ 1

4
‖∆‖2F | ∆ ∈ C(δn), ‖∆‖F =

cu
cℓ
δn}.

We claim that it suffices to show that E ′(δn) holds with probability at least 1 − exp(−cn)

for some constant c > 0. In particular, given an arbitrary non-zero ∆ ∈ C(δn), consider the
re-scaled tensor

∆̃ =
cuδn
cℓ

∆

‖∆‖F
.

Since ∆ ∈ C(δn) and C(δn) is star-shaped, we have ∆̃ ∈ C(δn) and ‖∆̃‖F = cuc
−1
ℓ δn by

construction. Consequently, it is sufficient to prove that E ′(δn) holds with high probability.

Lemma 12. Under the assumption that for any c′ > 0, there exists an n such that
√
sλ ≤ c′,

there exists a c̃ > 0 such that

P
(
E ′(δn)

)
≥ 1− exp(−c̃n).

Proof of Lemma 12. Denote by DN = d1d2 · · · dN and DM = d1d2 · · · dM . Now we define the

random variable

Zn(C(δn)) = sup
∆∈C(δn)

{
c2u
c2ℓ
δ2n −

1

n

n∑

i=1

‖〈∆, X(i)〉‖2F

}
,

then it suffices to show that

Zn(C(δn)) ≤
c2uδ

2
n

2c2ℓ
.
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Recall that the norm

‖∆‖2n =
1

n

n∑

i=1

‖〈∆, X(i)〉‖2F .

Let Npr(ǫ; C(δn); ‖ · ‖n) denote the proper covering number of C(δn) in ‖ · ‖n norm. Now let

∆1,∆2, . . . ,∆N , be a minimal cuδn/(8cℓ)-proper covering of C(δn), so that for all ∆ ∈ C(δn),
there exists a k such that

‖∆k −∆‖n ≤ cuδn
8cℓ

,

and

N = Npr

(
cuδn
8cℓ

; C(δn); ‖ · ‖n
)
.

Note that

c2uδ
2
n

c2ℓ
− 1

n

n∑

i=1

‖〈∆, X(i)〉‖2F =

(
c2uδ

2
n

c2ℓ
− 1

n

n∑

i=1

‖〈∆k, X(i)〉‖2F

)

+

(
1

n

n∑

i=1

‖〈∆k, X(i)〉‖2F − 1

n

n∑

i=1

‖〈∆, X(i)〉‖2F

)
.

By the Cauchy-Schwarz inequality, we have

1

n

n∑

i=1

‖〈∆k, X(i)〉‖2F − ‖〈∆, X(i)〉‖2F

=
1

n

n∑

i=1

〈
〈∆k −∆, X(i)〉, 〈∆(k) +∆, X(i)〉

〉

≤
(
1

n

n∑

i=1

‖〈∆k −∆, X(i)〉‖2F

)1/2(
1

n

n∑

i=1

‖〈∆k +∆, X(i)〉‖2F

)1/2

= ‖∆k −∆‖n
(
1

n

n∑

i=1

‖〈∆k +∆, X(i)〉‖2F

)1/2

.

By our choice of covering, ‖∆k −∆‖n ≤ cuδn/8cℓ. On the other hand, we have

(
1

n

n∑

i=1

‖〈∆k +∆, X(i)〉‖2F

)
≤
(
2‖∆k‖2n + 2‖∆‖2n

)1/2 ≤
√

4c2uδ
2
n/c

2
ℓ = 2

cuδn
cℓ

.

Overall, we have established the upper bound

1

n
‖〈∆k, X(i)〉‖2F − ‖〈∆, X(i)〉‖2F ≤ c2uδ

2
n

4c2ℓ
.
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Hence we have:

Zn(C(δn)) ≤ max
1≤k≤N

{
c2uδ

2
n

c2ℓ
− 1

n

n∑

i=1

‖〈∆k, X(i)〉‖2F

}
+

c2uδ
2
n

4c2ℓ
.

Now we use (18) combined with the Hanson-Wright inequality (Hanson and Wright,

1971) to prove that for any ∆(k) in our covering set,

P

{
c2u
c2ℓ
δ2n − ‖∆k‖2n >

c2uδ
2
n

4c2ℓ

}
≤ exp(−cn),

for some constant c > 0. Recall that

Σ = E[vec(X)vec(X)⊤] ∈ R(nDM )×(nDM ).

Further, recall [M ] = {1, 2, ...,M} and define an extension of the standard matricization

∆̃ := M[M ](∆) ∈ RDM×DN/DM

which groups together the first M modes. Further we define the matrix Q ∈ R(nDM )×(nDM )

such that

Qrℓ,sm = I(r = s)〈∆̃ℓ, ∆̃m〉

where 1 ≤ r, s ≤ n and 1 ≤ ℓ,m ≤ DM and ∆̃ℓ, ∆̃m ∈ Rn. Simple algebra shows that

‖∆‖2n =
1

n
Z⊤Q1/2ΣQ1/2Z.

for some Z ∈ RnDM such that

Z ∼ N (0, I(nDM )×(nDM )).

Note that

E[‖∆‖2n] =
1

n
E[Z⊤Q1/2ΣQ1/2Z] ≥ c2ℓ

n
E[Z⊤QZ],

using (18). Furthermore,
c2ℓ
n
E[Z⊤QZ] = c2ℓ‖∆̃‖2F = c2uδ

2
n.

Now we apply the Hanson-Wright inequality (see, e.g., Hanson and Wright, 1971) to get

P

{
c2u
c2ℓ
δ2n − ‖∆‖2n >

c2u
c2ℓ
δ2nζ

}
≤ 2 exp

(
−cmin

{
n2ζ2δ4n

‖Q1/2ΣQ1/2‖2F
,

nζδ2n
‖Q1/2ΣQ1/2‖s

})
.
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First we upper bound ‖Q1/2ΣQ1/2‖2F. If (18) holds, then

‖Q1/2ΣQ1/2‖2F ≤ c2u‖Q‖2F.

Furthermore,

‖Q‖2F =
n∑

s=1

n∑

r=1

I(r = s)

DM∑

ℓ=1

DM∑

m=1

〈∆̃ℓ, ∆̃m〉2

=
n∑

r=1

DM∑

ℓ=1

DM∑

m=1

〈∆̃ℓ, ∆̃m〉2

= n

DM∑

ℓ=1

DM∑

m=1

〈∆̃ℓ, ∆̃m〉2

≤ n

DM∑

ℓ=1

‖∆̃ℓ‖2ℓ2
DM∑

m=1

‖∆̃m‖2ℓ2

=
c2u
c2ℓ
nδ4n.

Thus,

‖Q1/2ΣQ1/2‖2F ≤ c4u
c2ℓ
nδ4n.

Next we upper bound ‖Q1/2ΣQ1/2‖s. If (18) holds, then

‖Q1/2ΣQ1/2‖s ≤ cu‖Q‖s.

Let v ∈ RnDM such that ‖v‖2ℓ2 = 1. Then

v⊤Qv =

n∑

s=1

n∑

r=1

DM∑

ℓ=1

DM∑

m=1

vrℓ〈∆̃ℓ, ∆̃m〉vsmI(r = s)

=

n∑

r=1

DM∑

ℓ=1

DM∑

m=1

〈∆̃ℓ, ∆̃m〉vrℓvrm

=

DM∑

ℓ=1

DM∑

m=1

〈∆̃ℓ, ∆̃m〉
n∑

r=1

vrℓvrm

≤ ‖v‖2ℓ2‖∆‖2F
=

c2u
c2ℓ
δ2n.
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This implies that

‖Q1/2ΣQ1/2‖s ≤
c3u
c2ℓ
δ2n.

Hence, applying the Hanson-Wright inequality yields:

P

{
c2u
c2ℓ
δ2n − ‖∆‖2n >

c2u
c2ℓ
δ2nζ

}
≤ 2 exp

(
−cc2ℓ

c2u
min{nζ2, nζ}

)
.

Setting ζ = 1/4 yields

P

{
c2u
c2ℓ
δ2n − ‖∆‖2n >

c2u
4c2ℓ

δ2n

}
≤ 2 exp

(
−cc2ℓn

16c2u

)
.

Next using the union bound, we have

P

{
max

s=1,2,...,N

{
c2u
c2ℓ
δ2n − ‖∆(s)‖2n

}
>

δ2n
4

}
≤ exp

(
logNpr

(
cuδn
8cℓ

, C(δn), ‖ · ‖n
)
− cn

)
.

It remains to bound logNpr(cuδn/(8cℓ), C(δn), ‖ · ‖n). Since the proper covering entropy is

upper bounded by the standard covering entropy so that

logNpr

(
cuδn
8cℓ

, C(δn), ‖ · ‖n
)

≤ logN

(
cuδn
16cℓ

, C(δn), ‖ · ‖n
)
,

it suffices to upper bound logN(cuδn/(16cℓ), C(δn), ‖ · ‖n). Viewing the samples X as fixed,

let us define the zero-mean Gaussian process {W∆}∆∈B via

W∆ =
1√
n

n∑

i=1

〈ǫ(i) ⊗X(i),∆〉

where {ǫ(i) : i = 1, . . . , n} are i.i.d. standard Gaussian random variables. By construction,

we have

var[(W∆ −W∆′)] = ‖∆−∆′‖2n.

By the Sudakov minoration (see, e.g., Ledoux and Talagrand, 1991), for all η > 0 we have

η
√
logN(η, C(δn), ‖ · ‖n) ≤ 4Eǫ

(
sup

∆∈C(δn)

W∆

)
.

Setting η = cuδn/(16cℓ), we obtain the upper bound:

√
1

n
logN

(
cuδn
16cℓ

, C(δn), ‖.‖n
)

≤ 64cℓ
cuδn

Eǫ

(
sup

∆∈C(δn)

1

n

n∑

i=1

〈ǫ(i) ⊗X(i),∆〉
)
.

34



The final step is to upper bound the Gaussian complexity

Eǫ

(
sup

∆∈C(δn)

1

n

n∑

i=1

〈ǫ(i) ⊗X(i),∆〉
)
.

Clearly,

1

n

n∑

i=1

〈ǫ(i) ⊗X(i),∆〉 ≤ R∗

(
1

n

n∑

i=1

ǫ(i) ⊗X(i)

)
R(∆) ≤ λ

ηR
R(∆).

by the definition of λ and our earlier argument. Since ∆ ∈ C(δn),

λ

ηR
R(∆) ≤ λ(1 + 3c−1

R )

ηR
R(∆0) ≤

λ(1 + 3c−1
R )

ηR

√
s(A)‖∆0‖F ≤ cu(1 + 3c−1

R )

cℓηR
δn
√

s(A)λ.

Therefore,

Eǫ

(
sup

∆∈C(δn)

1

n

n∑

i=1

〈ǫ(i) ⊗X(i),∆〉
)

≤ cu(1 + 3c−1
R )

cℓηR
δn
√
s(A)λ,

and √
1

n
logN(

cuδn
16cℓ

, C(δn), ‖.‖n) ≤ 64
(1 + 3c−1

R )

ηR

√
s(A)λ.

Hence √
logN(

cuδn
16cℓ

, C(δn), ‖.‖n) ≤ 64
(1 + 3c−1

R )

ηR

√
n
√

s(A)λ

and

P

{
max

s=1,2,...,N

{
c2u
c2ℓ
δ2n − ‖∆(s)‖2n

}
>

c2uδ
2
n

4c2ℓ

}
≤ exp(642cns(A)λ2 − cn) ≤ exp(−c̃n)

where the finally inequality holds since s(A)λ2 converges to 0 so if we choose n to be suffi-

ciently large.

Finally we return to the main proof. On the event E(δn), it now follows easily that,

max{‖∆‖22, ‖∆‖2n} ≤ ηRc
2
u

c2ℓ
s(A)λ2.

This completes the proof for Theorem 1.
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5.2 Proof of other results in Section 3

In this section we present proofs for the other main results from Section 3, deferring the

more technical parts to the appendix.

Proof of Lemmas 2, 3 and 4. We prove these three lemmas together since the proofs follow

a very similar argument. First let S ⊂ {1, 2, 3} denote the directions in which sparsity is

applied and DS =
∏

k∈S dk denote the total dimension in all these directions. For example,

in Lemma 2 S = {1, 2, 3} and DS = d1d2d3, for Lemma 3, S = {2, 3} and DS = d2d3 and for

Lemma 4, S = {1} and DS = d1. Recall N = {1, 2, 3} and DN = d1d2d3.

Note that R∗(G) can be represented by the variational form:

R∗(G) = sup
‖vec(u)‖ℓ1≤1,‖v‖F≤1

〈G, u⊗ v〉,

where u ∈ R
dS1

×...×dS|S| and v ∈ R
dSc

1
×...×dSc

N−|S| . Now we express the supremum of this

Gaussian process as:

sup
(u,v)∈V

vec(u)⊤MS(G)vec(v),

where recall MS is the matricization involving either slice or fiber S. The remainder of the

proof follows from Lemma 15 in Appendix B.

Proof of Lemma 5. Recall that

R∗(G) := max
1≤j3≤d3

‖G..j3‖s .

For each 1 ≤ j3 ≤ d3, Lemma 16 in Appendix B with N = 2 satisfies the concentration

inequality

E[‖G..j3‖s] ≤
√
6(d1 + d2).

Applying standard bounds on the maximum of functions of independent Gaussian random

variables,

E[ max
1≤j3≤d3

‖G..j3‖s] ≤
√

6(d1 + d2 + log d3).

This completes the proof.
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Proof of Lemma 6. Using the standard nuclear norm upper bound for a matrix in terms of

rank and Frobenius norm:

R2
4(A) =

(
d3∑

j3=1

‖A··j3‖∗
)2

≤
(

d3∑

j3=1

√
rank(A··j3)‖A··j3‖F

)2

≤
d3∑

j3=1

rank(A··j3)

d3∑

j3=1

‖A··j3‖2F =

d3∑

j3=1

rank(A··j3)‖A‖2F,

where the final inequality follows from the Cauchy-Schwarz inequality. Finally, note that for

any A ∈ Θ4(r)/{0},
d3∑

j3=1

rank(A··j3) ≤ r,

which completes the proof.

Proof of Lemma 7. Note that R∗(G) = ‖G‖s, we can directly apply Lemma 16 with N = 3

from Appendix B.

Proof of Lemma 8. From Tucker decomposition (16), it is clear that for any A ∈ Θ5(r), we

can find sets of vectors {uk : k = 1, . . . , r2}, {vk : k = 1, . . . , r2} and {wk : k = 1, . . . , r2}
such that

A =
r2∑

k=1

uk ⊗ vk ⊗ wk,

and in addition,

u⊤
k uk′ = (v⊤k vk′)(w

⊤
k wk′) = 0

for any k 6= k′. It is not hard to see that

‖A‖2F =
r2∑

k=1

(
‖uk‖2ℓ2‖vk‖2ℓ2‖wk‖2ℓ2

)
.
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On the other hand, as shown by Yuan and Zhang (2014),

‖A‖∗ =
r2∑

k=1

(‖uk‖ℓ2‖vk‖ℓ2‖wk‖ℓ2) .

The claim then follows from an application of Cauchy-Schwartz inequality.

Proof of Lemma 9. Recall that we are considering the regularizer

R∗
6(A) = 3max {‖M1(A)‖s, ‖M2(A)‖s, ‖M3(A)‖s} ,

and our goal is to upper bound

R∗
6(G) = 3 max

1≤k≤3
‖Mk(G)‖s.

Once again apply Lemma 16 in Appendix B with N = 2 for each matricization implies

E[R∗
6(G)] ≤ 4max(

√
d1,
√

d2,
√
d3).

Proof of Lemma 10. It is not hard to see that

R6(A)
2 =

1

9
(‖M1(A)‖∗ + ‖M2(A)‖∗ + ‖M3(A)‖∗)2

≤ 1

9
(
√
r1 +

√
r2 +

√
r3)

2‖A‖2F
≤ max{r1(A), r2(A), r3(A)}‖A‖2F,

which completes the proof.

5.3 Proof of results in Section 4

In this section we prove the results in Section 4. First we provide a general minimax lower

result that we apply to our main results. Let T ⊂ Rd1×d2×···×dN be an arbitrary subspace of

order-N tensors.
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Theorem 6. Assume that (18) holds and there exists a finite set {A1, A2, . . . , Am} ∈ T of

tensors such that logm ≥ 128nδ2, such that

nc−2
u δ2 ≤ ‖Aℓ1 − Aℓ2‖2F ≤ 8nc−2

u δ2,

for all ℓ1 6= ℓ2 ∈ [m] and all δ > 0. Then

min
T̃

max
T∈T

‖T̃ − T‖2F ≥ cc−2
u δ2,

with probability at least 1/2 for some c > 0.

Proof. We use standard information-theoretic techniques developed in Ibragimov and Has’minskii

(1981) and extended in Yang and Barron (1999). Let {A1, A2, . . . , Am} be a set such that

‖Aℓ1 − Aℓ2‖2F ≥ nc−2
u δ2

for all ℓ1 6= ℓ2, and let m̃ be a random variable uniformly distributed over the index set

[m] = {1, 2, . . . , m}.
Now we use a standard argument which allows us to provide a minimax lower bound

in terms of the probability of error in a multiple hypothesis testing problem (see, e.g.,

Yang and Barron, 1999; Yu, 1996) then yields the lower bound (write out steps here).

inf
T̃

sup
T∈T

P

{
‖T̃ − T‖2F ≥ c−2

u δ2

2

}
≥ inf

T̃
P(T̃ 6= Am̃)

where the infimum is taken over all estimators T̃ that are measurable functions of X and Y .

Let X = {X(i) : i = 1, . . . , n}, Y = {Y (i) : i = 1, . . . , n} and E = {ǫ(i) : i = 1, . . . , n}.
Using Fano’s inequality (see, e.g., Cover and Thomas, 1991), for any estimator T̃ , we have:

P[T̃ 6= Am̃|X ] ≥ 1− IX(A
m̃; Y ) + log 2

logm
.

Taking expectations over X on both sides, we have

P[T̃ 6= Am̃] ≥ 1− EX [IX(A
m̃; Y )] + log 2

logm
.

For ℓ = 1, 2, . . . , m, let Qℓ denote the condition distribution of Y conditioned on X and

the event {T = Aℓ}, and DKL(Q
ℓ1 ||Qℓ2) denote the Kullback-Leibler divergence between Qℓ1
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and Qℓ2 . From the convexity of mutual information (see, e.g., Cover and Thomas, 1991), we

have the upper bound

IX(T ; Y ) ≤ 1(
m
2

)
m∑

ℓ1,ℓ2=1

DKL(Q
ℓ1 ||Qℓ2).

Given our linear Gaussian observation model (1),

DKL(Q
ℓ1 ||Qℓ2) =

1

2

n∑

i=1

(
〈Aℓ1, X(i)〉 − 〈Aℓ2 , X(i)〉

)2
=

n‖Aℓ1 − Aℓ2‖2n
2

.

Further if (18) holds, then

EX [IX(T ; Y )] ≤ n

2
(
m
2

)
∑

ℓ1 6=ℓ2

EX [‖Aℓ1 −Aℓ2‖2n] ≤ c2u
n

2
(
m
2

)
∑

ℓ1 6=ℓ2

‖Aℓ1 −Aℓ2‖2F.

Based on our construction, there exists a set {A1, A2, . . . , Am} where each Aℓ ∈ T such

that logm ≥ Cnδ2 and

c−1
u δ ≤ ‖Aℓ1 −Aℓ2‖F ≤ 8c−1

u δ

for all ℓ1 6= ℓ2 ∈ {1, 2, . . . , m}. If (18) holds, then

EX

(
‖Aℓ1 −Aℓ2‖2n

)
≤ c2u‖Aℓ1 −Aℓ2‖2F

and we can conclude that

EX [IX(T ; Y )] ≤ 32c2unδ
2,

and from the earlier bound due to Fano’s inequality, for and δ > 0 such that

32c2unδ
2 + log 2

logm
≤ 1

2
,

we are guaranteed that

P

{
T̃ 6= Am̃

}
≥ 1

2
.

The proof is now completed because logm ≥ 128nδ2 and 32nδ2 ≥ log 2.

Proof of Theorem 2. The proof for the upper bound follows directly from Lemma 4 with

d1 = d2 = m and d3 = p and noting that the overall covariance Σ ∈ R(nDM )×(nDM ) is

block-structured with blocks Σ̃ since each of the samples is independent. Hence

c2ℓ ≤ λmin(Σ) ≤ λmax(Σ) ≤ c2u.
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To prove the lower bound, we use Theorem 6 and construct a suitable packing set for T1.

The way we construct this packing is to construct two separate packing sets and select the

set with the higher packing number using a similar argument to that used in Raskutti et al.

(2012) which also uses two separate packing sets. The first packing set we consider involves

selecting the s-dimensional slice A..S where A ⊂ [j3] and S = {1, 2, ..., s}. Consider vec-

torizing each slice so v = vec(A..S) ∈ Rsm2

. Hence in order to apply Theorem 6, we define

the set T to be slices which is isomorphic to the vector space Rsm2

. Using Lemma 17 in

Appendix C, there exists a packing set {v1, v2, ..., vN} ∈ Rsm2

such that logN ≥ csm2 and

for all vℓ1, vℓ2 where ℓ1 6= ℓ2,
δ2

4
≤ ‖vℓ1 − vℓ2‖2F ≤ δ2

for any δ > 0. If we choose δ = c
√
sm/

√
n, then Theorem 6 implies the lower bound

min
T̃

max
T∈T1

‖T̃ − T‖2F ≥ cc−2
u

sm2

n
,

with probability greater than 1/2.

The second packing set we construct is for the slice A11· ∈ Rp. Since in the third direction

only s of the p co-ordinates are non-zero, the packing number for any slice is analogous to

the packing number for s-sparse vectors with ambient dimension p. Letting v = A11·, we

need to construct a packing set for

{v ∈ Rp | ‖v‖ℓ0 ≤ s}.

Using Lemma 18 in Appendix C, there exists a discrete set {v1, v2, ..., vN} such that logN ≥
cs log(p/s) for some c > 0 and

δ2

8
≤ ‖vk − vℓ‖22 ≤ δ2

for k 6= ℓ for any δ > 0. Setting δ2 = sn−1 log(p/s),

min
T̃

max
T∈T1

‖T̃ − T‖2F ≥ cc−2
u

s log(p/s)

n
,

with probability greater than 1/2.

Taking a maximum over lower bounds involving both packing sets completes the proof

of the lower bound in Theorem 2.
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Proof of Theorem 3. The upper bound follows directly from Lemma 5 with d1 = d2 = m

and d3 = p and noting that the overall covariance Σ ∈ R(nDM )×(nDM ) is block-structured with

blocks Σ̃ since each of the samples is independent.

To prove the lower bound, we use Theorem 6 and construct a suitable packing set for T2.

Once again we construct two separate packings and choose the set that leads to the larger

minimax lower bound. For our first packing set, we construct a packing a long once slice.

Let us assume A = (A··1, ..., A··p), where rank(A··1) ≤ r and

A··2 = · · · = A··p = 0.

If we let A··1 = M where M ∈ Rm×m then A = (M, 0, .., 0) ∈ Rm×m×p. Using Lemma 19 in

Appendix C, there exists a set {A1, A2, ..., AN} such that logN ≥ crm and

δ2

4
≤ ‖Aℓ1 − Aℓ2‖2F ≤ δ2

for all ℓ1 6= ℓ2 and any δ > 0. Here we set δ =
√
rm/n. Therefore using Theorem 6

min
T̃

max
T∈T2

‖T̃ − T‖2F ≥ cc−2
u

rm

n
,

with probability greater than 1/2.

The second packing set for T2 involves a packing in the space of singular values since

p∑

j=1

rank(A··j) ≤ r.

Let {σjk : k = 1, . . . , m} be the singular values of the matrix A··j. Under our rank constraint,

we have
p∑

j=1

m∑

k=1

I(σjk 6= 0) ≤ s.

Let v ∈ Rmp where

v = vec((σjk)1≤j≤p,1≤k≤m).

Note that
p∑

j=1

m∑

k=1

I(σjk 6= 0) ≤ r
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implies ‖v‖ℓ0 ≤ r. Using Lemma 18, there exists a set {v1, v2, ..., vN}, such that logN ≥
cr log(mp/r) and for all ℓ1 6= ℓ2,

δ2

4
≤ ‖vℓ1 − vℓ2‖22 ≤ δ2

for any δ > 0. If we set δ2 = rn−1 log(mp/r). Therefore using Theorem 6,

min
T̃

max
T∈T2

‖T̃ − T‖2F ≥ cc−2
u

r log(mp/r)

n
,

with probability greater than 1/2. Hence taking a maximum over both bounds,

min
T̃

max
T∈T2

‖T̃ − T‖2F ≥ cc−2
u

rmax{m, log(p/r), logm}
n

= cc−2
u

rmax{m, log(p/r)}
n

,

with probability greater than 1/2.

Proof of Theorem 4. The upper bound with

λ ≥ 3

√
max{p, 2 logm}

µminn

follows directly from Lemma 3 with d1 = p and d2 = d3 = m and (18) is satisfied with

c2u = 1/µmin and c2ℓ = 1/µmax according to (36).

To prove the lower bound is similar to the proof for the lower bound in Theorem 2. Once

again we use Theorem 6 and construct a two suitable packing sets for T3. The first packing

set we consider involves selecting an arbitrary subspace

T̃ := {A = (Aj1,j2,j3)j1,j2,j3 | 1 ≤ j1 ≤
√
s, 1 ≤ j2 ≤

√
s, 1 ≤ j3 ≤ p}.

Now if we let v = vec(A), then v comes from an sp-dimensional vector space for any A ∈ T̃ .

Using Lemma 17 in Appendix C, there exists a packing set {v1, v2, ..., vN} ∈ Rsp such that

logN ≥ csp and for all vℓ1, vℓ2 where ℓ1 6= ℓ2,

δ2

4
≤ ‖vℓ1 − vℓ2‖2F ≤ δ2

for any δ > 0. If we choose δ =
√

sp/n, then Theorem 6 implies the lower bound

min
T̃

max
T∈T3

‖T̃ − T‖2F ≥ cc−2
u

sp

n
,
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with probability greater than 1/2. Further c2u = 1/µmin.

For the second packing set we construct is for the slice A1,j2,j3 for any 1 ≤ j2, j3 ≤ m.

Since in the second and third direction only s of the co-ordinates are non-zero, we consider

the vector space

{v ∈ Rm2 | ‖v‖ℓ0 ≤ s}.

Once again using the standard standard hypercube construction in Lemma 18 in Appendix C,

there exists a discrete set {v1, v2, ..., vN} such that logN ≥ cs log(m2/s) for some c > 0 and

δ2

8
≤ ‖vℓ1 − vℓ2‖22 ≤ δ2

for ℓ1 6= ℓ2 for any δ > 0. Setting δ = sn−1 log(m2/s) yields

min
T̃

max
T∈T3

‖T̃ − T‖2F ≥ cc−2
u

s log(m/
√
s)

n
,

with probability greater than 1/2. Taking a maximum over lower bounds involving both

packing sets completes the proof of of our lower bound.

Proof of Theorem 5. The upper bound follows from a slight modification of the statement

in Lemma 5. In particular since R(A) = ‖A(12)‖∗ + ‖A(13)‖∗ + ‖A(23)‖∗, the dual norm is

R∗(A) = max
1≤k1<k2≤3

‖A(k1k2)‖s. (38)

Hence, following the same technique as used in Lemma 5

E[R∗(G)] ≤ c max
1≤k1<k2≤3

√
max{dk1, dk2}

n
= c

√
max{d1, d2, d3}

n
. (39)

It is also straightforward to see that s(T4) ≤ r.

To prove the lower bound, we construct three packing sets and select the one with the

largest packing number. Recall that

T4 = {A ∈ Rd1×d2×d3 : Aj1j2j3 = A
(12)
j1j2

+ A
(13)
j1j3

+ A
(23)
j2j3

, A(k1,k2) ∈ Rdk1×dk2 ,

A(k1,k2)1 = 0, and (A(k1,k2))⊤1 = 0

max
k1,k2

rank(A(k1,k2)) ≤ r}.
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Therefore our three packings are for A(12) ∈ Rd1×d2 , A(13) ∈ Rd1×d3 , and A(23) ∈ Rd2×d3

assuming each has rank r. We focus on packing in A(12) ∈ Rd1×d2 since the approach is

similar in the other two cases. Using Lemma 16 from Appendix B in combination with

Theorem 6,

min
T̃

max
T∈T4

‖T̃ − T‖2F ≥ cc−2
u

rmin{d1, d2}
n

,

with probability greater than 1/2. Repeating this process for packings in A(13) ∈ Rd1×d3 ,

and A(23) ∈ Rd2×d3 assuming each has rank r and taking a maximum over all three bounds

yields the overall minimax lower bound

min
T̃

max
T∈T4

‖T̃ − T‖2F ≥ cc−2
u

rmax{d1, d2, d3}
n

,

with probability greater than 1/2.
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A Results for Gaussian random variables

In this section we provide some standard concentration bounds that we use throughout this

paper. First, we provide the definition for sub-Gaussian random variables. A zero-mean

random variable X is sub-Gaussian if there is a positive number σ such that,

E[eγX ] ≤ eσ
2γ2/2.

For example, if X ∼ N (0, σ2) is a sub-Gaussian random variable with parameter σ.

For quadratic forms involving independent sub-Gaussian random variables, we have the

useful Hanson-Wright inequality.

Theorem 7 (Hanson-Wright inequality). Let X1, X2, . . . , Xn be independent zero-mean sub-

Gaussian random variables with sub-Gaussian parameter upper bounded σ. Further let A be

an n× n matrix. Then for every t ≥ 0 there exists a constant c > 0,

P
{
|X⊤AX − E(X⊤AX)| > t

}
≤ 2 exp

(
−cmin

{
t2

σ4‖A‖2F
,

t

σ2‖A‖s

})
,

where X = (X1, . . . , Xn)
⊤.

A.1 Gaussian comparison inequalities

The first result is a classical result from Anderson (1955).

Lemma 13 (Anderson’s comparison inequality). Let X and Y be zero-mean Gaussian ran-

dom vectors with covariance ΣX and ΣY respectively. If ΣX − ΣY is positive semi-definite

then for any convex symmetric set C,

P(X ∈ C) ≤ P(Y ∈ C).

The following Lemma is Slepian’s inequality Slepian (1962) which allows to upper bound

the supremum of one Gaussian process by the supremum of another Gaussian process.

Lemma 14 (Slepian’s Lemma). Let {Gs, s ∈ S} and {Hs, s ∈ S} be two centered Gaussian

processes defined over the same index set S. Suppose that both processes are almost surely
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bounded. For each s, t ∈ S, if E(Gs−Gt)
2 ≤ E(Hs−Ht)

2, then E[sups∈S Gs] ≤ E[sups∈S Hs].

Further if E(G2
s) = E(H2

s ) for all s ∈ S, then

P

{
sup
s∈S

Gs > x

}
≤ P

{
sup
s∈S

Hs > x

}
,

for all x > 0.

Finally, we require a standard result on the concentration of Lipschitz functions over

Gaussian random variables.

Theorem 8 (Theorem 3.8 from Massart (2003)). Let g ∼ N (0, Id×d) be a d-dimensional

Gaussian random variable. Then for any function F : Rd → R such that |F (x) − F (y)| ≤
L‖x− y‖ℓ2 for all x, y ∈ Rd, we have

P
[
|F (g)− E[F (g)]| ≥ t

]
≤ 2 exp

(
− t2

2L2

)
,

for all t > 0.

B Suprema for i.i.d. Gaussian tensors

In this section we provide important results on suprema of i.i.d. Gaussian tensors over

different sets.

B.1 The group ℓ2-ℓ∞ norm

Let G ∈ Rd1×d2 be an i.i.d. Gaussian matrix and define the set

V := {(u, v) ∈ Rd1 × Rd2 | ‖u‖ℓ2 ≤ 1 , ‖v‖ℓ1 ≤ 1}.

Using this notation, let us define the define the random quantity:

M(G, V ) := sup
(u,v)∈V

u⊤Gv.

Then we have the following overall bound.

Lemma 15.

E[M(G, V )] ≤ 3(
√
d1 +

√
log d2).
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Proof. Our proof user similar ideas to the proof of Theorem 1 in Raskutti et al. (2010). We

need to upper bound E[M(G, V )]. We are taking the supremum of the Gaussian process

sup
‖u‖ℓ2≤1, ‖v‖ℓ2≤1

u⊤Gv.

We now construct a second Gaussian process G̃u,v over the set V and apply Slepian’s in-

equality (see Lemma 14 in Appendix A.1) to upper bound

sup
‖u‖ℓ2≤1, ‖v‖ℓ2≤1

u⊤Gv

by the supremum over our second Gaussian process. G̃u,v. In particular, let us define the

process as:

G̃u,v = g⊤u+ h⊤v,

where the vectors (g, h) ∈ Rd1 × Rd2 are i.i.d. standard normals (also independent of each

other). It is straightforward to show that both u⊤Gv and g⊤u+h⊤v are zero-mean. Further

it is straightforward to show that

Var(G̃u,v − G̃u′,v′) = ‖u− u′‖2ℓ2 + ‖v − v′‖2ℓ2.

Now we show that

Var(u⊤Gv − u′⊤Gv′) ≤ ‖u− u′‖2ℓ2 + ‖v − v′‖2ℓ2 .

To this end, observe that

Var(u⊤Gv − u′⊤Gv′) = ‖uv⊤ − u′v′⊤‖2F
= ‖(u− u′)v⊤ + u′(v − v′)⊤‖2F
= ‖v‖2ℓ2‖u− u′‖ℓ2

2
+ ‖u′‖2ℓ2‖v − v′‖2ℓ2

+2(u⊤u′ − ‖u′‖ℓ2‖u‖ℓ2)(v⊤v′ − ‖v′‖ℓ2‖v‖ℓ2).

First note that ‖v‖2ℓ2 ≤ ‖v‖2ℓ1 ≤ 1 for all v ∈ V and ‖u′‖2ℓ2 ≤ 1. By the Cauchy-Schwarz

inequality, v⊤v′ − ‖v′‖ℓ2‖v‖ℓ2 ≤ 0 and u⊤u′ − ‖u′‖ℓ2‖u‖ℓ2 ≤ 0. Therefore

Var(u⊤Gv − u′⊤Gv′) ≤ ‖u− u′‖ℓ2
2
+ ‖v − v′‖2ℓ2.
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Consequently using Lemma 14

E[M(G, V )] ≤ E[ sup
‖u‖ℓ2≤1

g⊤u+ sup
‖v‖ℓ1≤1

h⊤v].

Therefore:

E[M(G, V )] ≤ E[ sup
‖u‖ℓ2≤1

g⊤u+ sup
‖v‖ℓ1≤1

h⊤v]

= E[ sup
‖u‖ℓ2≤1

g⊤u] + E[ sup
‖v‖ℓ1≤1

h⊤v]

= E[‖g‖ℓ2] + E[‖h‖ℓ∞ ].

By known results on Gaussian maxima (see e.g. Ledoux and Talagrand, 1991),

E[‖h‖ℓ∞ ] ≤ 3
√
log d2

and

E[‖g‖ℓ2] ≤
√

d1 + o(
√

d1) ≤
3

2

√
Dj.

Therefore

E[M(G, V )] ≤ 3

2

√
d1 + 3

√
log d2.

B.2 Spectral norm of tensors

Our proof is based on an extension of the proof techniques used for the proof of Proposition

1 in Negahban and Wainwright (2011).

Lemma 16. Let G ∈ Rd1×d2×···×dN be a random sample from an i.i.d. Gaussian tensor

ensemble. Then we have

E[‖G‖s] ≤ 4 log(4N)

N∑

k=1

√
dk.

Proof. Recall the definition of ‖G‖s:

‖G‖s = sup
(u1,u2,...,uN )∈Sd1−1×Sd2−1×···×SdN−1

〈u1 ⊗ u2 ⊗ · · · ⊗ uN , G〉.
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Since each entry 〈u1 ⊗ u2 ⊗ · · · ⊗ uN , G〉 is a zero-mean Gaussian random variable, ‖G‖s
is the supremum of a Gaussian process and therefore the concentration bound follows from

Theorem 7.1 in Ledoux Ledoux (2001).

We use a standard covering argument to upper bound E[‖G‖s]. Let {u1
1, u

2
1, . . . , u

M1

1 } be

a 1/2N covering number of the sphere Sd1−1 in terms of vector ℓ2-norm. Similarly for all

2 ≤ k ≤ N , let {u1
k, u

2
k, . . . , u

Mk

k } be a 1/2N covering number of the sphere Sdk−1. Therefore

〈u1 ⊗ u2 ⊗ · · · ⊗ uN−1 ⊗ uN , G〉

≤ 〈u1 ⊗ u2 ⊗ · · · ⊗ uN−1 ⊗ uj
N , G〉+ 〈u1 ⊗ u2 ⊗ · · · ⊗ uN−1 ⊗ (uN − uj

N), G〉.

Taking a supremum over both sides,

‖G‖s ≤ max
j=1,...,MN

〈u1 ⊗ u2 ⊗ · · · ⊗ uN−1 ⊗ uj
N , G〉+ 1

2N
‖G‖s.

Repeating this argument over all N directions,

‖G‖s ≤ 2 max
j1=1,2,...,M1,...,jN=1,2,...,MN

〈uj1
1 ⊗ uj2

2 ⊗ · · · ⊗ ujN
N , G〉.

By construction, each variable 〈uj1
1 ⊗uj2

2 ⊗· · ·⊗ujN
N , G〉 is a zero-mean Gaussian with variance

at most 1, so by standard bounds on Gaussian maxima,

E[‖G‖s] ≤ 4
√

log(M1 ×M2 × · · · ×MN) ≤ 4[
√

logM1 + · · ·+
√
logMN ].

There exist a 1/2N -coverings of Sdk−1 with logMk ≤ dk log(4N) which completes the proof.

C Hypercube packing sets

In this section, we provide important results for the lower bound results. One key concept is

the so-called Hamming distance.The Hamming distance is between two vectors v ∈ Rd and

v′ ∈ Rd is defined by:

dH(v, v
′) =

d∑

j=1

I(vj 6= v′j).
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Lemma 17. Let C = [−1,+1]d where d ≥ 6. Then there exists a discrete subset {v1, v2, ..., vm} ⊂
C, such that logm ≥ cd for some constant c > 0, and for all ℓ1 6= ℓ2,

δ2

4
≤ ‖vℓ1 − vℓ2‖2ℓ2 ≤ δ2,

for any δ > 0.

Proof. Let

vℓ ∈
{
− δ√

d
,
δ√
d

}d

,

i.e. a member of the d-dimensional hypercube re-scaled by
√
3δ/(2

√
d). Recall the definition

of Hamming distance provided above. In this case amounts to the places either vj or v′j is

negative, but both or not negative. Then according to Lemma 4 in Yu (1996), there exists

a subset re-scaled of this hypercube v1, v2, ..., vm, such that

dH(v
ℓ1, vℓ2) ≥ d

3

and logm ≥ cd. Clearly,

‖vℓ1 − vℓ2‖2ℓ2 =
3δ2

4d
dH(v

ℓ1, vℓ2) ≥ δ2

4
.

Further,

‖vℓ1 − vℓ2‖2ℓ2 ≤
3δ2

4d
× d ≤ 3δ2

4
≤ δ2.

This completes the proof.

Next we provide a hupercube packing set for the sparse subset of vectors. That is the set

V := {v ∈ Rd | ‖v‖ℓ0 ≤ s}.

This follows from Lemma 4 in Raskutti et al. (2011) which we state here for completeness.

Lemma 18. Let C = [−1,+1]d where d ≥ 6. Then there exists a discrete subset {v1, v2, ..., vm} ⊂
V ∩ C, such that logm ≥ cs log(d/s) for some c > 0, and for all ℓ1 6= ℓ2,

δ2

8
≤ ‖vℓ1 − vℓ2‖2ℓ2 ≤ δ2,

for any δ > 0.
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Finally we present a packing set result from Lemma 6 in Agarwal et al. (2012) that packs

into the set of rank-r d1 × d2 matrices.

Lemma 19. Let min{d1, d2} ≥ 10, and let δ > 0. Then for each 1 ≤ r ≤ min{d1, d2},
there exists a set of d1 × d2 matrices {A1, A2, ..., Am} with rank-r with cardinality logm ≥
crmin{d1, d2} for some constant c > 0 such that

δ2

4
≤ ‖Aℓ1 −Aℓ2‖2F ≤ δ2,

for all ℓ1 6= ℓ2.
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