
Node-level Coordinated Power-Performance Management

Rathijit Sen David A. Wood
Department of Computer Sciences
University of Wisconsin-Madison

Abstract
Pareto-optimal power-performance system configurations

can improve performance for a power budget or reduce

power for a performance target, both leading to energy sav-

ings. We develop a new power-performance management

framework that seeks to operate at the pareto-optimal frontier

for dynamically reconfigurable systems, focusing on single-

node reconfigurations in this paper.

Our framework uses new power-performance state descrip-

tors, Π-states, that improve upon the traditional ACPI-state

descriptors by taking into account interactions among multi-

ple reconfigurable components, quantifying system-wide im-

pact and predicting totally ordered pareto-optimal states.

We demonstrate applications of our framework for both

simulated systems and real hardware. In simulation, we

demonstrate (near-)optimal configurations in the presence of

a number of reconfigurable options such as core frequency,

LLC capacity, offchip bandwidth and memory frequency. On

an existing Intel Haswell single-socket server machine, we

achieve 48% (average) improvements in energy efficiency us-

ing only core frequency management.

1. Introduction

Today, power and energy are among the most critical con-

straints for system design and use [34, 10]. While compute

capability, in terms of number of transistors per chip, has

steadily increased (Moore’s Law), operating voltage has not

reduced in proportion (limited Dennard scaling). This in turn

has the unfortunate impact of increasing total energy per com-

putation as well as resource idle/leakage power. With sys-

tems getting larger as we step into the ExaScale era, manag-

ing power/energy consumption while meeting performance

demands is becoming more critical than ever before.

An ideal system would be energy-proportional [10], that

is, it would use energy in proportion to the work done. How-

ever, workloads vary in their resource requirement character-

istics – they may be compute-intensive or cache-intensive or

memory-intensive and not necessarily exclusively so. Thus,

effectively managing system power/energy consumption re-

quires the ability to dynamically reconfigure resources ac-

cording to computational requirements. Decades of archi-

tectural and circuits research has resulted in a multitude of

runtime configuration options, or “knobs” for individual sys-

tem components. Dynamic voltage and frequency scaling

(DVFS) and dynamic frequency scaling (DFS) for cores are

well-known techniques [5, 42]. Isci et al. [27] showed that a

global power manager can improve performance for a power

budget using per-core DVFS as reconfiguration knobs.

Apart from cores, cache and memory also consume sig-

nificant power and need to be managed for power/energy-

efficient performance. Intel’s Core Duo processor allows

shutting down portions of its last-level cache (LLC) [35]. In-

tel’s Ivy Bridge microarchitecture provides more fine-grained

control: a subset of the ways of its set-associative LLC can

be turned off [28]. IBM’s Power7 enables runtime throttling

of memory traffic [44]. Felter et al. [23] demonstrated ben-

efits through power-shifting using core DVFS and memory

throttling. Deng et al. [21] and David et al. [19] proposed

using DFS/DVFS for main memory. Moreover, to avoid

inconsistent/under-performing configurations, resource man-

agement must be coordinated. Deng et al. [20] demonstrated

coordinated management of core DVFS and memory DVFS.

Resource heterogeneity – a core resource is different from

a cache or memory resource – complicates resource man-

agement. The Advanced Configuration and Power Interface

(ACPI) specification [6] is an open standard that allows de-

vices (resources) to specify discrete operating states identified

by alphanumeric names. For example, P0, P1, P2,... represent

processor performance states. A central thesis of this work is

that individually ordered lists of operating states for different

resources do not identify ordering for combinations of states

across resources, required for system-level coordinated man-

agement. ACPI enumerations lack quantification of system-

wide power-performance impacts by not accounting for inter-

resource interactions or dynamic execution profiles.

In this work we propose a framework to address this prob-

lem. We use power-performance predictors, using existing

and proposed hardware counters, to characterize the expected

impact of different configurations and subsequently identify

pareto-optimal configurations. We call these augmented state

descriptors Π-states. Π-states for our single-node system are

computed dynamically from the Π-states of its constituent re-

sources/subsystems. In contrast with ACPI-like state descrip-

tions, Π-states include additional information – slowdown,

static power, dynamic energy, amount of work – to “stitch

together” component Π-states to form system-wide Π-states.

Our system predicts and exposes a “Π-dashboard” of to-

tally ordered, pareto-optimal Π-states from which the user or

operating system selects a desired power-performance profile

that causes a “one-shot” transition of the system to the cor-

responding configuration. The dashboard is updated periodi-

cally as execution profiles change over time. Table 2 shows

sample predicted Π-dashboards for blackscholes and jbb. The

dashboard is constructed from (a subset of) the states lying on

the predicted pareto-optimal frontier. Looking ahead, Figure

9 shows the predicted frontiers for a few workloads.

A well-defined coordination interface enhances reusabil-

ity by separating coordinator implementation from impact-

predictor implementation. It also avoids requiring third-

party vendors to disclose intellectual property for their spe-

cific knobs. Π-states abstract away the implementation de-

tails and expose only the (predicted) power-performance im-

pacts of alternate resource configurations. While ACPI-

like descriptors are also abstract power-performance descrip-

tors for individual resources, ACPI lacks a general mecha-

nism to “stitch together” the component states at the system

level thereby encouraging system-specific solutions for given

power-performance objectives.

The main contributions of this work are:

1. We introduce new power-performance state descriptors,

Π-states, that enable runtime identification of the system

pareto-optimal frontier.

2. We propose an user/operating-system interface consist-

ing of a dynamically updating Π-dashboard of predicted

pareto-optimal Π-states from which the desired operating

point can be selected. This helps to bridge the gap between

high-level power-performance goals and system resource

configurations.

3. We demonstrate 48% (average) improvement in energy ef-

ficiency on an existing Intel Haswell server machine using

only core frequency management.

4. Contrary to convention, we show that rapid profiling and

reconfiguration are neither useful nor necessary for long-

running workloads. Our best reactive policy reconfigures

once every 510 ms.

5. In simulation, we demonstrate coordinated power-

performance management involving core DVFS, LLC re-

configuration, offchip bandwidth allocation and memory

DVFS. To the best of our knowledge, no other work has

studied coordinated management of these four different

types of resources simultaneously.

The rest of this paper is organized as follows: Section 2 fur-

ther motivates this work with an example; Section 3 describes

the coordination framework; Section 4 demonstrates manage-

ment of a Haswell server machine for socket frequency set-

tings; Section 5 generalizes Π-states. Section 6 describes a

full-system simulation study for knobs such as LLC capacity,

offchip bandwidth and memory DVFS1 that are currently not

publicly available on real machines; Section 7 summarizes

related work; Section 8 concludes the paper.

2. Motivating Example

Table 1 summarizes the knobs that we consider in this paper.

We introduce new names for resource operating states, but

retain the ACPI convention of alpha-numeric naming. Also,

similar to ACPI orderings, state 0 for each knob has the max-

imum performance capability for that knob and subsequent

1The real machines we study allow DRAM frequencies to be selected

through the BIOS at boot time, but not through dynamic control.

(a) blackscholes (b) jbb

Figure 1: (Best viewed in color.) Example knob distribution by

impact over the state space (810 states). Configura-

tion P4-C0-S0-M2 is at (1,1). The color coding P0 P1

P2 P3 P4 P5 P6 P7 P8 identifies onchip DVFS settings

– states with the same color have the same onchip

DVFS setting. The black line bounding the state

space from below marks the pareto-optimal frontier.

states correspond to lesser performance capabilities. So, P0

is for the highest DVFS level, C0 is for the largest cache level,

S0 is for the maximum offchip bandwidth and M0 is for the

highest memory DVFS level. We choose P4-C0-S0-M2 as

the default/baseline/current configuration.

By changing these knobs, the system can be configured in

9× 5× 6× 3 = 810 different ways. The knob impacts vary

significantly according to the dynamic execution profile. Fig-

ures 1 shows knob impacts for two workloads with very dif-

ferent characteristics; blackscholes, having a small working

set, is cache, bandwidth, and memory-insensitive whereas jbb

is highly sensitive to these resource allocations. Figure 1a for

blackscholes shows distinct vertical bands for each Px, imply-

ing that only core states affect both power and performance

significantly whereas other knobs affect power but not perfor-

mance. However, the state space for jbb shows more corre-

lated effects, implying that considering just one knob is un-

likely to result in optimal system operation.

Dynamic variability and correlated effects across knobs

make identifying optimal configurations for the current exe-

cution a challenging problem. Mere enumeration of possible

states for individual knobs, as in the ACPI [6] approach, is

insufficient because it does not quantify power-performance

impacts at the system level or take into account correlated ef-

fects across different knobs. So, it is difficult to answer ques-

tions such as: which system configuration performs the best

for a given power budget? which system configuration has

the minimum energy-delay (ED) or ED2 product?

Knobs State names

Onchip DVFS P0, P1, P2, P3, P4, P5, P6, P7, P8

Cache (LLC) Capacity C0, C1, C2, C3, C4

SERDES Bandwidth S0, S1, S2, S3, S4, S5

Memory DVFS M0, M1, M2

Table 1: Dynamic reconfiguration knobs that we study. See

Section 6 for more details. To the best of our knowl-

edge, no other work has studied simultaneous coor-

dination across all of these four resource types. We

highlight the default settings in bold font.

2

Π− Relative Relative
Configuration

states Perf. Power

Π0 1.19 0.76 P0-C4-S5-M2

Π1 1.14 0.69 P1-C4-S5-M2

Π2 1.09 0.64 P2-C4-S5-M2

Π3 1.04 0.58 P3-C4-S5-M2

Π4 1.00 0.54 P4-C4-S5-M2

Π5 0.96 0.50 P5-C4-S5-M2

Π6 0.91 0.45 P6-C4-S5-M2

Π7 0.86 0.42 P7-C4-S5-M2

Π8 0.80 0.38 P8-C4-S5-M2

(a) blackscholes (small working set). Only Px varies.

Π− Relative Relative
Configuration

Π− Relative Relative
Configuration

states Perf. Power states Perf. Power

Π0 1.19 1.29 P0-C0-S0-M0 Π9 0.96 0.77 P2-C1-S2-M0

Π1 1.16 1.26 P0-C0-S0-M1 Π10 0.93 0.74 P5-C1-S1-M0

Π2 1.14 1.12 P0-C0-S1-M0 Π11 0.92 0.71 P2-C1-S4-M0

Π3 1.11 1.06 P1-C0-S1-M0 Π12 0.90 0.68 P3-C1-S3-M1

Π4 1.08 0.99 P0-C1-S1-M0 Π13 0.88 0.65 P3-C1-S4-M1

Π5 1.05 0.93 P1-C1-S1-M0 Π14 0.87 0.63 P4-C1-S4-M0

Π6 1.02 0.88 P2-C1-S1-M0 Π15 0.84 0.60 P5-C1-S3-M1

Π7 1.00 0.83 P3-C1-S1-M0 Π16 0.81 0.56 P6-C1-S3-M1

Π8 0.98 0.81 P3-C1-S1-M1 Π17 0.80 0.54 P6-C1-S4-M1

(b) jbb (cache-, bandwidth-, memory-sensitive). All knobs vary.

Table 2: Sample (predicted) Π-dashboards, for two different applications, showing Π-states that indicate predicted speedup and

power relative to the current configuration (P4-C0-S0-M2). Pareto-optimal Π-states are totally ordered: Π0 > Π1 >
The default ordering is: i < j =⇒ (Πi.Per f > Π j.Per f)∧ (Πi.Power > Π j.Power).

Fortunately, these apparently diverse problems can be re-

duced to a single problem of identifying the set of pareto-

optimal states, that is, the pareto-optimal frontier. A state is

pareto-optimal, with respect to power-performance, if there is

no other state that improves performance without increasing

power consumption or reduces power consumption without

reducing performance. Figure 1 shows the pareto-optimal

frontiers for blackscholes and jbb. Appendix A proves that

the best states for most power-performance objectives for

throughput-oriented systems lie on the pareto-optimal fron-

tier. The challenge is to identify the pareto-optimal frontier

for the system at runtime from the individual reconfiguration

knobs of interacting components.

Quantifying system impact is a necessary precondition for

comparing configurations leading to identification of pareto-

optimal ones. In Figures 1a and 1b, a configuration at (1,y)
has the same performance as the baseline configuration, but at

y-times power (saves energy if y< 1) whereas one at (x,1) has
x-times performance at the same power (saves energy if x> 1,

by employing a “race to halt” policy). For example, config-

uration (1,0.54) for blackscholes implies 46% power savings

for the same performance; configuration (1.08,0.99) for jbb

implies 8% more performance for (almost) the same power.

However, this kind of information is missing in the ACPI-like

description of Table 1 (and Table 4). Selecting an arbitrary

configuration without quantitative impact information can be

severely suboptimal since the state spaces span over a wide

range of power and performance as seen in Figures 1 and 9.

Π-dashboards enable selection of a variety of power-

performance profiles for the system. Referring to Table 2a,

Π0 represents the highest performance state, Π4 represents

a state with 46% power savings for the same performance,

Π5 represents a state with 5% better performance for 7% less

power, and so on. The dashboard attempts to bridge the gap

between high-level power-performance goals and system re-

source configurations – a mapping capability that is largely

missing in today’s systems.

Trial-and-error approaches to dynamically finding the best

configuration are not attractive since reconfiguring some

of these knobs incurs cost in time and energy e.g., >150

µsec for bandwidth reconfiguration (see Appendix D). LLC

warmup/writeback can take up to several msecs depending on

the capacity and offchip bandwidth. Accumulated overheads

and suboptimality of repeated trials may significantly reduce

the benefits of reconfigured system operation.

3. Management Framework

We logically partition the system into subsystems and a co-

ordinator. Figure 2 shows a logical structure of the system.

Subsystems control internal resources, track properties of in-

terest such as activity counts, temporal locality, bandwidth

requirements of the current execution profile and predict their

power-performance characteristics for a number of feasible al-

ternate configurations. The coordinator combines the subsys-

tem predictions to determine system-wide impacts, constructs

the dashboard, then communicates the selected combination

back to the subsystems. The coordinator may be implemented

as a software routine (ISR) that runs on one or more cores, or

as a specialized unit such as a PCU in modern systems [39].

Controller

Resources

Controller Controller

Coordinator

predictors

contract contract contract

Π

Select

Π Π

Π

Resources

predictors

Resources

predictors

Dashboard

Figure 2: High-level view of the management framework.

Execution time is logically partitioned into intervals. Like

most predictors, this work uses past execution behavior to pre-

dict behavior in subsequent intervals.

• Training Interval: Each subsystem uses hardware moni-

tors to observe its own execution characteristics that it then

3

uses to predict Π-states for its reconfiguration options.

• Configuration Selection Interval: Subsystems commu-

nicate the formulated Π-states to the coordinator which

then composes them to determine system-wide power-

performance impact. It determines and totally orders

pareto-optimal states to form a Π-dashboard. The user/OS

selects the desired power-performance profile. The coordi-

nator communicates decisions back to the subsystems.

• Local Adaptation Interval: Subsystems reconfigure

themselves to conform to the selected operating point.

Last Interval

Execution Time

Next Interval

Configuration

Selection

Local

Adaptation
Training

Prediction

Training

Prediction

Figure 3: Training, Selection and Adaptation intervals

Figure 3 illustrates execution intervals. Training intervals

are much longer than selection and adaptation intervals in or-

der to make overheads negligible. Reconfigurations can be

frequent (e.g., once per few tens of milliseconds for DVFS) or

spaced apart (e.g., once per several hundred milliseconds for

cache resizing). Our best reactive policy for the real machine

study in Section 4 reconfigures once every 510 milliseconds.

Short training intervals enable more reactivity than longer in-

tervals but consider less execution history.

4. Real Machine Study

We demonstrate the potential for our approach on real

hardware by improving the energy efficiency, measured as

performance-per-watt, using only processor frequency con-

trol. This shows the management framework, described in

Section 3, in action for a single reconfiguration knob. The

system is a single-socket quad-core Haswell-based Xeon E3-

1275 server with 32 GB memory, henceforth referred to as

HS. HS runs RHEL with kernel version 2.6.32 and allows 15

frequency steps from 0.8 – 3.5 GHz and a turbo boost region

(3.501 – 3.8 GHz).

The Linux acpi-cpufreq module includes the following

policies, called governors, that decide the operating fre-

quency. The root user can dynamically change the governor.

• PowerSave (S): Sets all cores to the lowest frequency.

• OnDemand (O): Periodically samples (default: 10 ms in-

terval) cores to adjust frequencies based on core utilization.

• UserSpace (U): The root user can set the socket frequency

(all cores together2) to any of the allowed frequencies.

• Performance (P): Sets all cores to the highest frequency.

Turbo boost happens only when the highest frequency (3.501

GHz) is selected (explicit in O or U mode, automatic in P

mode). To further distinguish between modes, we constrain

U mode to exclude S or P mode frequencies, i.e., it operates

in the range of 1.0 – 3.5 GHz.

2This interface does not allow per-core settings for HS. All cores transition

to the highest frequency of any core in the socket.

We evaluate the system using a total of 17 workloads –

14 from SPECOMP2012 [3], plus graph500 [1], hpcg [2] and

jbb2013 [4]. HyperThreading (2 hardware threads per core,

i.e., 8 hardware threads per socket) is enabled for all studies.

We measure socket power and DRAM power (RAPLMode 1)

using an additional software thread that reads available RAPL

counters at 1 second intervals. HS has a socket TDP of 84W

and a remarkably low socket power of ∼0.27W when idle.

DRAM idle power is ∼4.3W. We consider system power as

the sum of socket power and DRAM power.

Figure 4 shows example power-performance traces for ap-

plu (SPECOMP2012), graph500 and jbb2013 in P mode. ap-

plu performs several iterations, each with a memory-intensive

portion followed by a compute-intensive portion; the perfor-

mance and power spikes indicate iteration boundaries. The

DRAM power drops during the compute-intensive part of

each iteration due to less memory accesses. graph500 runs 64

iterations of bfs after initialization. Both applu and graph500

exhibit long-term periodic behavior in both performance and

power readings, with periods of tens of seconds correspond-

ing to iteration lengths. jbb2013 dynamically increases paral-

lelism as it runs and shows much less periodicity. graph500

and jbb2013 are run to completion whereas applu (all of

SPECOMP2012) and hpcg are run for the first 1200 seconds.

HS exhibits significant opportunities in improving

BIPS/Watt (equivalently, Instructions/nanoJoule) by chang-

ing frequency settings alone. BIPS changes between 1.18x

(swim) to 4.86x (bwaves) in going from S to P modes whereas

power changes between 2.52x (swim) to 5.67x (botsalgn),

leading to a BIPS/Watt range of 1.29x (imagick) to 2.14x

(swim) between best and worst values for that workload over

all frequencies. applu, graph500 and jbb show a ratio of 1.84x,

1.67x and 1.37x respectively (also see Figure 6).

In order to exploit the improvement potential, we imple-

ment a simple reactive, R(t), mode of operation. For this sys-

tem, there are two subsystems (see Figure 2), one for DRAM

and one for the socket. The socket predictor sets the fre-

quency to 0.8 GHz, 2.1 GHz and 3.5 GHz in three consecutive

intervals of t ms each and observes the power, performance,

memory read and write bandwidths for each setting. It then

interpolates (piecewise linear) the effects for the other fre-

quencies. The DRAM predictor is invoked every 12t ms and

adjusts a computed linear regression between DRAM power

and read and write bandwidths (two variables) based on cur-

rent readings. The regression is reset every 17 observations

(204t ms) to react faster to phase changes. The coordinator

reads the socket predictions and DRAM predictions every 51t

ms (immediately after the 3t socket sampling), composes the

predictions, computes the Π-dashboard and selects the best

frequency. Figure 5 shows power-performance traces for ap-

plu (SPECOMP2012), graph500, jbb2013 in R(10) and the im-

provement in BIPS/Watt.

There are two main challenges in implementing the inter-

polant for the socket predictor: 1) getting successive sample

4

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200

W
a
�

B
IP
S

Seconds

Performance Socket Power DRAM Power

(a) applu. Instructions/nanoJoule = 0.18.

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800

W
a

B
IP
S

Seconds

Performance Socket Power DRAM Power

(b) graph500. Instructions/nanoJoule = 0.10.

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000

W
a

B
IP
S

Seconds

Performance Socket Power DRAM Power

(c) jbb2013. Instructions/nanoJoule = 0.24.

Figure 4: Power-Performance traces in P-mode on HS. Higher Instructions/nanoJoule implies more energy efficiency.

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200

W
a
�

B
IP
S

Seconds

Performance Socket Power DRAM Power

(a) applu. Instructions/nanoJoule = 0.30.

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

W
a
�

B
IP
S

Seconds

Performance Socket Power DRAM Power

(b) graph500. Instructions/nanoJoule = 0.17.

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000 8000

W
a

B
IP
S

Seconds

Performance Socket Power DRAM Power

(c) jbb2013. Instructions/nanoJoule = 0.32.

Figure 5: Power-Performance traces in R(10)-mode on HS. Higher Instructions/nanoJoule implies more energy efficiency.

points that show non-decreasing performance and power with

increasing frequency and 2) getting sample points with ac-

ceptable measurement noise/jitter. The first issue arises when

the workload exhibits local phase behavior. The second is-

sue arises with rapid sampling that makes the jitter in the en-

ergy measurements seem to be higher than that in the timing

measurements leading to occasionally unrealistic power cal-

culations. We disregard samples if either decreasing values

are found or if power readings differ in more than 10x be-

tween the three samples and the coordinator transitions to 3.5

GHz. While other default actions are possible, we choose to

penalize ourselves when we are not confident about the inter-

polation. We see samples discarded more frequently in R(1)

(geomean: 14.2%) than in R(4) or R(10) (geomean: < 2%

for both). swim is particularly hard hit in R(1) with ∼82% of

samples discarded mostly due to the first issue.

36% 53% 87% 67% 37% 54%

0

0.1

0.2

0.3

0.4

0.5

0.6

bwaves bt mgrid graph500 jbb geomean

2.3 GHz 1.8 GHz 1.4 GHz 1.0 GHz 2.1 GHz (17 workloads)

S

O

U

P

R(1)

R(4)

R(10)

Figure 6: BIPS-per-Watt on HS with different policies.

Figure 6 compares the energy efficiency with different

modes of operation. The best U-mode frequency for each

workload is shown below. The percentage numbers at the top

show gains in energy efficiency over P-mode with that fre-

quency. Our main findings are:

• The potential rewards for selecting optimal configurations

are significant: 28.6% (imagick) to 113.7% (swim) over P

(geomean: 53.9% over P, 13.9% over S). The O and P

modes are suboptimal for this metric for every workload.

• There is no single best static setting: 0.8 GHz (swim), 1.0

GHz (applu, graph500, hpcg), 1.4 GHz (mgrid), 1.8 GHz (bt,

botsspar), 2.0 GHz (ilbdc, smithwa, kdtree), 2.1 GHz (md,

nab, botsalgn, fma3d, jbb), 2.3 GHz (bwaves, imagick).

• Rapid profiling and reconfigurations are neither useful nor

necessary: bothR(10) (geomean: 48.3% over P, 9.8% over

S) and R(4) (geomean: 47.1%, 8.9%) improved over R(1)

(geomean: 23.2%, -8.8%). R(10) improved by 2.8% over

R(4) for bwaves.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Quadra c

Linear

3.5 3.3 3.1 2.9 2.7 2.5 2.3 2.1 2.0 1.8 1.6 1.4 1.2 1.0 0.8

Figure 7: R(10) freq. distribution for applu on HS(0.8–3.5 GHz).

One of the shortcomings of the piecewise linear interpola-

tion used by the socket predictor is that for the performance-

per-watt metric, only the sample frequencies (0.8/2.1/3.5

GHz) can be chosen3. We also evaluated quadratic interpo-

lation for an alternative socket impact predictor without need-

ing to change the coordinator. Figure 7 shows the frequency

distribution for both schemes for applu. While Linear fluctu-

ates mostly between 0.8 and 2.1 GHz, resulting in ∼68% im-

provement over P-mode, Quadratic selects more frequencies

in between resulting in ∼78% improvement. mgrid showed

similar improvements.

We re-evaluated results using the same #instructions (min.

across all policies from the fixed-time runs) for each work-

load. In terms of U-mode gains over P-mode, applu changed

3Proof sketch: Perf(f)=af+b and Pwr(f)=cf+d =⇒ Perf(f)/Pwr(f) is mono-

tonic in f. So, the maxima will occur among the end points of the interval.

5

from 84% to 80% whereas botsspar changed from 47% to

52%. geomean changed < 2% for all policies. The best U-

mode frequency changed for three workloads. All trends re-

mained the same.

With respect to the knobs in Table 1, this study dealt with

just one knob (onchip DVFS). The approach of trying out

various settings becomes cumbersome with more knobs not

only due to the large number of combinations, but also be-

cause resources like large caches and SERDES incur signif-

icant reconfiguration overhead. For efficient prediction, di-

verse knobs (as in this work) may benefit from different, spe-

cialized predictors [27, 40]. Moreover, with third party com-

ponents [12], a generic coordinator may not even know what

knobs are available and how to predict for them.

What is needed is a well-defined interface that components

can use at run time to communicate their operating states,

identified using their own predictors, to the coordinator. This

interface must be generic, like ACPI, but more expressive to

allow the coordinator to determine pareto-optimal state com-

binations. We propose such an interface using Π-states.

5. Π-states

Let p denote a typical subsystem and sys denote the larger sys-

tem having a coordinator. Π-state i for subsystem p, denoted

by Πi(p) is a 4-tuple (ℓi(p),di(p),si(p),wwwi(p)) where:
• ℓi(p) is the relative sℓowdown (=new time/baseline time)

by p, for its own operations.

• di(p) is the dynamic energy predicted to be used by p.

• si(p) is the static power predicted to be used by p.

• wwwi(p) is a vector of wwwork request summaries generated by

p. The type of requests and summaries are pre-determined.

An example is a request vector (#fetches,#writebacks) that

depends on the LLC capacity in that state (see Section 6.1).

The description may include additional meta-data such as

transition cost, predictor confidence and thermal headroom.

Subsystem p sends a descriptor packet C(p) to the coordi-

nator that includes the Π-state descriptions and information

on how to adjust them, if needed, while composing them to

get system-wide descriptions. In Section 4 the DRAM state

was parametrized by read and write bandwidths that were in-

stantiated by the coordinator from the particular socket state

being considered. We further separate two aspects for more

fine-grained modeling control:

1. Amount of work: For example, #reads, #writes.

2. Rate of work: For example, dependence on total time.

Queueing delays usually change with work arrival/service

rates that in turn depend on total time. To facilitate this, we

allow ℓi(p) of Πi(p) to be encoded by a (small) lookup ta-

ble (LUT) that is indexed by ℓ(sys). Any discrete function
of a single variable can be encoded by a LUT.

5.1. Π-state Composition

The coordinator composes subsystem Π-states to generate

system Π-states. Let t(p) denote the contribution by p to

the baseline system time, t(sys), so that t(sys) = ∑p t(p)
(see Section 6.3 for an example implementation of how non-

overlapping contributions to system time are estimated).

For each combination of subsystem Π-states, the coordina-

tor creates a tuple (ℓ(sys),d(sys),s(sys),www(sys)) where

ℓ(sys) =
∑p t(p)ℓ(p)

∑p t(p)
(1)

d(sys) = ∑
p

d(p) (2)

s(sys) = ∑
p

s(p) (3)

www(sys) is currently unused, but would be set if this node gen-

erates work requests for other nodes in a cluster.

In the above, Equation 1 determines system slowdown rel-

ative to the current configuration; smaller values of ℓ(sys) in-
dicate better performance, and vice versa. This new value of

system time can affect work arrival rates, so individual con-

tributions must be re-adjusted (discussed below). Equations

2 and 3 determine system dynamic energy and static power

consumptions as the sum of the uses by the subsystems.

We model a closed system with timing feedback. Figure 8a

shows an example. This makes it possible for ℓ(p) in Equa-

tion 1 to be a function of ℓ(sys). We need to find a value for

ℓ(sys) (and hence, ℓ(p) for all p) that is consistent with Equa-
tion 1, that is, LHS=RHS. It is a solution, or fixed point, of

the equation LHS-RHS=0 and characterizes a point of timing

equilibrium in the feedback system.

While a possible solution approach is to rewrite the equa-

tion in closed functional form (e.g., a polynomial) and use

online solvers, there are two challenges with this approach:

the functions must be known in closed form and they may be

non-linear (e.g., queueing models) requiring online solvers

with non-trivial computation costs.

We mitigate both difficulties by constraining that for each

Π-state, ℓ(p) be monotonically decreasing (see Appendix B

for a definition) in ℓ(sys). The intuition is that as total execu-

tion time increases (larger ℓ(sys)), waiting and service times

for each unit of work decrease or stay the same, in turn limit-

ing execution time increase. As an example, Figure 8b shows

an M/D/1 queueing response function (larger ℓ(sys) =⇒
lower utilization =⇒ less slowdown, that is, smaller ℓ(p))
and interpolation points for a 16-entry LUT.

If all ℓ(p) are monotonic, decreasing, then the fixed point

will be unique if it exists. To see this, assume that for an

example combination of Π-states, the RHS of Equation 1 is

denoted by f (ℓ(sys)). Figure 8c plots f (ℓ(sys)) for differ-

ent values of ℓ(sys). If all ℓ(p) are monotonic, decreasing,

then f is also monotonic, decreasing (see Appendix B). The

dashed line passing through the origin represents potential

fixed points. The actual fixed point (LHS=RHS) is where the

dashed line intersects the curve. It is obvious that the intersec-

tion point will be unique if it exists. The constraint on ℓ(p) is
sufficient, but not necessary for the unique solution.

6

Cores
L

L

C

HMC

SERDES

(a) Closed system model

1

2

4

8

16

32

64

00.20.40.60.81

S
lo

w
d

o
w

n
 w

.r
.t

 λ
=

0

Utilization (λ/µ) ∝ 1/l(sys)

M/D/1 model

Interpolation

(b) M/D/1 queueing model response function

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

V
a

lu
e

 (
y
)

Input Variable (l(sys))

y = f(l(sys))

f(l(sys)) > l(sys)

f(l(sys)) < l(sys)

l(sys) = y = f(l(sys))

(c) Equation 1 fixed point for an example Π-state

Figure 8: (a) Closed system model with feedback from the memory subsystem, (b) example approximation of queueing response

using piecewise linear interpolation, (c) representation of unique fixed-point (consistent/equilibrium state) for ℓ(sys).

For each combination of subsystem Π-states, the coordina-

tor repeatedly computes the RHS until ℓ(sys) reaches (close
to) a fixed point (see Appendix C for the algorithm), then cre-

ates a new system Π-state (ℓ(sys),d(sys),s(sys),www(sys)).
In case ℓ(p) is not monotonically decreasing, the iterations

may not converge to a fixed point or the fixed point may

not be unique. It is relatively straight-forward to detect non-

convergence, and select a point with smallest difference be-

tween old and new values of ℓ(sys). However, the chosen

configuration can be suboptimal in that case.

5.2. Π-state Pareto-dominance and Ordering

Pareto-dominance is important in identifying optimal system

states. Pareto-dominated states are not considered for selec-

tion as they are suboptimal in comparison with other states.

Let t(sys) denote the baseline system time. Πi(sys) pareto-
dominates Π j(sys) if either of the following conditions hold:

1. ℓi(sys) < ℓ j(sys), Poweri(sys) ≤ Power j(sys)
2. Poweri(sys) < Power j(sys), ℓi(p) ≤ ℓ j(p)

where Poweri(sys) =
(

di(sys)
t(sys)∗ℓi(sys)

+ si(sys)
)

is the total sys-

tem power consumption (dynamic+static) in Πi(sys).
Qualitatively, Condition 1 implies that state i has better per-

formance than state j for the same or less power consumption

while Condition 2 implies that state i has lower power con-

sumption than state j for the same or better performance.

Pareto-optimal Π-states are totally ordered by their pre-

dicted power-performance values according to:

i < j =⇒ ℓi(sys) < ℓ j(sys),Poweri(sys) > Power j(sys)

Qualitatively, this implies that both performance and power

consumption in state j are less than that in state i. Perfor-

mance is inversely proportional to ℓ(sys).
We use a 2-pass algorithm for ordering Π-states. First, the

Π-states are binned into a small number (=50) of bins based

on their ℓ(sys) values with only one state retained per bin.

Then, starting from Π0, states that have at least 2% less power

than the previous state are retained.

The ordered list of pareto-optimal Π-states forms the dash-

board (e.g., Table 2). The dashboard can also be visualized in

a graphical form as shown in Figures 9 (Section 6.4). The

blue curve connects the predicted pareto-optimal Π-states,

with Π0 at the upper end of the curve. (Predicted) pareto-

dominated states (not shown) lie above the curve.

6. Simulation Study

Table 3 describes the 8-core CMP that we study through full-

system simulations using GEMS [30] augmented with timing-

first processor models, Wattch [14] and CACTI 5.3 [41].

We assume an 8-banked 32-way L3 cache that is dynami-

cally re-configurable in capacity (2/4/8/16/32 MB) and uses

the PLRU replacement policy. We use a simple XOR-based

hashing function to distribute lines more uniformly among

the L3 cache sets [17] and conservatively assume a constant

access latency (in cycles) for all configurations.

We model our memory system based on the new Hybrid

Memory Cube (HMC) technology [37, 31]. Compared with

traditional DDR3 memory, HMC offers new power-saving

modes by partially shutting down its serial (SERDES) in-

terconnect. Its stacked memory has a logic layer base that

we believe can implement simple predictors. Table 4 de-

scribes the available knobs and their possible settings in detail.

Onchip DVFS level P4 (=1.00) corresponds to 2132 MHz,

0.9V. Each Px level in Table 4 describes frequency relative

to P4. The highest onchip frequency is 1.20 ∗ 2132 = 2558

MHz. With respect to SERDES configurations, ‘F’, ‘H’, ‘Q’

and ‘N’ denote full-width, half-width, quarter-width and no-

width (powered-down) links (see Table 5, Appendix D for

more details). We assume a maximum memory DVFS (over-

clocking) of 20%.

For this study we use the following workloads:

Multithreaded: Wisconsin commercial [7] (apache, jbb, oltp,

zeus), PARSEC [11] (blackscholes, bodytrack, fluidanimate,

freqmine, swaptions) with “simlarge” inputs, SPEComp [9]

(ammp, equake, fma3d, gafort, swim, wupwise) with “ref” inputs.

Each workload uses 8 threads and runs for a fixed amount of

work (e.g. #transactions or loop iterations [8]).

Multiprogrammed: Combinations of SPEC CPU2006 [26]

(astar, bwaves, cactusADM, bzip2, gcc, lbm, libquantum, milc, om-

netpp, soplex). Each workload consists of 8 programs, equally

divided among the benchmarks in the combination.

Each simulation run starts from a mid-execution check-

point that includes cache warmup. Last and Next intervals

consist of ∼250M instructions each. Baseline (C0) MPKI

ranges from < 0.01 (blackscholes) to ∼34 (mcf-libquantum).

We will now describe specific predictors that we have used

for this study; however, other predictors can be used as well.

While the choice of predictors will affect the prediction accu-

7

Core configuration 8 cores, each 4-wide out-of-order, 128-entry window, 32-entry scheduler, YAGS and NoSQ predictors

L1 Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP, separate L1I and L1D

L2 Cache private 256KB 8-way per core, 6 cycle access latency, PLRU, ITRS-LOP

L3 Cache* shared, configurable 2MB 2-way - 32MB 32-way, 8 banks, 14 cycle access latency, PLRU, ITRS-LOP, serial

Coherence protocol MESI (Modified, Exclusive, Shared, Invalid), directory

On-Chip Interconnect 2D Mesh, 16B bidirectional links

On-chip frequency* 2132-2665 MHz Technology generation 32nm Temperature 340K-348K

Off-Chip Interconnect* SERDES, details in Appendix D

Main Memory* 4GB stacked memory (2x2GB stacks), details in Appendix D

Table 3: System configuration. Reconfigurable components are marked with a *.

Onchip DVFS LLC SERDES bandwidthMem. DVFS

P0=1.20 C0=32MB S0=F F F F M0=1.20

P1=1.15 C1=16MB S1=H H H H M1=1.10

P2=1.10 C2=8MB S2=Q Q Q Q M2=1.00

P3=1.05 C3=4MB S3=Q Q Q N -

P4=1.00 C4=2MB S4=Q Q N N -

P5=0.95 - S5=Q N N N -

P6=0.90 - - -

P7=0.85 - - -

P8=0.80 - - -

Table 4: Knob descriptions. Default state is P4-C0-S0-M2.

racy and computational complexity, our Π-framework is or-

thogonal to this choice. For the following discussion, assume

that the current Π-state is described by (ℓcur,dcur,scur,wwwcur).

6.1. Socket/Onchip Subsystem

The onchip subsystem includes the cores and the LLC. We

assume that the cores and LLC are in the same power plane

as in the SandyBridge [39] microarchitecture. With 9 P and

5 C states, this subsystem generates 9× 5 = 45 Π(onchip)
states. Let (ℓnew,dnew,snew,wwwnew) describe a new Π-state.

Using published data [25] for voltage-frequency pairs for

the Pentium M, we assume that (Vnew−Vcur) ∝ (fnew− fcur)
and that every 200MHz change in frequency is accompa-

nied by a 50mV change in voltage. Thus, Vnew = Vcur +

50mV
(

fnew− fcur
200MHz

)

. Let γ = fnew
fcur

.

• ℓnew = 1
γ . This assumes that the onchip contribution to ex-

ecution time is inversely proportional to frequency. Note

that ℓnew is a constant for each Π(onchip) and thus satis-

fies the monotonically decreasing condition.

• dnew = dcur

(

Vnew
Vcur

)2
γ . This uses the intuition that dynamic

energy is proportional to V 2 f . We obtain constants for

LLC activation energy from CACTI. A minor limitation of

the current predictor is that it ignores changes in dynamic

energy for cache line replacements.

• snew = s(CPU)+ s(LLC)+ ∆sv + ∆sT where ∆sv and ∆sT
respectively denote the effect of voltage and temperature

on static power. We consider ∆sv, ∆sT only for frequencies

above P4. We assume linear scaling for ∆sv [15] and 3◦C

contributed by every 200MHz [25] change in frequency to

calculate ∆sT . We use constants from CACTI for s(CPU),
s(LLC) and linear interpolation to determine ∆sT (CACTI

provides values at temperature intervals of 10K).

• wwwnew is obtained using an online cache miss-rate predic-

tor [40] and assuming that the ratio of fetches to writebacks

remains the same across configurations.

6.2. Offchip Subsystem

The offchip subsystem includes the offchip interconnect

(SERDES) and main memory (HMC). With 6 S and 3 M

states, this subsystem generates 6×3= 18 Π(o f f chip) states.
Let (ℓnew,dnew,snew,wwwnew) describe a new Π-state.

• ℓnew = SERDES_delay+HMC_delay
current_o f f chip_delay where

∗ SERDES_delay = 2µ−λ
2µ(µ−λ) (standard M/D/1 model)

where µ is the service rate (Table 5, 1 roundtrip transac-

tion in 6-flit-time + expected inter-quadrant delay) and

λ is the arrival rate (affected by onchip www and ℓ(sys)).

∗ HMC_delay = 28.44ns
γ where γ = fnew

fcur
(1.0, 1.1 or 1.2).

This assumes that memory queueing delays are negligi-

ble due to the high parallelism offered by the HMC.

Note that ℓnew is monotonically decreasing in ℓ(sys) for

each Π(o f f chip). ℓnew is encoded by a 16-entry LUT. All

delays are normalized so that ℓnew = 1 when ℓsys = 1 for

the current configuration.

• snew = s(SERDES) + s(HMC) where s(SERDES) is ob-

tained from Table 5 and s(HMC) = current HMC refresh

power×γ2.
• dnew = current HMC background energy×γ2 +
(#reads+#writes)×current HMC energy/access×γ2.

• wwwnew is not set (no further requests generated).

6.3. Non-overlapping subsystem time, t(p)

Equation 1 (Section 5.1) assumes that t(p) is available. We

use online linear regression between ∆LLC misses and ∆CPI
(obtained with simple performance counters at∼1 msec inter-

vals) to estimate non-overlapping t(onchip) and t(o f f chip)
so that t(sys) = t(onchip)+ t(o f f chip) where t(o f f chip) =
coe f f icient× #misses. We use a statically fixed value (from

a run with maximum observed
t(o f f chip)

t(sys)) for coe f f icient if

online regression fails to determine it.

While ℓ(o f f chip) in Subsection 6.2 quantifies expected

8

slowdown for a single request, t(o f f chip) = coe f f icient ×

#misses in the above paragraph quantifies the offchip con-

tribution to system time taking total misses and parallelism

into account (multiple out-of-order cores, lockup free caches,

etc.). To capture both effects, we scale t(o f f chip) by the

ratio of the predicted #misses for that Π-state relative to the

current #misses before applying Equation 1.

6.4. Analysis of Trends

Comparing predictions against full state-space simulated val-

ues for all workloads is impractical. Instead, our goals are:

(i) to evaluate system impact quantification accuracy at the

predicted pareto-optimal frontiers, (ii) to analyze reasons for

prediction errors and (iii) to discuss implications for power-

efficient performance.

Figure 9 show, for a few representative workloads, the pre-

dicted pareto-optimal curve and the actual (simulated) power-

performance for those configurations. The distance of ×××

from the curve quantifies the predicted suboptimality in the

default/baseline/current configuration for that workload – an

operating point that is “vertically below” is predicted to re-

duce power at the same performance, whereas a point that

is “horizontally right” is predicted to increase performance at

the same power consumption level. Some workloads such as

blackscholes, freqmine do not have a point “horizontally right”

to ××× indicating that with the available knobs, power can be

saved even after maximizing performance.

Each graph in Figure 9 also includes two tables:

Avg. Error: the average of absolute values of relative errors

for Predicted values with respect to Last Interval (LI) sim-

ulation (top row) and Next Interval (NI) simulation (bottom

row) for the predicted configurations (also see Figure 3).

Pareto: This has two columns.

1. Dom.: the fraction of predicted configurations pareto-

dominated (hence, suboptimal) by other predicted config-

urations during LI simulation and NI simulation.

2. Inv.: the fraction of pairwise orderings among non-

dominated points for LI simulation and NI simulation that

were inverted with respect to the predicted ordering. There

are
(n−k)∗(n−k−1)

2 pairwise orderings for n total points hav-

ing k dominated points.

For example, during LI simulation for apache, 3 of 21 pre-

dicted pareto-optimal states were dominated by some of the

18 other states and of the 153 (= 18×17
2) pairwise-orderings

for those 18 states, 1 predicted ordering was violated/inverted.

0 Dom., 0 Inv., and ∼0% Error identify the best predictions.

Some dominated points are marginally suboptimal (e.g., astar-

gcc). Order inversions are rare.

Avg. LI errors (only model effects) are mostly <10% (ex-

cept zeus, mcf-libquantum). One of the sources of error arises

from the M/D/1 model not exactly describing the bursty mem-

ory traffic. Phase changes are an important source of pre-

diction error. This is demonstrated in astar-bwaves, bodytrack,

mcf-bwaves, omnetpp-lbm, swim where the predicted values are

quite good compared to LI simulation but has more errors

for NI simulation. We expect the system to employ con-

tinuous monitoring to check predicted versus actual power-

performance and revert to the baseline configuration in case

of a misprediction that violates required power budgets or per-

formance goals. The monitor should employ a guard mecha-

nism to provide better energy security [13].

The point marked ED represents the state predicted to have

the minimum energy-delay product; the corresponding re-

source configurations are also shown. Notice that the pre-

dictedED configurations are different for different workloads.

This reinforces our point that mere enumeration of configura-

tion knobs is not sufficient for determining optimal configura-

tions; one needs to additionally consider dynamic workload

characteristics and inter-component interactions. This is true

for other power-performance objectives as well.

While the high-performance states P0, C0, M0 appear in

predicted minimum ED configurations of some workloads,

S0 does not appear in any of them. However, S0 is important

for overall best performance (e.g., apache, jbb). This suggests

that very high offchip bandwidths may not be result in energy-

optimal operations as the extra power needed may outweigh

the performance benefits. The default configuration (P4-C0-

S0-M2) does not appear in the predicted minimum ED con-

figuration for any workload, but default knob values P4, C0,

M2 appear for 9/24, 2/24 and 16/24 workloads respectively.

The data also reveals distinct classes of workload perfor-

mance characteristics: (i) cache and memory insensitive –

e.g., ammp, blackscholes, bodytrack, swaptions, (i) cache insen-

sitive but memory sensitive - e.g., equake, gafort, (iii) cache

and memory sensitive – e.g., apache, jbb, zeus. Workloads

in classes (i) and (ii) do not benefit from large caches whereas

workloads in class (iii) do. Workloads in class (i) do not ben-

efit from high bandwidth or fast memory whereas workloads

in classes (ii) and (iii) do. Runtime classification is important

for reducing the number of Π-state combinations to consider

(Section 6.5). This can be achieved by requiring subsystems

to report Π-states that differ by at least a minimum margin

in power-performance from each other. With this scheme,

workloads that are performance-insensitive to some subsys-

tem will have only one Π-state generated by that subsystem.

Considering less knobs than those available can result in

significant suboptimality. For example, if only DVFS knobs

are considered [20,21,23,19,27], states Px-C0-S0-M2 would

be chosen for blackscholes but they use ∼71%-112% more

power than states Px-C4-S5-M2 (corresponding Px values) at

practically the same performance levels.

6.5. Coordinator computation time

The iterative solver (see Appendix C) used 1-13 iterations to

reach within 1% of the fixed point if it existed. Π-state com-

position for 810 states and subsequent ordering took <1 msec

for all workloads. Referring to the discussion in Section 4 we

see that relatively long profiling (and reconfiguration) inter-

9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
e

la
ti
v
e

 P
o

w
e

r

Relative Performance

APACHE

Predicted
LI Simulation
NI Simulation

2.69% 4.14%

3.54% 4.24%

Perf. Pwr.

Avg. Error

Pareto
3/21 1/153

Dom. Inv.

3/21 1/153ED: P3-C1-S4-M2

ED

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
e

la
ti
v
e

 P
o

w
e

r

Relative Performance

JBB

Predicted
LI Simulation
NI Simulation

5.17% 4.63%

6.88% 4.98%

Perf. Pwr.

Avg. Error

Pareto
9/26 0/136

Dom. Inv.

7/26 1/171ED: P4-C1-S4-M0

ED

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
e

la
ti
v
e

 P
o

w
e

r

Relative Performance

BLACKSCHOLES

Predicted
LI Simulation
NI Simulation

0.63% 1.68%

0.66% 1.80%

Perf. Pwr.

Avg. Error

Pareto
0/9 0/36

Dom. Inv.

0/9 0/36ED: P0-C4-S5-M2

ED

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
e

la
ti
v
e

 P
o

w
e

r

Relative Performance

EQUAKE

Predicted
LI Simulation
NI Simulation

0.94% 2.52%

2.35% 3.28%

Perf. Pwr.

Avg. Error

Pareto
0/19 0/171

Dom. Inv.

0/19 0/171ED: P4-C4-S5-M2

ED

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
e

la
ti
v
e

 P
o

w
e

r

Relative Performance

CACTUS-MCF-MILC-BWAVES

Predicted
LI Simulation
NI Simulation

5.64% 4.51%

9.89% 5.24%

Perf. Pwr.

Avg. Error

Pareto
4/24 1/190

Dom. Inv.

4/24 1/190ED: P2-C2-S1-M2

ED

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
e

la
ti
v
e

 P
o

w
e

r

Relative Performance

GCC-OMNETPP-MCF-

BWAVES-LBM-MILC-

CACTUS-BZIP

Predicted
LI Simulation
NI Simulation

6.68% 5.54%

5.93% 4.92%

Perf. Pwr.

Avg. Error

Pareto
7/26 1/171

Dom. Inv.

8/26 1/153ED: P4-C1-S1-M0

ED

Figure 9: Simulated (LI, NI) power-performance for predicted pareto-optimal configurations. ××× (1,1) marks the de-

fault/baseline/current (“You are here”) configuration (P4-C0-S0-M2). ED refers to the predicted configuration for mini-

mum EDP. Section 6.4 describes the Avg. Error and Pareto Tables.

vals are preferred. The R(10) mode reconfigures once every

510 msec. In this context, we consider the computation time

to be quite reasonable.

We also observe that many workloads exhibit long-term

variation and periodic behavior. For example, applu (Figure

4) shows a ∼35 sec periodicity in P mode; this increases to

∼54 sec at the best user-mode frequency of 1 GHz. graph500

exhibits 12.3 sec (P-mode) to ∼18 sec (at 1 GHz) periods.

We expect long training intervals that track considerable exe-

cution history to work well with such workloads.

The coordinator computation time increases with the total

number of compositions which is the product of the number

of exposed Π-states for each subsystem. While this may limit

scalability for systems with a lot more configuration knobs,

the following techniques can reduce the computation time:

Parallel computation: Compositions are independent of

each other and can be evaluated in parallel.

Minimum separation: Subsystems can expose only Π-states

that differ by at least a minimum pre-determined margin. So,

for example, a memory-insensitive workload will result in

only a single offchip Π-state getting generated. This, in effect,

achieves a runtime classification of workload performance

characteristics (also see Section 6.4).

Greedy selection: A subset of Π-states can be chosen greed-

ily as demonstrated by CoScale [20]. The approach in

CoScale is to arrange operating states in decreasing order of

marginal utility (∆power/∆per f ormance) and greedily pick

states till a maximum slack is not violated. Although theoret-

ically the greedy strategy can have up to a 2-approximation

factor [18], CoScale demonstrates a tighter approximation

in practice. CoScale, however, neither generates a pareto-

optimal frontier nor does it consider non-DVFS knobs such

as cache capacity or bandwidth allocations.

7. Related Work

There exists a variety of flavors of the power/energy manage-

ment problem. The power-budgeting problem seeks to parti-

tion a maximum power budget among resources to maximize

performance [27]; the energy-minimization problem seeks to

find configurations that minimize energy consumption (equiv-

alently, maximizes performance/watt); the min-EDP problem

seeks to minimize the energy-delay product (EDP) [24] so

that configurations that reduce energy but cause unacceptable

delays are not chosen. Π-dashboards enable state selection

for these and other problems.

A number of papers have studied simultaneous reconfig-

urations of multiple components within a node: cores and

caches [33, 29, 22]; cores and memory [23, 20]. However, an

integrated study with cores, caches and memory is missing.

The Advanced Configuration and Power Interface (ACPI)

[6] allows processors/devices to expose performance (P) or

power-saving (C) states that software can select to request

state transition for that processor/device. However, unlike our

Π-states, they do not quantify power-performance impact, nor

do they provide an ordering across configurations with mul-

tiple devices. The upcoming Haswell microarchitecture [16]

proposes to extend C-states to include latency requirements,

past history and runtime hints from devices.

Eckert et al. [22] proposed new processor P-states and L2 P-

states (power-gating and drowsy modes), but did not provide

a framework for optimal system configuration selection.

Researchers have recognized the need for coordination for

small- as well as large-scale systems [38,43,36,20]. We agree

that coordination is important and necessary. We also make

our coordinator agnostic to the knob implementation details.

Modern systems, such as those with the Sandy Bridge mi-

croarchitecture [39], include a centralized power-control unit

(PCU) that collects telemetry information from functional

blocks and performs control actions. Our proposed coordi-

nator can be colocated with/implemented by such a PCU.

8. Conclusions

This paper introduced new Π-state descriptors and a retar-

getable framework for determining pareto-optimal power-

10

performance states in CMPs with reconfigurable resources.

Π-states improve upon ACPI descriptors by quantifying im-

pact and predicting a total order among configurations involv-

ing multiple knobs. The coordinator interfaces with subsys-

tem controllers but is otherwise agnostic of specific reconfig-

uration knobs or impact predictors. While this work dealt

with single-node systems, our long-term vision is to extend

coordination using Π-state descriptors to larger multi-node

and hierarchical systems such as in datacenters. We hope that

this work will encourage future research into augmenting the

ACPI standard to enable easy and efficient identification of

the pareto-optimal frontier at the system level.

APPENDIX

A. Pareto-optimality & Power-Perf. Metrics

Consider a state y that is not on the pareto-optimal frontier.

So there exists at least one other state x such that Πx.Per f ≥
Πy.Per f and Πx.Power ≤ Πy.Power with at least one of the

inequalities being strict. Obviously then, the highest perform-

ing state with/without a (maximum) power cap and the lowest

power state with/without a (minimum) performance bound

must lie on the pareto-optimal frontier.

Since in this work, per f ormance ∝ 1
delay

, the above condi-

tion also means that Πx.delay ≤ Πy.delay and Πx.Power ≤
Πy.Power with at least one of the inequalities being strict.

Since energy is power multiplied by time (delay), it implies

that the lowest energy point with/without a delay cap must lie

on the pareto-optimal frontier. Since the state corresponding

to the highest performance-per-watt is the same as the state

with the lowest energy, that state will also be on the pareto-

optimal frontier. Moreover, according to the above condition,

states corresponding to the minimum energy-delay (ED) prod-

uct or ED2 product or, in fact, any EDn,n≥ 0 must also lie on

the pareto-optimal frontier.

0

10

20

30

40

50

60

70

80

bt applu graph500 hpcg jbb average

E

ED

ED²

D

Figure 10: Avg. Socket thermal headroom (◦C) on HS.

Selecting different metrics changes not only the operating

power-performance envelope, but also the thermal character-

istics. Figure 10 shows the average socket thermal headroom

on the Haswell server for several metrics (E: minimizes en-

ergy, D: minimizes delay) for the best (pareto-optimal) user-

mode frequency settings for that metric. The average is taken

over 17 workloads. Unsurprisingly, the chip gets hotter as

one moves through E → ED → ED2 → D operating points.

B. Monotonically decreasing functions

A function f (x) is monotonically decreasing in x if x1 >
x2 =⇒ f (x1) ≤ f (x2). We require only monotonic (f (x1) ≤
f (x2)), not strictly monotonic (f (x1) < f (x2)). Any function

that evaluates to a constant is monotonically decreasing as

well. Any affine combination, with non-negative coefficients,

of monotonically decreasing functions is also monotonically

decreasing. The RHS of Equation 1 is such an affine combi-

nation, the pth coefficient being
t(p)

∑p t(p)
.

C. Iterative convergence to fixed-point

At the fixed point, x= f (x) or, equivalently, x− f (x) = 0. Our

iterative method uses the observation that x and f (x) always
bracket the fixed point (See Figure 8c; f (x) > x for x less than

the fixed point and f (x) < x for x larger than the fixed point.

Our iteration method is similar to the standard bisection

method of finding roots (in this case we are finding the root

of the equation x− f (x) = 0). Let x0 denote the initial value.

If f (x0) is not already the fixed point, then either x0 < f (x0)
or x0 > f (x0). Let lb and ub denote the lower and higher of

the two values respectively. By our previous observation, the

interval [lb,ub] must contain the fixed point if it exists.

Let m = lb+ub
2 . If m is not the fixed point and f (m) > m,

then the interval [m,min(ub, f (m))] will contain the fixed

point if it exists. Otherwise, if f (m) < m, then the interval

[max(lb, f (m)),m] will contain the fixed point if it exists. In

either case, the length of the search interval is reduced in ev-

ery iteration. We terminate the iterations on reaching reason-

ably close (within 1%) of the fixed-point, or when lb > 2 (we

are considering up to slowdown=2), or when the interval is

very small (fixed point not found/does not exist).

D. HMC reconfiguration model

Our system uses 2 memory channels, each with a 2GB HMC

stack. We use 4-link devices with 64-byte access block size.

While the spec [31] defines static full-width and half-width

configurations, we assume that each link can be dynamically

reconfigured to these widths by transitioning a subset of its

lanes to down mode. We also add a quarter-width configura-

tion. Table 5 describes these configurations.

We assume that each device supports DVFS [21, 19] with

overclocking of 10% and 20% accompanied by a linear de-

crease in tRC and a linear increase in Vdd. Vdd changes af-

fect active, background and refresh power [32].

Config.
Bandwidth Rd req Wr req Rd resp Wr resp Pwr

Lanes GB/s Flits ns Flits ns Flits ns Flits ns W

Full(F) 16x2 50.0 1 0.64 5 3.2 5 3.2 1 0.64 0.8

Half(H) 8x2 25.0 1 1.28 5 6.4 5 6.4 1 1.28 0.4

Quarter(Q) 4x2 12.5 1 2.56 5 12.8 5 12.8 1 2.56 0.2

None(N) 0 0 1 ∞ 5 ∞ 5 ∞ 1 ∞ 0

Table 5: Offchip Link Configurations (single link).

11

References

[1] “Graph 500 reference implementation v2.1.4,” http://www.graph500.
org/referencecode.

[2] “High performance conjugate gradients v2.1,” https://software.sandia.
gov/hpcg/download.php.

[3] “SPEC OMP2012,” http://www.spec.org/omp2012/.

[4] “SPECjbb2013,” http://www.spec.org/jbb2013/.

[5] “Enhanced Intel SpeedStep technology for the Intel Pentium M pro-
cessor,” 2004.

[6] “Advanced configuration and power interface specification, revision
5.0,” 2011.

[7] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu,
D. J. Sorin, M. D. Hill, and D. A. Wood, “Simulating a $2M commer-
cial server on a $2K PC,” IEEE Computer, vol. 36, no. 2, pp. 50–57,
2003.

[8] A. R. Alameldeen and D. A. Wood, “IPC considered harmful for mul-
tiprocessor workloads,” IEEE Micro, vol. 26, no. 4, pp. 8–17, 2006.

[9] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady, “SPEComp: A new benchmark suite for measuring parallel
computer performance,” ser. WOMPAT ’01, 2001, pp. 1–10.

[10] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” vol. 40, no. 12, 2007.

[11] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disserta-
tion, Princeton University, 2011.

[12] B. Black, “Die stacking is happening,” MICRO 2013 Keynote.

[13] P. Bose, A. Buyuktosunoglu, J. Darringer, M. Gupta, M. Healy, H. Ja-
cobson, I. Nair, J. Rivers, J. Shin, A. Vega, and A. Weger, “Power
management of multi-core chips: Challenges and pitfalls,” in DATE,
2012, pp. 977–982.

[14] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” ser. ISCA ’00,
2000, pp. 83–94.

[15] J. A. Butts and G. S. Sohi, “A static power model for architects,” ser.
MICRO 33, 2000.

[16] R. Chappell, B. Toll, and R. Singhal, “Intel R© next generation microar-
chitecture codename Haswell: New processor innovations,” Intel De-
veloper Forum, 2012.

[17] R. Cypher, “Apparatus and method for determining stack distance in-
cluding spatial locality of running software for estimating cache miss
rates based upon contents of a hash table,” US7366871, 2008.

[18] G. B. Dantzig, “Discrete-variable extremum problems,” Operations
Research, vol. 5, no. 2, pp. 266–288, 1957.

[19] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
ser. ICAC ’11, 2011, pp. 31–40.

[20] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “CoScale: Coordinating CPU and memory system DVFS in
server systems,” ser. MICRO 45, 2012.

[21] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: active low-power modes for main memory,” ser. ASP-
LOS ’11, 2011, pp. 225–238.

[22] Y. Eckert, S. Manne, M. J. Schulte, and D. A. Wood, “Something old
and something new: P-states can borrow microarchitecture techniques
too,” ser. ISLPED ’12, 2012, pp. 385–390.

[23] W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A performance-
conserving approach for reducing peak power consumption in server
systems,” ser. ICS ’05, 2005, pp. 293–302.

[24] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose
microprocessors,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9,
pp. 1277–1284, 1996.

[25] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and
J. Rubio, “Thermal response to DVFS: analysis with an Intel Pentium
M,” ser. ISLPED ’07, 2007, pp. 219–224.

[26] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” vol. 34,
no. 4, pp. 1–17, 2006.

[27] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” ser. MICRO 39,
2006.

[28] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power management
of the third generation Intel Core micro architecture formerly code-
named Ivy Bridge,” in Hot Chips 24, 2012.

[29] K. Ma, X. Wang, and Y. Wang, “DPPC: Dynamic power partitioning
and capping in chip multiprocessors,” ser. ICCD ’11, 2011, pp. 39–44.

[30] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset,” Computer Architecture News, pp. 92–99, 2005.

[31] HMC Consortium, “Hybrid memory cube specification 1.0,” 2013.

[32] MICRON, “TN-41-01: Calculating memory system power for
DDR3,” 2007.

[33] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-optimization
power management for chip multiprocessors,” ser. PACT ’08, 2008,
pp. 177–186.

[34] T. N. Mudge, “Power: A first class design constraint for future archi-
tecture and automation,” ser. HiPC ’00, 2000, pp. 215–224.

[35] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar,
K. Krishnan, and A. Kumar, “Power and thermal management in the
Intel Core Duo processor,” Intel Technology Journal, vol. 10, 2006.

[36] L. Nogueira, L. M. Pinho, and J. Coelho, “A feedback-based decen-
tralised coordination model for distributed open real-time systems,”
Journal of Systems and Software, vol. 85, no. 9, pp. 2145 – 2159,
2012.

[37] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips 23,
2011.

[38] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“No "power" struggles: coordinated multi-level power management
for the data center,” ser. ASPLOS XIII, 2008, pp. 48–59.

[39] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27,
2012.

[40] R. Sen and D. A. Wood, “Reuse-based online models for caches,” in
SIGMETRICS, 2013.

[41] T. Shyamkumar, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“CACTI 5.1,” Hewlett Packard Labs, Tech. Rep. HPL-2008-20, 2008.

[42] “Intel Turbo Boost technology in Intel Core microarchitecture (Ne-
halem) based processors,” 2008.

[43] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “SHIP: Scalable
hierarchical power control for large-scale data centers,” ser. PACT ’09,
2009, pp. 91–100.

[44] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson, and
J. Carter, “Architecting for power management: The IBM POWER7
approach,” in HPCA, 2010, pp. 1 –11.

12

http://www.graph500.org/referencecode
http://www.graph500.org/referencecode
https://software.sandia.gov/hpcg/download.php
https://software.sandia.gov/hpcg/download.php
http://www.spec.org/omp2012/
http://www.spec.org/jbb2013/

	Introduction
	Motivating Example
	Management Framework
	Real Machine Study
	-states
	-state Composition
	-state Pareto-dominance and Ordering

	Simulation Study
	Socket/Onchip Subsystem
	Offchip Subsystem
	Non-overlapping subsystem time, t(p)
	Analysis of Trends
	Coordinator computation time

	Related Work
	Conclusions
	Pareto-optimality & Power-Perf. Metrics
	Monotonically decreasing functions
	Iterative convergence to fixed-point
	HMC reconfiguration model

