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2 energy efficiency ideals and the iron law

Energy efficiency is the new fundamental limiter of processor performance, way

beyond numbers of processors.

— Shekhar Borkar and Andrew A. Chien [35]

2.1 Overview

Energy efficiency is the work done per unit amount of energy consumed. Maximizing

energy efficiency is important as it allows more work to be done for a given energy

budget and also allows work to be done faster for a given power budget. This has

economic and environmental benefits as it minimizes the energy needed to do a given

computation.

While compute capability, in terms of the number of transistors per chip, has steadily

increased (Moore’s Law [158]), operating voltage has not reduced in proportion (limited

Dennard scaling [63]). Borkar and Chien [35] observed that although Pollack’s rule [170]

predicts a speedup potential (beyond speedups in transistor switching) in proportion to

the square root of the number of transistors in a processor, energy-efficiency concerns

discourage many microarchitectural techniques that can enable those performance gains.

Thus, improving energy efficiency will also improve processor performance.

Energy-proportional computing, that uses energy in proportion to the work done, is

an important concept for energy-efficient systems since it seeks to eliminate energy waste

by only using as much energy as the work done. However, modern computers are not

energy proportional. For example, they use non-trivial power when they are powered on

but not used. This is due to processor leakage power, DRAM refresh, and power draw
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by various components such as fans, hard disks, etc. Energy proportionality has been an

useful goal for system designers to make their systems more energy-efficient.

One way to increase proportionality could be to use innovative power-delivery

solutions. PowerNap [151] proposed a new power delivery system called RAILS that

reduces idle power consumption and proposed to rapidly transition the system to a

nap (sleep) state. The nap state retains volatile information, e.g., memory state. With

an expected transition time of 10ms or less, the system should be able to save power

during idle periods of short durations. The RAILS system consists of multiple power

supplies to improve upon the low efficiency of individual power supply units. The RAILS

supplies are provisioned such that the power consumption of the idle system is in the

efficient operating range of a single supply. As server blades become active, more RAILS

supplies get electrically connected so that all the supplies operate in their efficient ranges.

However, the PowerNap approach does not work well for some workloads, e.g., OLDI

workloads, because full system idleness is relatively rare [152]. Moreover, the napping

opportunity decreases further as the number of cores increase [154].

Modern computers also have reconfigurable resources, e.g., processor voltage and

frequency levels. We show that intelligent reconfiguration can cause these computers

to exceed the efficiency of conventional energy-proportional machines when they are

performing work. The original definition of energy-proportional computing, first proposed

by Barroso and Hölzle, does not characterize the energy efficiency of recent reconfigurable

computers, resulting in non-intuitive “super-proportional” behavior (more work done

in proportion to the energy used). This chapter introduces a new definition of “ideal”

energy-proportional computing and new metrics to help guide both system architects

and operators to configure systems to operate close to this ideal efficiency.

We show that the traditional ideal of energy-proportional may be significantly energy
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inefficient, and hence, not suited to be an ideal model. Instead, we propose Energy

Optimal Proportional (EOP) as the new ideal model for system designers. An ideal EOP

system has the maximum efficiency over its entire performance range. Making systems

more EOP is a design goal for system architects.

Currently, real systems are not EOP any more than earlier systems were EP. We

propose Dynamic EO (Dynamic Energy Optimal), which is the power-performance Pareto

frontier and which can be realized on the current system, as the new ideal model for

system operators. The Pareto frontier is a set of Pareto-optimal configurations. A system

configuration is Pareto optimal if it is not possible to reconfigure the system to improve

performance without also increasing power consumption or to reduce power consump-

tion without also degrading performance. Pareto-optimal power-performance system

configurations help enforce service-level objectives such as maximizing performance for a

given power budget or minimizing power for a given performance target, both leading to

energy savings. System operators should aim for Dynamic EO to achieve power-efficient

performance for the current system.

This chapter focuses on defining new ideals for energy proportional computing and

new metrics to quantify operational energy wastage of computing systems.

The main contributions of this chapter are:

1. We show that the conventional “ideal” model of energy proportionality does not

fully describe the energy efficiency potential of modern super-proportional systems.

2. We propose new ideals for both system designers and system operators. EOP is

the new design ideal that subsumes conventional “ideal” energy proportionality.

Dynamic Energy Optimal (Dynamic EO), that is the power-performance Pareto

frontier, is the new operational ideal.
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3. We propose a new metric called Computational Power Usage Effectiveness (CPUE)

to quantify excess computational energy used with respect to that by EOP.

4. We propose new metrics, Load Usage Effectiveness (LUE) and Resource Usage

Effectiveness (RUE), that can help system operators to focus on load management

and configuration management to make the system operate efficiently.

5. We develop the “Iron Law of Energy” that quantifies the impact of poor load

management and poor configuration management on CPUE.

Section 2.2 defines energy efficiency and describes our experimental setup. Section 2.3

shows why the conventional “ideal” model is inadequate for modern systems. Section 2.4

proposes our new design and operational ideals. Section 2.5 discusses several properties

of the power-performance Pareto frontier and their implications on managing for efficient

operations. Section 2.6 proposes a new metric for quantifying energy waste and its

decomposition into two components, pertaining to load management and configuration

management. Section 2.8 describes how Pareto frontiers of individual systems can

be composed to determine the Pareto frontier for a collection of systems. Section 2.7

discusses some of the overheads and challenges involved in energy-efficient scheduling.

2.2 Terminology and Infrastructure

Similar to Barroso and Hölzle [22, 104], we define energy efficiency as Work
Energy , or equiva-

lently, Performance
Power . The performance of a system is measured as the rate of doing work,

e.g., the load serviced, or transactions completed per unit time. Performance normalized

to that at peak load levels is the system utilization [22].

The system that we use in this work is a single-socket quad-core Haswell-based Xeon

E3-1275 v3 server with 32 GB memory (DDR3-1600), henceforth referred to as HS. HS
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runs RHEL with kernel version 2.6.32. It has a frequency range of 0.8–3.9 GHz with

3.5+–3.9 GHz being the turbo boost region. The turbo boost plan is 2/3/4/4 meaning

that the maximum frequency can be 3.5 + 0.1*2 = 3.7 GHz with all four cores active, 3.5 +

0.1*3 = 3.8 GHz with three cores active, and 3.5 + 0.1*4 = 3.9 GHz with two or one cores

active. We run the system with all four cores, hyperthreading (2 hardware threads per

core, that is, 8 hardware threads per socket), and cache prefetching enabled by default.

All cores run at the same frequency (except perhaps in turbo mode where individual

cores may be throttled differently). The socket frequency can changed in steps of 100

MHz by writing to Model Specific Registers. Any value for the turbo region implies a

limit on the maximum frequency. HS has a socket TDP of 84W and a remarkably low

socket power of ~0.27W when idle. DRAM idle power is ~4.3W.

We use the SPECpower benchmark [205] in this chapter. This Java workload simulates

warehouse transaction processing, with (by default) as many warehouses as logical

processors on the system under test, that is, the server. Transaction requests to each

warehouse arrive in batches of 1000 transactions each. The batches have (negative) expo-

nentially distributed interarrival times. The server load is measured in total transactions

per second. The workload first calibrates the maximum, or 100%, load. Next, it does

measurement intervals by varying the load offered to the system under test from 100%

(max. utilization) to 0% (no utilization) in decrements of 10%. In these intervals, the

load served must be within 2% (up to 2.5% shortfall for the 100% and 90% intervals is

allowed) of the offered load. We use a Watts Up? (.net) meter [107] for system (wall)

power measurements. SPECpower uses its own software utility (daemon) for periodically

measuring and reporting system power. SPECpower reports power numbers only for the

measurement intervals. This is what is plotted against performance in all the graphs for

SPECpower profiles.
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We refer to 100% load as the maximum load achieved for the Peak Performance

Configuration (all cores at the highest frequency and prefetching enabled). All loads are

normalized with respect to that peak load.

2.3 Inadequacy of Conventional Energy Efficiency Ideals

We see that peak energy efficiency occurs at peak utilization and drops quickly as

utilization decreases.

— Luiz André Barroso and Urs Hölzle [22]

The average efficiency is always less than the peak efficiency; modern servers are only

maximally efficient at 100%.

— David Meisner and Thomas F. Wenisch [153]

Barroso and Hölzle observed that real systems—at that time—attain peak efficiency

at peak utilization, but quickly lose efficiency as utilization drops as they are unable

to proportionately reduce power consumption. They posit that an “ideal” energy-

proportional system should always use energy in proportion to the work done, by

maintaining this peak efficiency even at reduced load.

Figures 2.1 and 2.2 illustrate this original model for HS running SPECpower. Figure 2.1

shows the server’s power-performance profile at different load levels with the highest

processor frequency. We label these points with Peak Performance Configuration) since the

machine can serve maximum load (peak performance) with this configuration.

The EP line represents Barroso and Hölzle’s “ideal” energy-proportional profile where

performance is linearly proportional to power. We consider this a design ideal for future

systems, since current systems have unavoidable idle power consumption. The Dynamic

EP line accounts for idle power [141], and represents an operational ideal for the current
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Figure 2.1: Power-Performance profile with conventional server configuration.
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Figure 2.2: Conventional efficiency model of servers.

system. This server’s Peak Performance Configuration achieves power-performance very

close to Dynamic EP. Figure 2.2 shows that the corresponding energy efficiency (η),

normalized to that at peak performance, reduces quickly from 100% as performance

drops. In contrast, an EP system is always 100% efficient.
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Figure 2.3: Power-Performance profile for super-proportional systems.
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Figure 2.4: Performance (Load) vs Efficiency for super-proportional systems.

Barroso and Hölzle’s observation has been instrumental in helping drive recent system

designs to have lower idle power and a wide dynamic power range. However, their model

describes systems with fixed resources, while these modern, more-efficient processors have

reconfigurable resources—e.g., core frequencies, voltages, number of active cores, threads

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 23

per core, etc. that can be varied at runtime.

Operating with fixed resources can be inefficient when a server faces variable loads,

either due to fluctuating demands, or service consolidation and load balancing among

other servers [47, 60, 148].

Servers are usually configured for maximum performance (that is, the Peak Perfor-

mance Configuration), but other configurations can trade performance for greater energy

efficiency. Figure 2.3 shows that changing just the socket frequency (and consequently

voltage) results in energy efficiency that exceeds the “ideal” EP profile. Specifically,

by varying the frequency from 3.9 to 0.8 GHz, the Haswell server can achieve super-

proportional efficiency over almost 60% of the performance range (points in the shaded

Super-Proportional region—where performance is super-proportional to power). Fig-

ure 2.4 shows that the maximum efficiency (ηmax, occurring at approximately two-thirds

load) is 29% higher relative to the EP energy efficiency, for this server.

Reconfigurable systems create opportunities for increased efficiency even outside the

super-proportional region. For example, Figure 2.4 shows that the Peak Performance Con-

figuration attains a relative efficiency of 61% at 30% load, while a different configuration

achieves a relative efficiency of 88% at the same load. In other words, the usual server

configuration uses 44% more energy than necessary to satisfy the same load, despite

being nearly on the Dynamic EP line.
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Ideally systems would exhibit energy-proportionality, wherein servers consume power

in proportion to their load.

— David Meisner et al. [152]

In an energy-proportional system, explicit power management is unnecessary, as

power consumption varies naturally with utilization.

— David Meisner et al. [151]

energy-proportional computing must be the ultimate goal for both hardware architecture

and software-application design.

— Shekhar Borkar and Andrew A. Chien [35]

As we have demonstrated, neither EP nor Dynamic EP (that is, the conventional ideal

models) describes the full potential of modern computing systems. While non-linearity

with reconfiguration is well-known, e.g., with frequency (and voltage) control, the existing

ideal models do not consider its impact on peak efficiency. New models are needed

to aid operating system schedulers and system administrators to configure systems to

deliver maximum efficiency.

2.4 Redefining EP and Dynamic EP

The EP model assumes that maximum energy efficiency occurs at maximum (100%) load

and argues that an ideal system should achieve that efficiency for all loads. Yet Figure 2.4

shows that a reconfigurable server actually attains maximum efficiency (ηmax) at a lower

load (ηmax_L < 100%). We argue that a better ideal model is one that achieves this optimal

efficiency ηmax for all loads.
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Figure 2.5: EOP and Dynamic EO models.

Similar to the EP model, the ideal system should have maximum efficiency (ηmax) at

every load. This implies that for a given computation, it will use minimum energy (Emin)

to do it irrespective of the computing rate (performance or load). Figure 2.5 shows its

geometric interpretation as a straight line passing through the points (0, 0) and (ηmax_L,

ηmax_P). This ideal system, that is energy optimal at every load, uses power linearly

proportional to load (l/ηmax power at load l). Energy optimality at every load implies

energy proportionality, but the converse is not true, e.g., EP is proportional but not

optimal at all loads.

We call this new model EOP (Energy Optimal Proportional) since it is both optimal

and proportional. EOP is a design ideal that gives system designers a way to measure

how far the energy efficiency of a target design differs from the best possible design,

hopefully leading to more energy-efficient systems. EOP subsumes the EP model for all

systems—it improves upon EP for super-proportional systems and is identical to it for

all others.
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Of course real systems are unlikely to achieve this design ideal, e.g., due to unavoid-

able idle power, so system software needs an operational model that characterizes the

maximum efficiency that can be realized by the current system at different loads. We

address this using the well-known power-performance Pareto frontier [19, 27, 183], shown

as a dashed line in Figures 2.3–2.6. The Pareto frontier represents configurations in the

current system that use the lowest power, and hence are the most efficient, among all

configurations that can serve a given load. These configurations are Pareto optimal in the

sense that, among these configurations, one cannot reduce power without also reducing

load or increase load without also increasing power.

We call this model Dynamic EO. Like Dynamic EP, it is an operational ideal that seeks

to characterize the best energy efficiency that can be achieved for a given system. But it

differs from Dynamic EP in two aspects—it characterizes optimality that can already be

realized by some among the multitude of configurations in the current system and it

does not assume linearity of the power-performance profile.

Figure 2.5 illustrates the different models. These are the

• design ideals: conventional (EP), new (EOP), and

• operational ideals: conventional (Dynamic EP), new (Dynamic EO).

The EOP line meets (is tangential to) the Dynamic EO line only at points having the

maximum efficiency (ηmax).The following energy efficiency relations hold for any system:

Dynamic EP 6 EP 6 EOP

Dynamic EO 6 EOP

where 6 means less than or equal to for values of efficiency. Systems, like our server,

that can operate in the non-Sub-Linear region for any portion of their performance range

have Dynamic EP 6 Dynamic EO for all such loads.
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2.5 Power-Performance Pareto Frontier (Dynamic EO)

In this Section we describe some properties of Dynamic EO and their implications for

optimal system operations.

Every configuration of the system can be characterized by its performance and power

consumption. We call each such (Configuration, Performance, Power) tuple a system

state. The Pareto frontier is determined by only those states that use the lowest power

among all states having at least that performance. It is a subset of the set of system states.

The governors that we develop in Chapters 3 and 5 seek to constrain system operations

to Pareto-optimal states.

Let Π denote the set of system states with Πi representing the ith state having

performance Πi.Perf and power consumption Πi.Power. Let the highest performing state

be Π0. We apply the well-known concepts of Pareto dominance and Pareto optimality.

State Πi Pareto-dominates state Πj if (Πi.Perf > Πj.Perf)∧(Πi.Power 6 Πj.Power).

Property 1: The Pareto frontier is the set of non-dominated states.

In Figures 2.3 and 2.4, the Pareto frontier is the set of states represented by the dashed

line. The states that lie on the EP line in the Super-Proportional region are dominated by

the states on the frontier.

Implication: Constraining system operation to the Pareto frontier is important since

dominated states are less efficient than dominating states (also see Figure 2.4). The state

with the maximum efficiency (ηmax) lies on the Pareto frontier.

Property 2: States on the Pareto frontier have the same total order in both power and

performance.

Let Πi,Πj be states on the Pareto frontier. Then (Πi.Perf > Πj.Perf) ⇐⇒ (Πi.Power >

Πj.Power). We number the states in decreasing order of performance. The ordering

relation for states on the frontier is thus: i < j ⇐⇒ (Πi.Perf > Πj.Perf) ∧ (Πi.Power >
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Πj.Power).

Implication: While the state space is inherently two-dimensional, the Pareto frontier

is more constrained allowing system operators to qualitatively reason about the other

dimension from looking at one dimension alone. For example, increasing the power

budget will improve performance at the Pareto frontier if the power is used. This is not

true for the whole state space where states with less performance can use more power.

This positive correlation between the two dimensions exists at the Pareto frontier.

Property 3: System states that optimize power-performance metrics are located at the Pareto

frontier.

Consider a state Πi that is not on the frontier. So there exists at least one other state Πj

such that Πi.Perf > Πj.Perf and Πi.Power 6 Πj.Powerwith at least one of the inequalities

being strict. This implies that the highest performing state with/without a (maximum)

power cap and the lowest power state with/without a (minimum) performance bound

lie on the Pareto frontier.

In this work we assume that performance ∝ delay−1. Since energy is power

multiplied by time (delay), it implies that the lowest energy point with/without a

delay cap must lie on the Pareto frontier. Since the state corresponding to the highest

performance-per-watt is the same as the state with the lowest energy, that state will also be

on the Pareto frontier. Moreover, according to the above condition, states corresponding

to the minimum energy-delay (ED) product or ED2 product or, in fact, any EDn,n > 0

must also lie on the Pareto frontier.

Since states on the Pareto frontier are more efficient than other states, the highest

performing state with/without a maximum power cap, the lowest power state with/with-

out a minimum performance bound, the highest performance-per-watt state, the lowest

energy state, the lowest energy-delay state, etc. will lie on the Pareto frontier.
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Implication: Optimizing system operations for commonly used power-performance

or energy efficiency metric necessitates operating it at the Pareto frontier.

Property 4: The points of contact between the frontier, Power = f(Perf), and the tangent

curve Power = cn(Perf)n+1,n + 1 > 0 and some constant cn, represent configurations that

optimize (minimize) metric EDn. (n = 0 means energy E.)

Let Πi be a state that optimizes (minimizes) metric EDn. By Property 3, Πi must

be on the frontier. Since E = Power(Perf)−1 and EDn = Power(Perf)−n−1, Πi will

be on the curve for the power function Power = cn(Perf)n+1 if we choose cn =

Πi.Power(Πi.Perf)−n−1. cn is thus the optimum value for EDn. Moreover, every

point on this power function curve will have the same value for EDn, which is cn. No

part of the frontier can be below this curve, as then states on this part of the frontier will

have lower power for the same performance compared to points on the power function

curve directly above them and thus have a smaller value for EDn than cn which is a

contradiction.

Note that all points on the curve above the linear tangent are suboptimal with respect

to E, all points above the quadratic tangent are suboptimal with respect to ED, all points

above the cubic tangent are suboptimal with respect to ED2, and so on.

Implication: This forms the basis for the geometric interpretation of the Pareto

Proportional line described in Section 2.4. Every point on the linear tangent has the same

slope, which is equal to Power
Performance , that is, performance-per-watt−1 value of the most

energy-efficient point.

Property 5: The Pareto frontier is not necessarily convex (or concave).

Let Πi,Πj,Πk be states on the frontier with i < j < k. The ordering relations

only imply Πi.Perf > Πj.Perf > Πk.Perf and Πi.Power > Πj.Power > Πk.Power, not

Πj.Power 6 Πk.Power+
(
Πj.Perf−Πk.Perf
Πi.Perf−Πk.Perf

)
(Πi.Power− Πk.Power).
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Implication: Convex optimization approaches cannot be directly applied while com-

posing multiple Pareto frontiers. Moreover, hill-climbing based search techniques at the

frontier can get stuck in local optima instead of reaching global optima. However, as

we show in Section 2.8, convex (polynomial) approximations to the Pareto frontier may

work well enabling applications of efficient optimization techniques.

2.6 Computational PUE

Datacenters can satisfy a given load by distributing it to machines in different ways. Each

machine can also be configured in a large number of ways. These modes for servicing

the load differ in the amount of energy consumed, since some modes are more inefficient

than others.

A hypothetical ideal system, that is, one that meets the design ideal EOP, achieves

maximal energy efficiency (ηmax) and thus minimizes the energy (Emin) needed for a

given computation regardless of load. We would like a metric to quantify the excess

energy used by a real system, compared to this ideal system.

Our new metric, Computational Power Usage Effectiveness (or, CPUE), measures how

much energy a server uses with configuration c at load l compared to the energy used

by EOP. We define

CPUE(c, l) =
Actual server energy with c at l

EOP energy at l , l > 0 (2.1)

=
E(c, l)
Emin

, l > 0 (2.2)

Thus, E(c, l) = CPUE(c, l)× Emin, l > 0 (2.3)
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CPUE(c, l) is inspired by the well-known PUE metric [16] that tracks energy waste

for datacenters by taking the ratio of facility energy consumption to energy consumption

by IT equipment. PUE > 1 quantifies excess relative energy used by the datacenter

due to the non-IT infrastructure. Similarly, CPUE(c, l) > 1 quantifies excess relative

computational energy used whenever efficiency drops below ηmax.

We have seen that there are two major factors that lead to energy inefficiencies: i)

running the system at a non-optimal load and ii) for a given load, running the system

with a non-optimal configuration. We can decompose CPUE(c, l) to isolate these two

factors.

We defined CPUE(c, l) as E(c, l)/Emin. For a given amount of work, energy consumed

is inversely proportional to efficiency. Thus,

CPUE(c, l) =
ηmax
η(c, l) , l > 0 (2.4)

=

(
ηmax

ηPareto(l)

)
×
(
ηPareto(l)

η(c, l)

)
, l > 0 (2.5)

= LUE(l)× RUE(c, l), l > 0 (2.6)

Thus, E(c, l) = LUE(l)× RUE(c, l)× Emin, l > 0 (2.7)

where LUE(l) denotes Load Usage Effectiveness at load l and RUE(c, l) denotes Resource

Usage Effectiveness of configuration c and load l.

LUE(l) is the efficiency of EOP(ηmax) relative to that of of Dynamic EO at load l.

LUE(l) > 1 with LUE(l) = 1 ⇐⇒ l can be served at maximum efficiency (ηmax). Since

energy consumed is inversely proportional to efficiency, LUE(l) > 1 quantifies excess

energy used, relative to Emin, due to non-optimal loads assuming that the Pareto-optimal

configuration has been chosen to serve load l.

RUE(c, l) is the efficiency of Dynamic EO relative to that of configuration c, both
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at load l. RUE(c, l) > 1 with RUE(c, l) = 1 ⇐⇒ c is a Pareto-optimal configuration.

RUE(c, l) > 1 quantifies excess energy used, relative to Dynamic EO at load l, due to

using non-optimal (Pareto-dominated) configuration c for serving load l.

Inspired by the “Iron Law of Performance”, we call Equation 2.7 the “Iron Law of

Energy”. System designers will focus on minimizing Emin whereas system operators will

focus on minimizing LUE and RUE.

Both LUE(l) and RUE(c, l) can be expressed in terms of CPUE(c, l). Since RUEPareto(l) =

1 for every l, LUE(l) = CPUEPareto(l) and RUE(c, l) = CPUE(c, l)/CPUEPareto(l).

Our proposed RUE and LUE metrics can help system operators isolate the sources

of energy inefficiency and guide new policies to reduce it. LUE is important for load

management of Pareto-optimal configurations. RUE is important for configuration

management for Pareto-dominated configurations. While LUE is applicable to all systems,

both old and new, it only partially quantifies energy waste in reconfigurable systems that

can be configured in a plurality of ways. RUE completes the quantification.

2.7 Load and Configuration Management

Most data centers are provisioned to meet peak load, but normally operate at much

lower load levels. The LUE metric can help operators quantify the potential benefit

of deploying load management policies [47, 60, 148], e.g., concentrating load on some

servers and shutting down others. Of course, any such policy must also ensure that

service-level agreements are still satisfied [171].

Figure 2.6 shows that CPUE for the Peak Performance Configuration is always > 1

(wastes energy) and increases as load decreases. The best CPUE for this configuration is

1.29, occurs at peak load, and implies 29% excess energy used relative to Emin. LUE (that

is, CPUE for Dynamic EO), on the other hand, first decreases to 1, then increases, revealing
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Figure 2.6: CPUE(c, l) and LUE(l). These →∞ as load l→ 0 due to non-zero idle power.
For any configuration c and load l, CPUE(c, l) > CPUEPareto(l) = LUE(l) > 1.

a sweet spot of 6 10% excess energy used at around 51%–90% of peak performance.

Barroso and Hölzle [22] observed that servers typically operate at 10%–50% load. The

LUE curve for SPECpower (Figure 2.6), shows excess energy used due to suboptimal

load of approximately 10% at the higher end of this range, to over 250% (not shown)

at the lower end. The steep slope of the LUE curve at low loads makes even modest

load management very attractive. For example, increasing load from 10% to 20% of peak

reduces LUE from 3.55 (255% excess) to 1.99 (99% excess) and a further increase to 25%

peak load reduces LUE to 1.68 (68% excess).

Even in a data center with perfect load balancing, reconfigurable servers may be

misconfigured, wasting significant energy even at optimal load. Figure 2.7 shows RUE for

SPECpower for all system configurations and loads. Operating with the Peak Performance

Configuration is significantly wasteful even at low loads, e.g., 21% excess energy used

at 10% load compared to operating at Dynamic EO. The excess increases to 51% before

decreasing to zero at peak load. Not all Pareto-dominated configurations are as wasteful—
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the shaded band identifies configurations that have an RUE of 6 1.1 and hence limit the

extra energy used to 10%.
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Figure 2.7: Resource Usage Effectiveness.

Configuration management (to reduce RUE) may incur costs, e.g., due to transition

times while changing configurations. System designers are making great strides in

reducing these costs. For example, processor frequency transitions complete within a

few hundred microseconds today.

Calculating LUE and RUE (as well as determining EOP and Dynamic EO) requires

knowledge of the Pareto frontier. In this chapter, we determine the frontier offline by

running the workload multiple times with the server configured to different frequencies.

Offline characterization is also used in prior work [19, 183], but may not be feasible

in an online setting with unknown workloads. In Chapter 3 we introduce an online

policy that closely approximates the frontier by controlling processor frequency and

cache prefetching.

Workload characterization incurs overheads, but researchers have demonstrated [60,
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148] its feasibility and utility in large-scale computing environments, e.g., at Google

datacenters and Amazon EC2. With modern systems showing trends of increasingly

making components reconfigurable, we expect further applications of such techniques to

infer characteristics that are relevant to these components.

2.8 The Π-dashboard

With one or more reconfiguration knobs in the system, the user is faced with the daunting

task of choosing the right configuration that meets a desired power-performance or

energy-efficiency criteria. The Π-dashboard attempts to bridge the gap between high-level

power-performance goals and system resource configurations—a mapping capability

that is largely missing in today’s systems. Π-dashboards enable selection of a variety

of power-performance profiles for the system. The user or operating system can select

a desired power-performance profile from the Π-dashboard resulting in a “one-shot”

transition of the system to the corresponding configuration.

As discussed in Section 2.5, we denote the collection of system states as Π-states.

Each state is characterized by the performance and power consumption of the system

when operating with that configuration. Pareto-optimal Π-states can be totally ordered

(Section 2.5, Property 2). The Π-dashboard is a tabular representation of this totally

ordered list of Pareto-optimal Π-states.

Chapter 3 shows how we use power-performance predictors, using hardware counters,

to characterize the expected impact of different configurations and subsequently identify

Pareto-optimal configurations. A controller/coordinator creates the dashboard from the

predictions and interfaces with the user or operating system. It updates the dashboard

periodically as execution profiles change over time. The coordinator may be implemented

as a software routine (ISR) that runs on one or more cores, or as a specialized unit such
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as a PCU in modern systems [181].

Controller

Resources

Controller Controller

Coordinator

Pareto Predictor

contract contract contract

Π

Select

Π Π

Π

Resources Resources

Dashboard

Pareto Predictor Pareto Predictor

Figure 2.8: Coordination architecture.

Figure 2.8 shows a schematic overview of hierarchical coordination across multiple

systems. The Pareto Predictors of individual systems predict power-performance pro-

files of the reconfigurable Resources of their systems. The local controller/coordinator

communicates the Pareto-optimal Π-states to the upper-level coordinator. This coordi-

nator composes the Pareto frontiers to get the overall Pareto frontier and exposes the

Π-dashboard to the user. The configurations for the selected profile are then communi-

cated back to the local controllers/coordinators as a “contract” that should be honored

by the individual systems for subsequent execution.

The coordinator can compose Pareto frontiers using an optimization program. Let

there be n machines, numbered 1..n. Let xi,j and yi,j respectively denote the performance

and power consumption in the jth Pareto-optimal state, Πj, in machine i. The overall

performance range that can be supported is [mini,j(xi,j),
∑n
i=1 xi,0]. The optimal power

consumption, p, for any performance l in this range can be determined by solving the

following program:
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Model R2

Linear 0.9138
Quadratic 0.9813

Cubic 0.9959
Quartic 0.9988
Quintic 0.999

Table 2.1: R2 values for polynomial fits to SPECpower Pareto frontier.

minimize p =

n∑
i=1

∑
j

Ii,j ∗ yi,j (2.8)

such that l 6
n∑
i=1

∑
j

Ii,j ∗ xi,j (2.9)

Ii,j ∈ {0, 1} ∀i, j (2.10)∑
j

Ii,j = 1 ∀i (2.11)

In the above, condition 2.9 requires that the desired performance be met, condition 2.10

allows any state to be either fully selected or not selected, and condition 2.11 requires

exactly one state to be selected per system.

In general, the Pareto frontier is not convex (Section 2.5, Property 5). So, a local

optima in an optimization program dealing with Pareto frontiers is not necessarily a

global optima. But for many real systems, convex (e.g., polynomial) approximations may

work well. Table 2.1 shows the coefficient of determination values (R2 values, best fit

value=1) for several polynomial fits to the SPECpower Pareto frontier on HS. A quadratic

or higher order approximation works quite well. The approximation errors may be higher

if the models are required to include specific points. Convex approximations may reduce

the computational effort required to solve the optimization program.
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2.9 Conclusion

In this chapter, we explored the relation between two well-known but dissimilar concepts,

power-performance Pareto optimality and energy proportionality, both of which share

the end goal of making computing more energy efficient. We demonstrated that the

conventional model of energy proportionality is inadequate for reconfigurable systems

since it does not guarantee energy optimality. We defined a new model, EOP, that

guarantees both optimality and proportionality and established its relation to the Pareto

frontier.

Real systems are not ideal and hence use more energy than that used by the ideal EOP

system (Emin). We proposed a new metric, Computational PUE (CPUE), that quantifies

how much excess computational energy is used by the system relative to that by EOP.

This depends on both the load served and the system configuration used to serve that

load.

Our new Iron Law of Energy shows that CPUE can be decomposed into three terms—

LUE, RUE, and Emin. The LUE and RUE metrics separate the load and configuration

aspects of suboptimality. LUE answers the question: how suboptimal is a given load?

RUE answers the question: how suboptimal is a given configuration with respect to the

most efficient configuration that can also serve that load? LUE is affected by demand

fluctuations and inter-server load management whereas RUE is affected by intra-server

configuration management.

While system components are increasingly being designed to be reconfigurable,

identifying the Pareto frontier is challenging, particularly with multiple reconfigurable

resources and dynamically changing runtime environments. Scheduling frameworks that

carefully choose configurations and operating ranges will unlock the full potential of

current and future reconfigurable systems. This will be our focus in Chapter 3.
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