Lecture 14, CS 302-6, October 5

1. Program 1

a. Input validation - .hasNextInt, .next

i. Think of scanner as processing a line of inputs

ii. hasNextInt looks at which one is coming up next

iii. .nextInt, .next, etc actually take that one out of line and process it.

b. Reminder – documentation

c. Reminder – don’t try to do ‘too much’

2. Review

a. Monty Hall

b. Arrays

i. Declare/initialize

1. int[] numbers=new int[3];

2. int[] numbers; numbers=new int[3];

3. int[] numbers={1,2,3};

ii. How to use

1. numbers[1] (‘numbers sub 1’) -> 2

2. numbers[0] -> 1

iii. Characteristics

1. Type – int, double, String, etc

2. Length

a. numbers.length

c. For each loop

i. For(int value:data)

ii. Example – TestScores.java

3. Things to remember about arrays

a. Arrays have a fixed length

1. Cannot be changed after you have initialized it

2. Can change after declaring, though.

Eg int[] numbers; //do stuff; numbers=new int[var];

b. Error if try to access element outside of range

1. run-time, not compile time, so be careful!

ii. The exception will tell us why/where it failed, which is good for tracking down errors

4. Things you can do with Arrays

a. Many of the same things we did with loops – sums, averages, Max, min. etc – except, now we remember data

i. Note –these require traversing the entire array

b. Linear search

i. Start at beginning, search until we find data

ii. Note – search can abort early, once we find answer

c. Binary Search

i. Faster than linear

ii. Start in middle. If our value is greater, check second half. If our value is less, check first half. Repeat with that section until we find the number or run out of elements.

iii. Only works if the array is sorted beforehand

iv. Real-world example – searching through a dictionary.

1. Start in middle, then half each way, etc.

d. Inserting and removing elements from arrays

i. Removal - Start at the index you want to remove +1. Copy that into the index you want to remove. Then, move up one and repeat.

ii. Insertion – start at end of the array. Copy the value into the fist empty slot. Then, move back one step, and repeat. When you’ve reached the correct position, insert new item.

e. Copying

i. For loop – for each element in the old array, store it in the corresponding index in the new array.

ii. Easier - Int[] numbers2=Arrays.copyOf(numbers, numbers.length)

f. Selection Sort

i. Find the smallest value in an array, switch it with the first value. Then, starting at the second value, find the smallest and switch it with the second value. Repeat.

ii. Example – SelectionSort.java

g. Side note – Searching and Sorting are two of the most studied areas in CS.

i. More about this in data structures, algorithms

ii. Arrays.sort – method to efficiently sort arrays

5. HW

a. Read 5.1-5.2

