Lecture 25, CS 302-6, October 31

1. Review:

a. ArrayLists

b. Arrays of Objects

2. Object Oriented Programming – intro

a. Up until this point - we've considered programs as a series of statements telling the computer what to do

b. Our programs have consisted of methods, which are one form of abstraction.

c. But we still have still been very much in the mindset of 'do this', then 'do that'

d. We'll spend the next couple of weeks talking about a new sort of paradigm for programming: Object Oriented Programming

e. Basically, methods are a start, but we want to introduce another layer of abstraction.

3. Comparison with method-based programming

a. Let's think back: methods allow us to box up a series of statements.

b. When we use a method, we don't need to know all of the details of how it works – we just need to know the inputs and outputs. It handles all of the complexity for us.

c. Classes operate in much the same way - we will focus on developing whole classes instead of just methods.

d. This sort of programming is referred to as object oriented programming. -we are focusing on the objects

4. Definition of Class and Object

a. We've heard the term class before – all of our code up this point has been contained in a class. We know that a class can contain methods, such as the main method, and static methods. But, we haven't thought too much about what exactly a class is.

b. A class describes a set of objects with the same behavior

c. Classes allow us to box up (encapsulate) both methods and data.

d. Objects are an instantiation of a class.

5. Real life example - blueprint/house

a. Think of a blueprint for a house. It tells you the general outline of how the house will look, where the doors, windows etc go. But it is not actually a house itself – it's just the outline. This is like a class.

b. Now, think of an actual house. It is the physical embodiment of the blueprint – it is actually a real thing, not just a blueprint for a real thing. This is like an object.

i. Note – you can even create multiple houses from the same blueprint. Maybe there are even some things which can be different about them, such as color – the blueprint might allow this flexibility. But they are all still houses derived from the same blueprint. Objects derived from the same class.

6. Real life example – Car

a. Let's think of a specific car model. How about a 2003 Kia Rio.

b. All 2003 Kia Rio's follow a similar kind of blueprint – they all have four wheels, you can drive them, etc.

c. But, there can be differences too. For instance: color (blue, red, etc), transmission (manual or automatic), # of doors (2 or 4)

d. We can think of the model as being one class, and the different cars created from it as being objects of that class.

7. Java examples

a. Java examples we've seen so far: String, Random, Scanner.

b. Let's focus on Random

i. Random is a class. It describes objects that can calculate random numbers. Every random object can calculate doubles, ints, etc

ii. Question – is there anything that is 'customizable' about Random objects?

iii. Answer - Seed Value. This is like car/house color

8. Steps to using an object

a. First - must construct an object from a class

b. How do we do this? With the new operator

i. Random rand=new Random(int seed);

ii. We've done this before: For instance, Scanners, Randoms, ArrayLists. Note - Strings are a special case, since we can define them with a literal.

iii. Question - Any other special cases that we've seen?

iv. Answer – Array

c. Once you have constructed the object, you can call instance methods. Instance methods are invoked on an object.

i. What is another type of method we've seen? Static methods.

ii. Static methods are invoked on a Class - they don't need a specific object to operate. For instance, Math.pow(double a, double b). We don't need to create a Math object before using this method – we just call it from the class. It is a static method.

iii. Similarly, the methods we've written so far, we don't need to create an object before using them – we can just call them directly.

d. In order to call an instance method, you must provide object name, method name, and parameters.

i. For instance, rand.nextInt(5);

9. A little more about Encapsulation

a. We've talked about how methods are black boxes. Classes aren't so different. Encapsulation refers to the way in which we abstract away the details of a class when we're using it.

b. All that we need to know to use an object are the specifications of the instance methods that you can invoke - name, params, etc. This is referred to as the public interface for those methods.

i. Note - this is the sort of info that you'll see in the javadoc for a method

10. Advantages of encapsulation

a. Think of everything we've done so far in Java. We've been using classes like Scanner, Random, etc, even though we didn't make them ourselves.

i. We don't know every detail of how these classes work - Scanner in particular is actually really complex. How does it get input from the user?

ii. All we know is how to construct these classes (new), and how to call their instance methods.

iii. We can also make classes that other programmers can use, even if they don't know all of the details. This is often referred to as modularity – programs can be made up of distinct pieces, created by different people, that are interchangeable.

b. Let's imagine that in order to use Random, developers had to implement their own version.

i. That's a lot more work than one person implementing it for everyone.

ii. Also, imagine something happens, and the random number generator is compromised, causing security issues etc.

iii. If everyone had their own version, they would all have to fix them.

iv. But, since there is only one version, the issue only needs to be fixed in one place.

c. Similarly, say someone found a faster, more efficient way to implement an instance method of, say, String

i. For instance, substring.

ii. They can implement that change, but the people using the Class don't need to do anything

iii. They'll automatically get the fix (eventually) since the public interface hasn't changed

11. Steps to designing a Class

a. Create public interface.

i. This is like the skeleton/outline of your class.

ii. Once again, this consists of all the methods that may be useful for objects of the class

iii. Remember that these are instance methods, not static methods.

b. How to declare an instance method:

i. public <return type> <name>(<type> <paramName>, ...){}

ii. Note – this is the same as static methods, except without the static keyword.

iii. Instance means they are called on a particular object.

c. Mutators vs Accessors

i. Mutators - change something about the object itself .

1. For instance, painting a house.

2. Changes something called the state of the object – we'll define that later.

ii. Accessor - get some information about the object and return it. Does not change the object itself.

1. For instance, what is the color of my house?

12. In-class example – voting machine

a. Background: When you go to vote somewhere, there are a bunch of voting machines.

i. Each one performs a similar function, but also needs to remember a couple of things.

ii. How many times has Candidate A been voted for? Candidate B? Etc.

b. Let's think about what we want our voting machine to be able to do

i. Let's say we have two candidates -a republican and a democrat.

ii. We want to allow someone to vote for one of the candidates.

iii. We also want to consider the case where they screw up, and need to undo their choice.

iv. Finally, after voting is done, we want to be able to collect the totals.

c. What would a public interface for this class look like?

public void voteDemocrat() { }

public void voteRepublican()
{}

public void undoVote() { }

public int getDemocratVotes() { }

public int getRepublicanVotes(){}

13. Now, let's do another example - vending machine class

a. We want to be able to:

i. Add money

ii. Display balance

iii. Select item

public void putInMoney(double amount) {}

public double displayBalance() {}

public String selectItem(int column, int row) {}

14. HW – for Wednesday – R7.1, R7.2, R7.4, R7.7, R7.8

