
x86 general-purpose registers

(most significant) (least)

[........] eax 32 bits

[........] ax 16 bits

[........] ah 8 bits

[........] al 8 bits

[........] ebx

[........] bx

[........] bh

[........] bl

[........] ecx

[........] cx

[........] ch

[........] cl

[........] edx

[........] dx

[........] dh

[........] dl

[........] esi

[........] edi

Referred to as %eax, %ebx, %ecx, %edx, %esi, %edi, etc.

INSTRUCTION: mov SOURCE, DESTINATION

definition: moves "SOURCE" into "DESTINATION"

commonly has trailing character that indicates size of move, e.g.,

movb - move a byte

movl - move "long" or 4 bytes (that’s an L after mov, not a one)

movq - quad or 8 bytes

our focus: movl (mostly)

Initial (limited) usage

- source=number ("immediate") destination=register

e.g., mov $10, %eax

- source=register destination=register

e.g., mov %eax, %ebx

Later, we will add different types of operands for mov

1

INSTRUCTION: addl SOURCE, DESTINATION

definition: adds SOURCE and DESTINATION, puts result into DESTINATION

i.e., DESTINATION = DESTINATION + SOURCE

limited usage (for now):

- source=number ("immediate") destination=register

- source=register destination=register

INSTRUCTION: subl SOURCE, DESTINATION

definition: DESTINATION = DESTINATION - SOURCE

limited usage (for now):

- source=number ("immediate") destination=register

- source=register destination=register

INSTRUCTION: imull SOURCE, DESTINATION

definition: DESTINATION = DESTINATION * SOURCE

alternate:

imull AUX, SOURCE, DESTINATION

definition: DESTINATION = AUX * SOURCE

limited usage (for now):

- source=number ("immediate") destination=register

- source=register destination=register

- (aux=immediate)

INSTRUCTION: idivl DIVISOR

definition: contents of %edx:%eax (64 bit number) divided by DIVISOR

quotient -> %eax

remainder -> %edx

limited usage (for now):

- divisor=register

Notes: A bit weird in its usage of VERY SPECIFIC registers!

2

Problem #1

Write assembly to:

- move value 1 into %eax

- add 10 to it and put result into %eax

Problem #2

Expression: 3 + 6 * 2

Use one register (%eax), and 3 instructions to compute this piece-by-piece

Problem #3

movl $0, %edx

movl $7, %eax

movl $3, %ebx

idivl %ebx

movl %eax, %ecx

movl $0, %edx

movl $9, %eax

movl $2, %ebx

idivl %ebx

movl %edx, %eax

addl %ecx, %eax

Write simple C expression that is equivalent to these instructions

3

Many x86 instructions can refer to memory addresses;

these addresses take on many different forms.

ABSOLUTE/DIRECT addressing

definition: just use a number as an address

movl 1000, %eax

gets contents (4 bytes) of memory at address 1000, puts into %eax

NOTE: DIFFERENT than movl $1000, %eax

(which just moves the VALUE 1000 into %eax)

INDIRECT addressing

definition: address is in register

movl (%eax), %ebx

treat contents of %eax as address, get contents from that address,

put into %ebx

BASE + DISPLACEMENT addressing

definition: address in register PLUS displacement value (an offset)

movl 8(%eax), %ebx

address = 8 + contents of eax

get contents from that address, put into %ebx

INDEXED addressing

definition: use one register as base, other as index

movl 4(%eax, %ecx), %ebx

address = 4 + contents[eax] + contents[ecx]

get contents from that address, put into %ebx

SCALED INDEXED addressing (most general form)

definition: use one register as base, other as index, scale index by

constant (e.g., 1, 2, 4, 8)

movl 4(%eax, %ecx, 8), %ebx

address = 4 + contents[eax] + 8*contents[ecx]

get contents from that address, put into %ebx

4

Problem #4 (from CSAPP 3.1)

Memory

Address Value

0x100 0xFF

0x104 0xAB

0x108 0x13

0x10C 0x11

Registers

%eax 0x100

%ecx 0x1

%edx 0x3

Value of:

%eax __________

0x104 __________

$0x108 __________

(%eax) __________

4(%eax) __________

9(%eax, %edx) __________

260(%ecx, %edx) __________

0xFC(,%ecx, 4) __________

(%eax, %edx, 4) __________

5

New register to help with stack: esp (extended stack pointer)

Referred to as %esp

[........] eax 32 bits

[........] ax 16 bits

[........] ah 8 bits

[........] al 8 bits

[........] ebx

[........] bx

[........] bh

[........] bl

[........] ecx

[........] cx

[........] ch

[........] cl

[........] edx

[........] dx

[........] dh

[........] dl

[........] esi

[........] edi

[........] esp 32 bits

[........] eip 32 bits

Points to "top of stack" when program is running

Changes often (room for local variables, function call/return, etc.)

Can use normal instructions to interact with it, e.g., addl, subl

Can also use special instructions (we’ll see this later)

Problem #5

Use instructions to:

- Increase size of stack by 4 bytes

- Store an integer value 10 into the top of the stack

- Retrieve that value and put it into %ecx

- Add 5 to it

- Put final value into %eax

6

Condition codes: new bits in hidden %eflags register.

Some instructions set those bits based on comparisons:

cmp, test

Other instructions change control flow (%eip) based on results:

jmp family

INSTRUCTION: cmpl B, A

computes A-B (but doesn’t put result anywhere)

condition codes (incomplete):

zero flag : ZF=1 if (A-B) == 0 otherwise ZF=0

signed flag : SF=1 if (A-B) < 0 otherwise SF=0

INSTRUCTION: jmp TARGET always changes %eip to TARGET

INSTRUCTION: je TARGET %eip=TARGET if ZF==1

INSTRUCTION: jne TARGET %eip=TARGET if ZF== ______

INSTRUCTION: jg TARGET %eip=TARGET if ___________

INSTRUCTION: jge TARGET %eip=TARGET if ___________

INSTRUCTION: jl TARGET %eip=TARGET if ___________

INSTRUCTION: jle TARGET %eip=TARGET if ___________

7

Problem #6

Assume value of a is in %eax, and value of b is in %ebx

Write x86 assembly code for:

if (a > b) {
a++;

}

Problem #7

Assume value of a is in %eax, and value of b is in %ebx

Write x86 assembly code for:

if (a > b) {
a++;

} else {
b = a;

}

Problem #8

Assume value of a is in %eax, and value of b is in %ebx

Write x86 assembly code for:

while (b > 0) {
a++;

b--;

}

8

