CS/ECE 354
Practice Midterm Exam - Solutions
Spring 2016

C Programming

1. The reason for using pointers in a C program is
Pointers allow different functions to share and modify their local variables.

a
b. To pass large structures so that complete copy of the structure can be avoided.
c. Pointers enable complex “linked" data structures like linked lists and binary trees.
d. All of the above.
2. Assume that an int variable takes 4 bytes and a char variable takes 1 byte. What is the
output of the code below?

#include <stdio.h>
int main()

{
int arr[] = {10, 20, 30, 40, 50, 60};
int *ptrl = arr;
int *ptr2 = arr + 5;
printf("Number of elements between two pointer are: %d.",

(ptr2 - ptrl));
printf("Number of bytes between two pointers are: %d",
(char*)ptr2 - (char*)ptrl);

return 0;

}

a. Number of elements between two pointer are: 5. Number of bytes between
two pointers are: 20

b. Number of elements between two pointer are: 20. Number of bytes between two
pointers are: 20

c. Number of elements between two pointer are: 5. Number of bytes between two
pointers are: 5

d. Compiler Error
e. Runtime Error

3. What would be the output of following code. Assume size of an int on this machine is 4
bytes and size of a char is 1 byte. (Alert: It will not be a compiler error!).

int main (void)

{
char arr[] = "MachineOrganization";
int * ptr = (int *) (&arr[1]);
printf ("value is %c\n", *((char *)ptr));
ptr++;
printf ("value is %c\n", *((char *)ptr));
return 0;

}

Output:

value is a
value is n

4. How does the following function modify the linked list shown below?
LINKED LIST:head > 1 - 2—>3— 4— 5— NULL

void ultimate_fun(struct node **head ref)

{
if (*head _ref == NULL || (*head_ref)->next == NULL)

return;

struct node *seclLast = NULL;
struct node *last = *head_ref;

while (last->next != NULL)
{

secLast = last;
last = last->next;

secLast->next = NULL;
last->next = *head_ref;

*head ref = last;

head > 1—- 2—-3— 4— 5— NULL
head > 5—-1— 2—3— 4— NULL
head > 2—-3—> 4— 5—1— NULL
head > 5— 2—>3—> 4— 1 —- NULL

o0 oo

. What is the value of n for the linked list shown below after the function do_something()
is called with the arguments as shown below?

LINKED LIST: head -> 10 -> 20 -> 30 -> 40 -> 50 -> NULL
int n = do_something(head, 30);

int do_something(struct node *head, int element)

{
struct node *temp = head;
int pos = 0;
if (head == NULL) {
return -1;
} else {
while (temp != NULL) {
++pos;
if (temp->data == element) {
return pos;
}
temp = temp->next;
}
return -1;
}
}

@ = o
>0 003
[LI { I ||
N WO Ww

o

Data Representation

6. The following is a memory layout of an integer number on a new machine developed at

Wisconsin Madison.

Memory Location Value
0x200 AB
0x201 F3
0x202 17
0x203 9E

What is the value of this integer in hexadecimal, if this machine is little endian?

0x9E17F3AB

What is the value of this integer in hexadecimal, if this machine is big endian?

0xABF3179E

7. What is the issue with the code below and how will you fix it?

#define BUFF_SIZE 10
int main(int argc, char* argv[]){

int len;

char buf[BUFF_SIZE];
len = atoi(argv[1l]);
if (len < BUFF_SIZE){
memcpy (buf, argv[2], len);

The following information about atoi and memcpy is given:
int atoi(const char *nptr);
void *memcpy(void *dest, const void *src, unsigned int n);

ANSWER:

The above code calls the function memcpy() using a signed integer as the 3rd argument
but the actual function takes in an unsigned number. This means that a value of -1 (in 2’s
complement) would be interpreted as the maximum possible unsigned value by memcpy,
which would be wrong. This applies for all negative numbers.

Correction:
Add an extra condition to check if the value of length is non-negative as shown below.

#define BUFF_SIZE 10
int main(int argc, char* argv[]){
int len;
char buf[BUFF_SIZE];
len = atoi(argv[1l]);
if (len < BUFF_SIZE && len >= 0){
memcpy (buf, argv[2], len);

Assembly Programming

Note: 3 more practice questions in Assembly were already discussed in class on
Friday, March 11th 2016!

8. Assembly to C
char someFunc(int a, int b, int ¢);
The arguments for this function are on the stack at the following addresses:
inta= 0x8 (%ebp)
intb = Oxc (%ebp)

intc = 0x10 (%ebp)

Complete the following line with a valid C expression.

char t5 = (a - b) > @

4e: 8b 45 @c mov oxc (%ebp) ,%eax
51: 8b 55 08 mov ox8(%ebp) ,%edx
54: 89 di1 mov %»edx, secx

56: 29 cl sub %eax, %kecx

58: 89 c8 mov %»ecx, %eax

5a: 85 c© test %»eax, seax

5c: of 9f co setg %al

5f: 88 45 fe mov %al, -0x2(%ebp)

9. Consider the following assembly code for a C function named loops(). The line numbers
are given in decimal.

char loops(int a, int b);

1: push %ebp
2: mov %esp,%ebp
3: sub $0x10, %esp

//int sumA = a;
4: mov ox8(%ebp) ,%eax
5: mov %eax, -0x8(%ebp)

//int sumB = b;

6: mov oxc (%ebp) ,%eax

7: mov %eax, -0x4(%ebp)
8: jmp .L3

.L1:

9: mov -0x8(%ebp) ,%eax
10: cmp -0x4(%ebp) ,%eax
11: jge .L2

12: mov ox8(%ebp) ,%eax

13: add %eax, -0x8(%ebp)
14: jmp .L3

.L2

15: mov oxc (%ebp) ,%eax

16: add %eax, -0x4(%ebp)
.L3:

17: mov -0x8(%ebp) ,%eax

18: cmp -0x4(%ebp) ,%eax

19: jne .L1

20: mov -0x8(%ebp) ,%eax

21: leave

22: ret

Complete its corresponding C function (based on the above assembly program) by filling
in the blank lines.

ANSWER:
char loops(int a, int b)
{
int sumA = a;
int sumB = b;
while(sumA != sumB)
{

if(sumA < sumB)
SUmA = sumA + a;
else
sumB = sumB + b;

ANOTHER CORRECT ANSWER:
char loops(int a, int b)

{
int sumA = a;
int sumB = b;
while(sumA != sumB)
{

if(sumA >= sumB)
sumB = sumB + b;
else

SumA = sumA + a;

10. Write the C code for the following assembly language code.

Note: The C code can be written using less than 5 lines of code.

mystery:
pushl %ebp
mov1l %esp, %ebp
subl $16, %esp
mov1l 8(%ebp), %edx
mov1 12(%ebp), %eax
addl %edx, %eax
mov1 %eax, -4(%ebp)
mov1l 8(%ebp), %eax
subl 12(%ebp), %eax
mov1 %eax, -8(%ebp)
mov1 -4(%ebp), %eax
imull -8(%ebp), %eax
mov1 %eax, -12(%ebp)
mov1 -12(%ebp), %eax
leave
ret
int mystery(int x, int y)
{
int sum = x + y;
int diff = x - y;
int ans = sum * diff;
return ans;

