
CS-354 Midterm (Fall 2012)
The x97 Processor

Please Read All Questions Carefully!

There are twelve (12) total numbered pages.

Please put your FULL NAME (mandatory) on THIS page only.

Name:

1

Grading Page

Points Total Possible

Q1 20
Q2 20
Q3 20
Q4 20
Q5 20
Total 100

2

In this exam, you’ll be helping with the construction of a newmachine known as the x97. After years of sticking with
the x86 product line, and after a few too many drinks, the engineers at Intel decided to build a completely different
processor; thus x97 was born.

Unfortunately, with this new processor (and its new instruction set), no existing programs seem to run anymore! Thus,
Intel has hired you to help them with this dire situation. I guess you must be pretty good for Intel to bet the entire
future of their company on your success! Alternately, you are related to the CEO. Either way, their future is in your
hands.

Please remember to read all questions carefully! And good luck.

3

1a. Most of the time, the x97 uses 2’s complement representationfor integers. On an 8-bit version of x97, what is the
range of numbers that can be represented in 2’s complement form?

1b. The x97 designers decided that just using 2’s complement allof the time was boring, and added a new processor
mode which uses a different representation for integers which they call “sign and magnitude”. In this form, the most
significant bit is simply used to indicate whether the integer is positive or negative (the “sign”); the other bits are used
for the value of the number. On an 8-bit machine, what is the range of numbers that can be represented with “sign and
magnitude” representation?

1c. “Sign and magnitude” form, much like many other aspects of x97, has some problems as compared to 2’s comple-
ment. What are they? Are there any ways in which “sign and magnitude” is better than 2’s complement?

4

2a. The x97 has a new instruction set, quite different than the x86. One example is found in the registers: instead of all
the crazy names for general-purpose registers (that the Intel engineers never seemed to be able to remember), there are
just a uniform set of registers namedr1, r2, ...,r32. Actually, you can help out Intel here too; what are the namesof
the Intel x86 general-purpose registers?

2b. On x97, all instructions are register based, meaning that they only can have registers (liker1 throughr32)
as their operands; further, all operands are specified explicitly. Thus, something as simple as an add instruction
looks like this:add register1,register2,register3. In this add instruction, the contents ofregister1
andregister2 are added together; the result is put intoregister3. Given the following x86 add instruction,
specificallyadd reg1,reg2, how would you rewrite it in an equivalent form on x97?

2c. Immediate values are generated a little differently on x97 too. On x86, amov $10,%eax would put the value
10 into register eax. On x97, you have a specificinit instruction, which takes two operands: the first is the target
register, and the second is an immediate value. Rewrite themov $10,%eax instruction in x97 assembly:

5

2d. On x97, there are a number of conditional jump instructions,which look like this:jXX reg1,reg2,target.
For example, thejle will jump to the target address if reg1 is less than or equal toreg2. Other similar instructions
exist for jump greater, greater-than-or-equal, jump-if-equal, etc. What is the x86 equivalent of the x97 jump instruction
jle reg1,reg2,target?

2e. Moving values among registers is easy in x97; you just use thermove instruction. The instruction takes two
operands, e.g.,rmove reg1,reg2 and moves the contents of reg1 into reg2. How is this similar to x86? How is it
different?

2f. One last difference is found in how memory is accessed. On x97, there are two specific instructions to access
memory:load andstore. Theload instruction has the following form:load register1, register2,
which treatsregister1 as an address; it then loads the value at that address intoregister2. The store instruction
is similar, but stores the contents of register1 into the memory location of register2. You now have to translate the
following x86 instruction into x97 form:movl 20(reg1,reg2,1),reg3. What sequence of instructions could
you use on x97 to perform the equivalent load from memory?

6

3a. One of the most complicated aspects of understanding x86 code is understanding how a procedure is called, and
in particular how the stack is managed. Describe (in detail)what happens on x86 before, during, and after a procedure
call on x86. What are the key steps? Which steps are optional?What is the state of the stack along the way? How are
arguments accessed during the call?

7

3b. On x97, the steps are a little different. One change is found in the way arguments are passed; specifically,
arguments are always passed in registers, starting with argument1 in r1, argument2 in r2, etc., with up to 16 arguments.
In addition, r31 is used to pass back a return value, and r32 stores the value of the return address. The rest of the
registers are “callee save”. How do these changes affect thecall/return protocol? Is it more or less efficient, or about
the same? Finally, is there still need for a stack? (why or whynot?)

8

4a. Consider the following x86 code snippet:

foo:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%ecx
xorl %eax,%eax
movl 8(%ebp),%edx
cmpl %ecx,%edx
jle .L3

.L5:
addl %edx,%eax
decl %edx
cmpl %ecx,%edx
jg .L5

.L3:
leave
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: only use
symbolic variablesx, y, i, andresult, from the source code in your expressions below — donot use register names,
as that wouldn’t make any sense!)

int foo(int x, int y)
{

int i, result=0;

for (i=________; ____________________________; _________) {

______________;

}

return result;
}

9

4b. Now rewrite the x86 assembly from the previous problem (4a) into x97; if you need some new instructions, please
feel free to define them, but keep consistent to the x97 philosophy!

10

5a. In the following question, we’ll do a cache lookup on a x97 machine. As it turns out, the Intel engineers left all
the caching stuff alone; thus it works just the same as before. Assume the following is true:

• The memory is byte addressable.

• Memory accesses are to1-byte words (not 4-byte words).

• Physical addresses are 12 bits wide.

• The cache is 4-way set associative, with a 2-byte block size and 32 total lines.

In the following tables,all numbers are given in hexadecimal. The contents of the cache are as follows:

4-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1

0 29 0 34 29 87 0 39 AE 7D 1 68 F2 8B 1 64 38
1 F3 1 0D 8F 3D 1 0C 3A 4A 1 A4 DB D9 1 A5 3C
2 A7 1 E2 04 AB 1 D2 04 E3 0 3C A4 01 0 EE 05
3 3B 0 AC 1F E0 0 B5 70 3B 1 66 95 37 1 49 F3
4 80 1 60 35 2B 0 19 57 49 1 8D 0E 00 0 70 AB
5 EA 1 B4 17 CC 1 67 DB 8A 0 DE AA 18 1 2C D3
6 1C 0 3F A4 01 0 3A C1 F0 0 20 13 7F 1 DF 05
7 0F 0 00 FF AF 1 B1 5F 99 0 AC 96 3A 1 22 79

5a1. The box below shows the format of a physical address. Indicate (in the diagram) the fields that are used to
determine the following:O (the block offset within the cache line),I (the cache index), andT (the cache tag).

11 10 9 8 7 6 5 4 3 2 1 0

5a2. Now, for the given physical address0x3B6, first write it in binary form:
11 10 9 8 7 6 5 4 3 2 1 0

5a3. Finally, fill in the following table with the correct values for the offset, index, tag, whether a cache hit or miss
occurred, and if a hit, what value was returned, when address0x3B6 was accessed.

Parameter Value

Cache Offset (O) 0x
Cache Index (I) 0x
Cache Tag (T) 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

11

5b. One last thing to do on this exam is to show your bosses that youreally understand caches. The following table
gives the parameters for a number of different caches, wherem is the number of physical address bits,C is the cache
size (number of data bytes),B is the block size in bytes, andE is the number of lines per set. For each cache, determine
the number of cache sets (S), tag bits (t), set index bits (s), and block offset bits (b).

Cache m C B E S t s b

1. 32 1024 4 4

2. 32 1024 4 256

3. 32 1024 8 1

4. 32 1024 8 128

5. 32 1024 32 1

6. 32 1024 32 4

12

