Name: Student ID:

CS/ECE 354 Spring 2016 - Midterm Exam Solutions

Part I - C Programming

C Basics

1. [2 points] In C, arguments to a function are always

a. Passed by value (i.e. the called function is given the values of its arguments in
temporary variables rather than the originals)

b. Passed by reference (i.e. the called function has access to the original argument,
not a local copy)

c. Non-pointer variables are passed by value and pointers are passed by reference

2. [3 points] What is the problem with the following code and how will you correct it?

#tinclude <stdio.h>
#tinclude <stdlib.h>

int main()

{
int *p = malloc(sizeof(int));
*p = 42;
p = malloc(sizeof(int));
free(p);

}

ANSWER:

Pointers and Functions

3. [5 points] Does the following code run successfully to return 0 or does it generate a

segmentation fault? If it runs fine, then what is the output? Otherwise explain why it
segfaults.

Name: Student ID:

A segmentation fault occurs when a program attempts to access a memory location that
it is not allowed to access.

#tinclude <stdio.h>
#tinclude <stdlib.h>

void populate(int *a)

{
int *parray = malloc(2 * sizeof(int));
parray[@0] = 37;
parray[1] = 73;
a = parray;
}
int main()
{
int *a = NULL;
populate(a);
printf("a[@] = %d and a[1] = %d\n", a[@], a[1]);
return 9;
}
ANSWER:

Predict the output

Consider the following two programs, both of which are compiled and run on a CSL lab machine
using the -m32 option.
sizeof(int) = 4 bytes
sizeof(char *) = 4 bytes
sizeof(char) = 1 byte

4. [3 points] What is the output of the code below on a 32-bit little endian machine?

Note: The %x format specifier in printf prints the contents in hexadecimal notation.

https://en.wikipedia.org/wiki/Computer_memory

Name: Student ID:

#include <stdio.h>

int main() {
int number = 288;
char *ptr;
ptr = (char *) &number;
printf("%x",*ptr);
return 9;

}

5. [4 points] What is the output of the code below?

#include <stdio.h>

int main() {
char string[] = "BADGERS";
char *ptr = string;
*ptr = *ptr + 2;
ptr = ptr + 2;
printf("%c", *ptr);
ptr--;
printf("%c", *ptr);
ptr = string;
printf("%c", *ptr);
return 0;

}

Linked Lists

6. [2 points] Assuming the following line of code is inside the main() function, in which
part of memory is the pointer variable parray allocated and in which part of memory is
the 10 element integer array allocated?

int *parray = malloc (sizeof (int) * 10);

Name: Student ID:

The 4 types of program memory are: Code, Data, Stack and Heap.

10 element integer array is allocated in heap memory.
7. [5 points] What does the following mystery_ function() do?

struct node {
int data;
struct node *next;

void mystery function(struct node *head)
{

struct node *temp = head;

struct node *prev;

if (temp == NULL) {
printf("Linked List is empty.\n");
} else {
prev = temp;
while (temp != NULL) {
temp = temp->next;
free(prev);
prev = temp;

Name: Student ID:

Structures

8. [6 points] What is the size (in bytes) for the following structures on a 32-bit machine
installed with the Linux Operating System? The first one is already answered for you! :)
sizeof(int) = 4 bytes
sizeof(short) = 2 bytes
sizeof(char) = 1 byte

Structure Size (in bytes)

struct foo {

int di;
char ci;
int d2;
}
struct foo {
int di;
short s;
s

struct foo {
int di;
int d2;
char cl;
char c2;
short s;

}s

struct foo {
char ci1;
int di;
short s;
int d2;
char c2;

char c1;
int d2;
char c2;

}s

Name: Student ID:

Part II - Data Representation

9. [12 points] Suppose that x and y have byte values @x93 and @x3F, respectively. Fill in
the following table indicating the byte values of the different C expressions. All values
must be written in hexadecimal notation. The first one is already answered for you! :)

Expression Value

X &y

~X | o~y

x & ly

Ix || 'y

X && ~y

X << 3

X >> 2 (arithmetic)

10. [8 points] The following function has a bug and doesn’t work as expected. What is the
issue with this function and how will you fix it?

// If x is greater than y, this function should return 1.
// Else, this function returns 0.
int is_greater(unsigned int x, unsigned int y)

{
if (x -y > 0)
return 1;
else
return 9;
}
ANSWER:

Name: Student ID:
Part III - Assembly Programming
Addressing
11. [4 points] Assume the following memory layout, with the following values for the
registers:
%edx = 0x8049000
%ecx = Ox5
Memory Value in
Address Memory
0x8049024 | 0x8049028
0x8049020 | 0x8049024
0x804901c | 0x8049020
0x8049018 | 0x804901c
0x8049014 | 0x8049018
0x8049010 | 0x8049014
0x804900c | 0x8049010
0x8049008 | 0x804900c
0x8049004 | 0x8049008
0x8049000 | 0x8049004

What is the value in the register %eax after each of the following assembly instructions? The
first one is already answered for you! :)

Assembly Instruction Value in register %eax

movl $0x8049000, %eax

Name: Student ID:

movl ©x8049000, %eax

movl (%edx), %eax

leal 4(%edx), %eax

movl 4(%edx, %ecx, 4), %eax

Assembly to C

12. [6 points] Assume variables a and b are stored at -0x8(%ebp) and -0x4 (%ebp)
respectively. Write the equivalent C expressions for the following assembly snippets. The
first one is already answered for you! :)

S.No. Assembly Instruction Corresponding C code

1 mov1 -0x4(%ebp) ,%eax
mov1 (%eax) ,%eax
mov1 %eax, -0x8(%ebp)

2 leal -0x4(%ebp) ,%eax
mov1 %eax, -0x8(%ebp)

3 mov1 -0x4(%ebp) ,%eax
mov1 %eax, -0x8(%ebp)

4 mov1 -0x4(%ebp) ,%eax
mov1 (%eax) ,%edx
mov1 -0x8(%ebp) , %eax
mov1l %edx, (%eax)

5 mov1 -0x4(%ebp), %eax
mov1 (%eax), %edx
mov1 -0x8(%ebp), %eax
mov1 (%eax), %eax
addl %»eax, %edx
mov1 -0x4(%ebp), %eax
mov1l %edx, (%eax)

Name: Student ID:

Arrays and Structures

13. [7 points] Assume variable a is stored starting at memory address @©x8049000. What is
the value of the memory location stored in the pointer variable p for the following cases?
Write the value of p in hexadecimal notation. The first one is already answered for you!

sizeof(int) = 4 bytes

S.No. C code Hex value in pointer p

1 int a[10];
int *p = &a[7];

2 struct foo {
int x;
int y;
int z;
}s

struct foo a;
int *p = &a.y;

3 struct foo {
int x[4];
int y[4];

}s

struct foo a;
int *p = &a.y[2];

4 struct foo {
int x[4];
int y[4];

}s

struct foo a[19];
int *p = &a[7].y[2];

Name: Student ID:
Control Flags
14. [9 points] The function fun() takes three integer arguments x, y, and z and returns a

character as shown below:
char fun(int x, int y, int z);

The arguments x, y, and z are stored at memory address 0x8(%ebp), 0xC(%ebp), and
0x10(%ebp) respectively.

For the various assembly programs shown below, you are expected to fill in the correct
data type cast (e.g. char, short, int) within the parenthesis () and the correct comparison
operators(e.g. <, <=, >, >=, |=) in the blank space provided between the two operands.
The first one is already answered for you! :)

The following are the data types and the comparison operators that you are allowed to use
in the questions below:

Allowed data types: int, char, short, and unsigned

Allowed comparison operators: >, <, >=, <=, l=, ==

movsbl S,D : Move sign-extended byte to double word (D « SignExtend(S))
movsbw S,D : Move sign-extended byte to word (D «— SignExtend(S))
cmpw S2,S1 : Compare word (based on S1-S2)

For the code snippets 1, 2, 3, and 4 (shown below), the char variable t is present at
memory locations -0x4(%ebp), -0x6(%ebp), -0x5(%ebp), and -0x3(%ebp)
respectively.

S.No.

Assembly Instruction Corresponding C code

mov1 ox8(%ebp) ,%eax
movsbl %al,%edx

mov1 oxc (%ebp) ,%eax
cmpl %eax, kedx
seta %al

movb %al, -0x4(%ebp)

10

Name: Student ID:
2 mov1 0x10(%ebp) ,%edx
mov1 ox8(%ebp) ,%eax
cmpl %eax, kedx
setbe %al
movb %al, -0x6(%ebp)
3 mov1l 0x10(%ebp) ,%eax
cmpl 0x8(%ebp) ,%eax
setge %al
movb %al, -0x5(%ebp)
4 mov1l 0x8(%ebp) ,%eax
movsbw %al,%dx
mov1 0x10(%ebp) ,%eax
cmpw %ax, %dx
setne %al
movb %al, -0x3(%ebp)
Jumps

15. [4 points] In the disassembled version of the machine code shown below, instructions at

addresses 0x66, 0x6¢c, and 0x73 use relative encoding to encode jump targets. All the

values in the disassembled code below (including the address column) are represented

using hexadecimal numbers.

Address
0x62:
Ox66:
Ox68:
Ox6¢C:
ox6e:
Ox73:
Ox75:
Ox7a:
Ox7c:
ox7f:

Opcode

83 7d 08 00

74 od

83 7d oc 00

74 07

b8 01 00 00 00
eb 05

b8 00 00 00 00
85 cO

of 9e cO

88 45 ff

Assembly Code

cmpl $0x0,0x8(%ebp)
je X

cmpl $0x0,0xc(%ebp)
je Y

mov $0x1,%eax

jmp Z

mov $0x0, %eax

test %eax,%eax
setle %al
mov %al, -0x1(%ebp)

What is the value of the addresses X, Y and Z? The values of X, Y, and Z should be
written in hexadecimal notation. The first one is already answered for you! :) Remember

11

Name: Student ID:

the addresses X, Y, and Z, in assembly code will refer to actual addresses (e.g. 0x75)
even though relative encoding is used in the machine code (opcode).

ANSWER:

Loops

16. [6 points] An assembly code and its corresponding C code is given below. Fill in the
parts in the C code that are missing.

Assembly Code C Code

loop func: int loop_func(int n)
pushl %ebp {
mov1l %esp, %ebp
subl $16, %esp
mov1l $0, -4(%ebp)

jmp .L2

.L3:
mov1l 8(%ebp), %eax
addl %eax, -4(%ebp)
subl $1, 8(%ebp)

L2 }
cmpl $0, 8(%ebp)
jg .L3 return
mov1l -4(%ebp), %eax }
leave
ret

Functions

17. [8 points] Match the following C functions (C1, C2, C3 and C4) with their corresponding
assembly functions (A1, A2, A3, and A4). Write your answers in the spaces provided at
the end of the questions.

12

Name:

Student ID:

C program

Assembly Program

c1

int func(int x, int y)

{
int result = x && y;
return result;

Al

func:
pushl %ebp
movl Z%esp, %ebp
subl $16, %esp
movl 8(%ebp), %eax
orl 12(%ebp), %eax
movl %eax, -4(%ebp)
movl -4(%ebp), %eax
leave
ret

c2

int func(int x, int y)

{
int result = x || y;
return result;

A2

func:
pushl %ebp
movl Z%esp, %ebp
subl $16, %esp
cmpl $0, 8(%ebp)
je .L2
cmpl $0, 12(%ebp)

je .L2
movl $1, %eax
jmp .L3
.L2:
movl $0, %eax
.L3:

movl %eax, -4(%ebp)
movl -4(%ebp), %eax
leave

ret

13

Name: Student ID:

c3 A3
int func(int x, int y) func:
{ pushl %ebp
int result = x & y; movl %esp, %ebp
return result; subl $16, %esp
} movl 8(%ebp), %eax

andl 12(%ebp), %eax
movl %eax, -4(%ebp)
movl -4(%ebp), %eax

leave
ret
C4 A4
int func(int x, int y) func:
{ pushl %ebp
int result = x | y; movl %esp, %ebp
return result; subl $16, %esp
} cmpl $0, 8(%ebp)
jne .L2
cmpl $0, 12(%ebp)
je .L3
.L2:
movl $1, %eax
jmp .L4
.L3:
movl $0, %eax
.L4:

movl %eax, -4(%ebp)
movl -4(%ebp), %eax
leave

ret

Write your answers below: (If C1 matches with A4, write A4 in the space next to C1)

14

Name: Student ID:

Recursion (Dream within a dream!)

18. [6 points] Consider the following recursive factorial function (shown in the lecture) in C
and Assembly language. The line numbers for rfact in assembly are in decimal.

int rfact(int n)

{
int result;
if (n <= 1)
result = 1;
else
result = n * rfact(n-1);
return result;
}

Line# Assembly Code
1. rfact:

2. pushl %ebp

3. movl %esp, %ebp

4. pushl %ebx

5. subl $4, %esp

6. movl 8(%ebp), %ebx
7. movl $1, %eax

8. cmpl $1, %ebx

9. jle .L53

10. leal -1(%ebx), %eax
11. movl %eax, (%esp)
12. call rfact

13. imull %ebx, %eax
14. .L53:

15. addl $4, %esp

16. popl %ebx

17. popl %ebp

18. ret

15

Name: Student ID:

Questions:
1. Why do we push the %ebx register’s value on the stack frame of rfact?
(Refer: Line# 4 in assembly code - pushl %ebx)

2. What is the purpose of the following 2 statements?
a. subl $4, %esp (Line number 5)

b. addl $4, %esp (Line number 15)

3. For every invocation of the function rfact() which register is used to store the value of its
input argument?

%ebx

4. What is the purpose of the following line of assembly code (Line number 10)?

leal -1(%ebx), %eax

5. Why are the following 2 lines (Line numbers 2 - 3) needed in rfact() function?
pushl %ebp
movl %esp, %ebp

