CS-354 Midterm (Spring *17 @ Epic)
Bugs, Bugs, Everywhere, and Not A Debugger To Invoke

Please Read All Questions Carefully!

There are nineteen (19) total numbered pages.

Please put your FULL NAME on THIS page only.

Name: Answers McSheet

Answers McSheet

This exam is about bugs. When you write C code (or, x86 assembly), you create
a lot of them! (well, sometimes). And so, to be a really good programmer, you
have to learn how to identify them quickly and accurately.

Most questions introduce some code (C, or x86 assembly) and ask you to iden-
tify if the code is buggy or correct, and to explain why. That’s it! Well, not quite;
sometimes some other related questions are asked.

IMPORTANT: For ALL questions, assume we are running on a 32-bit x86
processor. Addresses are 32 bits (4 bytes) long. Integers are also 4 bytes in size.

Each of the 16 numbered questions is worth the same number of points. Thus,
do the questions you think are easiest first, so you don’t run out of time, and
maximize your score.

S { Perfect*
core':

!'The score is filled in by us, not you, alas

* unless you find a problem

Perfect*

* unless you find a problem

1. Getting The Right Size

This code tries to allocate room for some memory of varying sizes using malloc (). The first thing written
down is the programmer’s intent (e.g., “one character” means the programmer wishes to allocate room for one
character). The second thing is the code the programmer wrote to try to match the intention.

(a) Put an X through code that you think is definitely buggy.

(b) Circle code that will work (i.e., not crash or lead to undefined behavior) but you think is poor style or
otherwise problematic. '

(c) Leave correct code alone (do not circle or X it).
In all cases, EXPLAIN YOUR ANSWER.

ASSUME FOR ALL OF THESE THAT MALLOC SUCCEEDS (i.e., will return a valid pointer to memory
of the size requested).

(a) One character, pointed to by pointer-to-ch I Cp:
charx cp = malloc(size (char*));)
= worlks because

Size of ((L\CH’A) 1 \)\/'{(?S alloc 'd
(| asked {"")

(b) One character, pointed to by pointer-to-character cp:
char *cp = malloc(sizeof (char));

Cotf’U'{*‘C‘t’ CWNWLCL\€S BPGC)

(c) One character, pointed to bminter—to—character cp:
charx cp = malloc@

oK as fon 9 A
. n - A 1 i = asil A‘-“V’ k-’j—,
S1.2€ O"‘(’(CL?CW) S/%eof(cm) I y
() 60 "FC- v m
(d) One integer, pointed to by pointer-to-integer ip:—

G:h/ar* cp = (char*) malloc(sizeof (int));~
i»ﬁ—*~i‘P‘?= \(int*) CPii ——-

(int x) mallog (’S(2eol (17 H)/

woVvks
l,’z av o 1 o ¥K€adq d

but verbosC,

(e) One integer, pointed to by pointer-to-integer ip:
int* ip = malloc(sizeof {intx));

(‘V\ ‘{”

(f) One integer, pointed to by pointer-to-integer ip:
int* ip = malloc (sizeo@ ;

fV\+

(g) One integer, pointed to by pointer—té'ﬂ:eger ip:

int ip = malloc(sizeof (int«)));

Yahw

(h) Onei eggommmwypgme&m-l'ntegepj' [‘/ﬁ‘
int i = (int) malloc(sizeof|(intx));
int *ip = fint *) i;

e

“vevboce

(i) Ten integers, pointed to ojfiter-to-integer ip:
intx ip = mall R
intx 1p ma oe 6/_ % no'i’ 0
Om\y

heedgs MO

(j) Ten integers, pointed to by pointer-to-integer ip:
int*x ip = malloc (10 = sizeof‘)

Thw

T

(O byfeg

works b€ auge
stzeof (int) fQLfQ/f’
Sizeof (intx)

C d9 a) W 5
S‘l‘}(f)

woV kg

Sam€

a< dbove

oV k¢

Waq(n

ot

?t_)j / ('(-C)O S\ma//)

S——

qﬁfuﬂl
(O\§ £ you Saidf
¢t \Shcu/cinp¥)

wovk_g

(k) Ten integers, pointed to by pointer-to-integer ip:
int* ip = malloc (10 % sizeof (int));

eXm<¢f\y o hat
wag osled for

Covrcc*”

(1) Ten integers, pointed to by pointer-to-integer ip:
intx ip = malloc (10 sizeof (int));

+OQ SM/NH

AR net 4 (beken)

(m) Ten integers, pointed to by pointer-to-integer ip:
intx ip = malloc@

WC)\/ K g Vv‘/\eh

|O X 5\"t€ojCC"V\T> gﬁ_eO'F (1 3r\) S Y

(ds ({* iR kﬁvf)
(n) Ten integers, pointed to by peinter-to-integer ip:
intx ip = malloc
_ ‘oo bl 9 but

(qg abeu ¢ ork g

(o) Ten integers, pointed to ointer-to-integer ip:
ints ip = mallod(44) @ ' ‘ :
¢ .
like 1t /[/;lﬁ]fl’\‘,' leak
i< above .
memvry bt

wor K<

2. Remembering

Memory Chunks.

(a) Put an X through code that you think is definitely buggy.

(b) Circle code that will work (i.e., not crash or lead to undefined behavior) but you think is poor style or
otherwise problematic.

(c) Leave correct code alone (do not circle or X it).

In all cases, EXPLAIN YOUR ANSWER.

ASSUME FOR ALL OF THESE THAT MALLOC SUCCEEDS (i.e., will return a valid pointer to memory
of the size requested).

(@) int* p

(b) intx p
*p = 0;

(d) intx p
*p X 0;

~ malloc(sizeof (int)); |
S€ XL“ﬁ\ﬂﬁ p 1o 2€rvo (NuLe) S
Q memory led k. a< prev ;bus/)/
allec'd wenory (& Jes .

malloc(sizeof (int));

Sallec ‘S iat
5 cet < 1t fo zevo

=malloc<sizeo@)“i‘l; wsgred , [ké’/)/ foo Swnal/
i v
T [eak

mNe MOV >/

covrvre Ct

T T

= malloc@);i ;

Can '+ wri fe q "VmL (o I?}//fQ)

e 1 o'wly 1 byk «//oc 'd

(e)i}ti@f = malloc(sizeof (int));
> 'Q\
%U\ ledk
V\L)\] F)k*v“ CJ 6?&“(?’(?

(\u'lc?'\/ crash)

(f) int* p = malloc(sizeof (int));
*p = 0;
free(p);

*% V\,r["{\f ‘f‘o fﬁff’e(c] Vhemory

(g) int* p = malloc(sizeof (int));
*p = 0;
free(p);

o (ot:fogez‘pﬁ
(orrfm“ Nupl aftew
free fv@)

(h) int* p = malloc(sizeof (int));

p = mallo —i—zeo{-(int));J (€a le
*p ="0;
P+

*P=0;j\'b works k2 ints ave allocd
(j bt V?C)'f ﬁj-:>

(i) int* p = malloc(3 * sizeof (int));

*p = 0;
) +€ J ?
AN a | (oca b (can

DR N
L L

—
W\f

+ fvee from
vhidd e)

. Computing Some Expressions

In this question, we have a different type of bug: assume the C compiler you are using doesn’t quite have
the right rules of precedence implemented. Specifically, all arithmetic operations are at the same level of
precedence (with left-to-right associativity).

Your task: write the following expressions in C assuming these broken precedence rules. Important: Use the
minimal number of parentheses in doing so.

(a) Adding integers z and y, dividing the sum by 2:
X +y I &
(b) Dividing y by 2 and adding z to it, then dividing whole thing by z:
\ / / 2 4+ X / o
(c) Multiplying z and y, multiplying a and b, and then summing these two products:
X ¥ y ¥ (ok b)
(d) Computing 2 x a?:
A A X Q

(e) Your thoughts: Does changing the precedence rules (as above) make C programming harder, easier, or not
much difference?

P tc\)db\\/ havder dqa¢ v +

decsn't match olgebra
(H/Hw\\/ Q NEwenrg a CCG})%C{)

4. Factorial

The following code is meant to compute a factorial. The factorial of NV, sometimes written as N, is the product
of all positive integers less than or equal to N. For example, 4! =4 x 3 x 2 x 1 =24. Also, by definition, 0! is
1. Trying to compute the factorial of a negative number is considered undefined (i.e., don’t worry about it).

int factorial (int n) {
24
int r =@ i o
ol P
tn //
for (i — (//n, i++)

:r@/}\j) \

return r;

Correct the code above (if needed) to work as desired.

5. Double Swap
The following code is meant to swap the value of two doubles. For example, if there are two doubles x and y,

calling swap_double(&x,&y) should result in x now containing the previous value of y, and y the previous value
of x.
void swap_double (doublex a, doublex b) {
double tmp = % a;
> a = X b;
7\\,\ b = tmp;

Correct the code above (if needed) to work as desired.

6. Fizz Buzz

Some programming interviews ask for this very simple programming test:

Write a program that prints the numbers from 1 to 100 (inclusive), one per line. But for multiples of three print
“Fizz” instead of the number and for the multiples of five print “Buzz”. For numbers which are multiples of
both three and five print “FizzBuzz”.

Here are a bunch of attempts at writing such code. For each:

(a) Put an X through parts of the code that you think are definitely buggy.

(b) Leave correct code alone (do not X it).
In all cases, EXPLAIN YOUR ANSWER. Q CC\ cl én -&'ﬁ i l \/ ’
7. Attempt #1: / ’6’5 - 3 o + v"('/‘/\lj
int i; \\/ ™y 0L ho u+

for (i = l;ﬁj_ <= 100; i++) { . \
if ((i(//)s == 0) && ()‘@”5 == 0)) } “
printf ("FizzBuzz\n"7J; /,"/
} else if (1@3 == 0) { bal +
printf (" »"'/Z\Z\rl"); 3) O no /
} else if (1(1/5 == 0) { g\’)OU lc_l b(“’ /o &
(=

printf ("Buzz\n");
} else {
printf ("$d\n", 1i);

}
}
8. Attempt #2: i
g
int i; /7 ’; y
for (i = 1; 1 <= 100; -4 { :
if ((L % 3 == |ﬁ(195== 0)) 3 d
printf ("Fiz2BuzZ\n"); ; AN ’v\(y’{'
} else if (i % 3 == 0) {
printf ("Fizz\n"); v
} else if (i % 5 == 0) { O¥
printf ("Buzz\n");
} else {
printf ("$d\n", 1i);
}
}

10

9. Attempt #3:

int i, p;
for (i = 1; i <= 100; i++) {

p = 0;
if (1 % 3 == 0) { (”@(‘(\f(’(:_k_
printf ("Fizz"); p = 1; o
: Tizs oF BLUIE
if (1 %5 ==0) { f NS Jr‘h'.btf'
priotf{"Rmaz")s p = 13 or Yoth \p/o rnewlire
} .
if (p == 0) printf("%d", i); Ok ()HV\‘\‘S num wfs newhre
printf ("\n");
} Hern newline

10. Attempt #4:

int 1i;
for (1 = 1; 1 <= 100; i++) { i '
if (1 % 15 == 0) { ('C)\)”WQCF
printf ("FizzBuzz\n");
} else if (i % 3 == 0) { . o7 Q
printf ("Fizz\n"); —('—q t’eg % ? and /0 S
} else if (1 & 5 == 0) { l CCYS(;
printf ("Buzz\n"); qa eCid
} else { > SP O
printf ("$d\n", 1i); L=/ = =
) O"F’ /o l g
}
11. Attempt #5: 1 '
s > S
int 1i; . ~N
for (1 =(0, 1 00; 1i++) {)
if (1 &1 0) - 4 \/\ﬁg
printf ("FizzBuzz\n"); g o€ +\ s \/OU
} else if (i % 3 == 0) {
printf ("Fizz\n"); juS (— 96)‘}‘*":{
} else if (1 % 5 == 0) { 4_ /
printf ("Buzz\n"); rfci a qQ /
} else { S Yf

printf ("$d\n", 1i);

) the Chavacters

11

12. Matrix Fun

One programmer decides to create a two-dimensional array of integers as follows, of size 10 x 10:

int array[10][10]; m

Another programmer does the following:

int*% array;
array = malloc (10 * sizeof (int =));

int 1i;
for (i = 0; 1 < 10; i++) - A—IJ
array[i] = malloc (10 x sizeof (int)); ? (Ll] \l l l l

(a) Is either one of these buggy? If so, why? If not, why not? VA
No, bo th d”ocd({ [OO IVI{‘S
and can be accessed ag degired
(avray (x)Cy 7T)

(b) How are these code snippets similar? (explain)

A% albove

(c) How are these code snippets different? (explain)

| | ©) =) (onhguous (M remdty
\> ‘at Orrd\/ (107 ' ? (o7 ’21‘%(((or 9/ob0/

1) not CGV\'\‘\‘guous ’ heap

(d) Write code that initializes each value of this two-dimensional array to the product of its indices, i.e.,
array[i][j] should be set to the product of i and j (that is, to 7 X j).

(at 1, |
for (iz=0 ;110 4+)
for (y=0 ;<10 ;1)
qr(‘a\/ [l‘]C)ljt lﬂj/'

12

13. Structs

Structs are used throughout C programs. Here, a programmer is trying to access fields of a struct using various
means. The first thing written down is the programmer’s intent. The second thing is the code the programmer
wrote to try to match the intention.

(a) Put an X through code that you think is definitely buggy.

(b) Circle code that will work (i.e., not crash or lead to undefined behavior) but you think is poor style or
otherwise problematic.

(c) Leave correct code alone (do not circle or X it).

In all cases, EXPLAIN YOUR ANSWER.

First, assume you have the following structure definition:

struct foo {
int a;
int b;
int c¢;

}i

(a) Initialize the elements of a struct foo.
struct foo x = {0, 0, :

struct foo x; x.a = 0; x.b = = 0;

(b) Initialize the elements of a struct foo. _
0; %

X . C viot :vw\‘Jr{(f (90“”/)

(c) Initialize the elements of a struct foo.
struct foo x; intx p=(int *)&x; *p=0; pt+t+; *p=0; p++; *p=0;

weov ke s

(p(ﬁv hap < poor
Style ?)

13

Now assume we have the following, slightly different, structure.
struct foo2 {
int aj
int b;
char c;
}i
We now ask a few questions about this new structure:

(d) Assuming usual packing rules, does this structure occupy more, less, or the same amount of space as foo?
(explain)

sqww €

IO q Cl

(e) Which code sequences from (a), (b), and (c) above also will work with the newly defined structure, and
which won’t? Explain.

C\) wovks \9) 9'{‘1” dOC’SHLf
C,) Liwd of (ouer wr | e del)

Finally, assume we have the following definition of a new struct and an array:

struct foo3 {
int a;
char b;
int c;

char d;
)i /(
r /——‘K\L/
struct foo3(farray[100];

6 b

(f) How much space in memory will farray use?

0O K (6 = 1600 by{pg

(g) How can you rewrite the structure definition to save space?
styoe T oo 3 _
(Nt a,c, - 1l
Chavr b d Told [70 /0]
% 14

127 b

14. Functions and the Stack

The following functions are reported to be likely candidates for serious bugs. For each, diagnose the problem
(i.e., describe why it is a bug). Be concise if you can. Of course, it is possible that the code works fine (i.e., is
not buggy). In those cases, just say so.

(a) This code is supposed to be a quick way to allocate space for an integer and return a pointer to that integer:

int* ialloc () {
int newmem;
return &newmem;

}

‘What is wrong with this code? How would you fix it? -’T) - L))
Wwroang * veturncg Gddf‘_ O\C SoON C
dealloctd stack nemuny

Cowﬁd‘ veturn walloc (§|%€’O“p C\Wr));

=
(b) This code is supposed to copy n bytes from the source C string to the destination C string.

void astrcpy(char+ dst, charx src, int n) {

int i;
for (1 = 0; i < n; i++)
dst[i] = src[i];
}
‘What is wrong with this code? How would you fix it? _*‘
|

s co . , n
weong ' < hoou |d Sﬁh}« COPY ﬁ (emd 0(\&\1-77"(])

alco €nsures SVC encoonter \D :
tust v coprecty Steps copy at thet pornt

reathed dst (bveb Maked Sure \NO ¢ va gt *DC'>

EETAS \ v (c) This routine takes a pointer to a string and fills it with the word “hi”. If the string is NULL, it will allocate
\ O memory for it.

) é void hifill (charx str) {
’(’Je'/”“\'\“le {f (str == NULL) r F
str = (char *) malloc(3); e —

str[0] = "h’; :> '\ O
str(l] ='1i'; -~ ¢~ |ear|(Wwvonin < \
str[2] =/"\n’; t—’/ s >')

}

What is wrong with this code? How would you fix it?

'\/\zvo&‘/\p",

—

g
((opy 6n S]Ldf,é'/

- , . 15 s ke ;
OeCt 2 \np\8 and cher kxS

asS Qgre

\
a © apode and Cannot Chqmycﬂj

15. Reversing x86

Each of the following questions has an assembly fragment shown first. Unfortunately, the C equivalent (probably
buggy anyhow) has been lost. Your job is to write the C that best matches the assembly.

(a) Assume the address of variable i is in register $eax.

(b)

(c

~

movl (%eax), %ecx
addl %ecx, %ecx
movl %ecx, (%eax) ‘

Write some C to match this assembly code:

Assume the address of variable x is in $eax.

movl (%eax), %ecx
cmpl $0x10, %ecx

jg after

addl $10, %ecx

after: 4
ov ‘é)

movl %ecx, (%eax)

Write some C to match this assembly code:

/
Tt (x & Ox 10)

Assume the addresses of variables x and y are in registers $ebx and $edi, and that variable rc’s address
isin $esi.

movl (%ebx), %eax

pushl (%eax)

movl (%edi), %eax

pushl (%eax) -
call compute

movl %eax, (%esi)

Write some C to match this assembly code:

« /)
— computt (%)//%X>/' L

Y¢ -
esp —

16

(d) The following assembly, you’ve been told, defines a function that takes an address to a variable as a
parameter.

subsome: p
pushl %ebp 1
movl %esp, %ebp

1 8(%ebp) Subsomwe ("/H— *X) >
mov % ,\Q\.,O%eax ’
({(movl ((%$eax),) %ecx :Fk X — % 2(= lo p

a Vj subl $TU, %ecx

\/o\c\

movl %ecx, (%eax)
ow movl %ebp, %esp g
S{—qck popl %ebp
‘ ret

P Ow9 -'JrT€ChL€C‘ e
()O(hjr*ﬁf*

Write some C to define this function:

(e) The following assembly, you’ve been told, defines a function that does something to an array.

clearit:

pushl %ebp

movl %es 3eb 7
movl 8 (%ebp), %eax VOt A C \eqr-i"‘“ (["*‘ % Q/ '
movl 12 (%ebp), %ecx . , .) 5
movl $0, %edx ? siee (ut <ize

cmpl %edx, %ecx .

je alldone (l/\ _{_, | ‘}

top:

movl %edx, (%eax, %edx,4) v : : =2 |+-f)
‘ Por (=0 1€81%€

incl %edx

cmpl %edx, %ecx - e

jg top q C { 7 = |

alldone: '
“movl %ebp, %esp g

popl %ebp
ret

Write some C to define this function:

17

16. x86 Call/Return
The x86 cdecl calling convention (as discussed in class) is quite complex. Here are the full set of steps needed:

Step 1. Save “caller-save” registers

Step 2. Push arguments onto the stack (reverse order)
Step 3. Call function

Step 4. Establish new base pointer

Step 5. Make room for local variables

Step 6. Save “callee-save” registers

Step 7. (execute body of function)

Step 8. Restore “callee-save” registers

Step 9. Free stack space that was allocated for locals
Step 10. Restore old base pointer

Step 11. Return from function

Step 12. Deallocate space for arguments

Step 13. Restore “caller-save” registers

However, someone tells you that is it (i.e., not buggy) to sometimes skip some of these steps. Your job here is
to answer questions about skipping some of these steps, as described here:

(a) Skip steps 1 and 13. Is this ever OK? When?

<‘ \4‘_ qu[@r ag wvio

va |lvé S n Thoce
v egisters)

can Skip

(b) Skip steps 2 and 12. Is this ever OK? When?

cdn '()4 Vo Args WLUC&V\()

-/-_

(c) Skip steps 4 and 10. Is this ever OK? When?

\ local vavs, avys
<‘“C ne Leed)

CaiN

—

(d) Skip steps 5 and 9. Is this ever OK? When?

can (Hf‘ w o localg USFCJ)

/

18

(e) Skip steps 6 and 8. Is this ever OK? When?
. A no calle®
Cain FIE
e g, YR w1 SWAQ

— ngQé

(H) All of the above skipped pairs of steps. What would happen in those cases if one of the steps was skipped,
but not the other? Could that ever work?

US‘)“HY proken :'>
€.g. push w/o |
g,h ck ouer ’h‘/\/\{ in weivd L/w%)/

(g) The order of the steps of the convention also matter, in some cases more than others. Specifically, why do
we order 1 before 2? Does this order matter?

- allows stable , vion ‘Cl/)%n@ihﬁ
;/QFQV‘QVICC +U Q‘Vj"S

pop Wi 1 grow

AY
— O’\'\NQVW(E(’/ veou | d havt o 59
(h) Similarly, why do we order 5 before 6? Does this order matter? SN] dN 9 <
((sawe)
veall %

(i) Does the order that arguments are pushed onto the stack in step 2 matter? (could we have changed the
convention to do it the other way?)

oede i b jest conventivny

((@u[cl do 7”{‘ d(-ﬁ@vﬁmﬂy/

19

