UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

Cs 537 Andrea C. Arpaci-Dusseau
Introduction to Operating Systems Remzi H. Arpaci-Dusseau

Questions answered in this lecture:
How fo run process when not enough physical memory?
When should a page be moved from disk to memory?
What page in memory should be replaced?
How can the LRU page be approximated efficiently?

OS goal: Support processes when not enough physical
memory
* Single process with very large address space
* Multiple processes with combined address spaces

User code should be independent of amount of physical
memory
e Correctness, if not performance

Virtual memory: OS provides illusion of more physical
memory

Why does this work?

* Relies on key properties of user processes (workload) and
machine architecture (hardware)

Leverage within processes
reference memory addresses near previously referenced
addresses
reference memory addresses that have referenced in
the past
* Processes spend majority of time in small portion of code
- Estimate: 90% of time in 10% of code
Implication:
* Process only uses small amount of address space at any
moment
e Only small amount of address space must be resident in
physical memory

Leverage of machine architecture
Each layer acts as “backing store” for layer above
A
speeg

size

disk storage

cost

Idea: OS keeps unreferenced pages on disk
* Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main
memory
0S and hardware cooperate to provide illusion of large
disk as fast as main memory
* Same behavior as if all of address space in main memory
* Hopefully have similar performance
Requirements:
* OS must have mechanism to identify location of each page in
address space in memory or on disk
e 0S must have policy for determining which pages live in
memory and which on disk

Each page in virtual address space maps to one of three
locations:
e Physical main memory: Small, fast, expensive
 Disk (backing store): Large, slow, cheap
* Nothing (error): Free
Extend page tables with an extra bit: present
* permissions (r/w), valid, present
* Page in memory: present bit set in PTE
* Page on disk: present bit cleared
- PTE points to block on disk
- Causes trap info OS when page is referenced

Hardware and OS cooperate to translate addresses

First, hardware checks TLB for virtual address

e if TLB hit, address translation is done; page in physical memory
If TLB miss...

* Hardware or OS walk page tables

* If PTE designates page is present, then page in physical

memory

If page fault (i.e., present bit is cleared)

e Trap into OS (not handled by hardware)

e OS selects victim page in memory to replace

- Write victim page out to disk if modified (add dirty bit to PTE)

e OS reads referenced page from disk into memory

* Page table is updated, present bit is set

* Process continues execution

Continuing a process after a page fault is tricky
* Want page fault to be transparent to user
* Page fault may have occurred in middle of instruction
- When instruction is being fetched
- When data is being loaded or stored
* Requires hardware support
: stop CPU pipeline such that instructions before
faulting instruction have completed, and those after can be
restarted
Complexity depends upon instruction set
* Can faulting instruction be restarted from beginning?
- Example: move +(SP), R2
- Must track side effects so hardware can undo
* Another Example: Early Apollo for 68000

OS has two decisions on a page fault
* Page selection
- When should a page (or pages) on disk be brought into memory?
- Two cases
* When process starts, code pages begin on disk
* As process runs, code and data pages may be moved to disk
* Page replacement

- Which resident page (or pages) in memory should be thrown out to
disk?

Goal: Minimize number of page faults

Page faults require milliseconds to handle (reading from disk)
Implication: Plenty of time for OS to make good decision

When should a page be brought from disk into memory?

e Earliest systems: Overlays

* Problems:
- Manage memory by hand
- Users do not always know future references
- Users are not impartial

e Intuition: Wait until page must absolutely be in memory

* When process starts: No pages are loaded in memory

* Advantages: Less work for user

* Problems: Pay cost of page fault for every newly accessed
page

* OS predicts future accesses () and brings pages into
memory ahead of time
- How?
- Works well for some access patterns (e.g., sequential)
* Advantages: May avoid page faults

 User specifies: may need page in future, don't need this page
anymore, or sequential access pattern, ...

e Example: madvise() in Unix

Which page in main memory should selected as victim?
* Write out victim page to disk if modified (dirty bit set)
o If victim page is not modified (clean), just discard

OPT: Replace page not used for longest time in future
* Advantages: Guaranteed to minimize number of page faults
* Disadvantages: Requires that OS predict the future
- Not practical, but good for comparison
Random: Replace any page at random
* Advantages: Easy to implement
* Works okay when memory is not severely over-committed

FIFO: Replace page that has been in memory the longest
* Intuition: First referenced long time ago, done with it now
* Advantages:
- Fair: All pages receive equal residency
- Easy to implement (circular buffer)
* Disadvantage: Some pages may always be needed
LRU: Replace page not used for longest time in past
* Intuition: Use past to predict the future
* Advantages:
= With locality, LRU approximates OPT
* Disadvantages:
- Harder to implement, must track which pages have been accessed
- Does not handle all workloads well

Page reference string: ABCABDADBCB
Three pages of physical memory
OPT FIFO

ABC

® O ™ O P O w P

Add more physical memory, what happens to
performance?

* LRU, OPT: Add more memory, guaranteed to have
fewer (or same number of) page faults
- Smaller memory sizes are guaranteed to contain a
subset of larger memory sizes
* FIFO: Add more memory, usudlly have fewer page
faults
- Belady’s anomaly: May actually have more page faults!

Software Perfect LRU
e OS maintains ordered list of physical pages by reference time
* When page is referenced: Move page to front of list
* When need victim: Pick page at back of list
* Trade-off: Slow on memory reference, fast on replacement
Hardware Perfect LRU
* Associate register with each page
* When page is referenced: Store system clock in register
* When need victim: Scan through registers to find oldest clock
* Trade-off: Fast on memory reference, slow on replacement
(especially as size of memory grows)
In practice, do not implement Perfect LRU
* LRU is an approximation anyway, so approximate more
* Goal: Find an old page, but not necessarily the very oldest

Hardware
* Keep use (or reference) bit for each page frame
* When page is referenced: set use bit
Operating System
* Page replacement: Look for page with use bit cleared (has not
been referenced for awhile)
* Implementation:
- Keep pointer to last examined page frame
- Traverse pages in circular buffer
- Clear use bits as search
- Stop when find page with already cleared use bit, replace this
page

What if clock hand is sweeping very fast?
What if clock hand is sweeping very slow?

Replace multiple pages at once

* Intuition: Expensive to run replacement algorithm and to write
single block to disk

* Find multiple victims each time
Add software counter (“chance”)

 Intuition: Better ability to differentiate across pages (how
much they are being accessed)

* Increment software counter if use bit is O
* Replace when chance exceeds some specified limit
Use dirty bit to give preference to dirty pages
e Intuition: More expensive to replace dirty pages
- Dirty pages must be written to disk, clean pages do not
* Replace pages that have use bit and dirty bit cleared

What can the OS do if hardware does not have
use bit (or dirty bit)?
e Can the OS “emulate” these bits?

Leading question:

* How can the OS get control (i.e., generate a trap)
every time use bit should be set? (i.e., when a
page is accessed?)

