
1

I/O System: Disks

Questions answered in this lecture:
What are the layers of the I/O systems?
How does a device driver interact with device

controllers?
What are the characteristics of modern disk drives?
How do disks schedule requests?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

I/O System

user process

file system

I/O system

device driver

user process user process

OS

device controller

disk

Device Drivers
Mechanism: Encapsulate details of device

• File system not aware of device details
• Much of OS code is in device drivers

– Responsible for many of the errors as well!

Device driver interacts with device controller
• Read status registers, read data
• Write control registers, provide data for write operations

How does device driver access controller?
• Special instructions

– Valid only in kernel mode, No longer popular
• Memory-mapped

– Read and write to special memory addresses
– Protect by placing in kernel address space only

• May map part of device in user address space for fast access

Device Drivers:
Starting I/O

Programmed I/O (PIO)
• Must initiate and watch every byte
• Disadvantage: Large overhead for large transfers

Direct Memory Access (DMA)
• Offload work from CPU to to special-purpose processor

responsible for large transfers
• CPU: Write DMA command block into main memory

– Pointer to source and destination address
– Size of transfer

• CPU: Inform DMA controller of address of command block
• DMA controller: Handles transfer with I/O device controller
• Can use physical or virtual addresses (DVMA)

– Disadvantages of each approach??

2

Device Drivers:
When is I/O complete?

Polling
• Handshake by setting and clearing flags

– Controller sets flag when done
– CPU repeatedly checks flag

• Disadvantage: Busy-waiting
– CPU wastes cycles when I/O device is slow
– Must be attentive to device, or could lose data

Interrupts: Handle asynchronous events
• Controller asserts interrupt request line when done
• CPU jumps to appropriate interrupt service routine (ISR)

– Interrupt vector: Table of ISR addresses
– Index by interrupt number

• Low priority interrupts postponed until higher priority finished
• Combine with DMA: Do not interrupt CPU for every byte

Disk Controller

Responsible for interface between OS and disk drive
• Common interfaces: ATA/IDE vs. SCSI

– ATA/IDE used for personal storage
– SCSI for enterprise-class storage

Basic operations
• Read block
• Write block

OS does not know of internal complexity of disk
• Disk exports array of Logical Block Numbers (LBNs)
• Disks map internal sectors to LBNs

Implicit contract:
• Large sequential accesses to contiguous LBNs achieve much

better performance than small transfers or random accesses

Disk Terminology
spindle

platter

surface

trackcylinder

sector

read/write head

ZBR (Zoned bit recording): More sectors on outer tracks

Disk Performance

How long to read or write n sectors?
• Positioning time + Transfer time (n)
• Positioning time: Seek time + Rotational Delay
• Transfer time: n / (RPM * bytes/track)

Seek: Time to position head over destination cylinder
Rotation: Wait for sector to rotate underneath head

3

Disk Calculations
Example disk:

• #surfaces: 4
• #tracks/surface: 64K
• #sectors/track: 1K (assumption??)
• #bytes/sector: 512
• RPM: 7200 = 120 tracks/sec
• Seek cost: 1.3ms - 16ms

Questions
• How many disk heads? How many cylinders?
• How many sectors/cylinder? Capacity?
• What is the maximum transfer rate (bandwidth)?
• Average positioning time for random request?
• Time and bandwidth for random request of size:

– 4KB?
– 128 KB?
– 1 MB?

Disk Abstraction
How should disk map internal sectors to LBNs?
Goal: Sequential accesses (or contiguous LBNs)

should achieve best performance
Approaches:

• Traditional ordering

• Serpentine ordering

Positioning

Drive servo system keeps head on track
• How does the disk head know where it is?
• Platters not perfectly aligned, tracks not perfectly concentric

(runout) -- difficult to stay on track
• More difficult as density of disk increase

– More bits per inch (BPI), more tracks per inch (TPI)

Use servo burst:
• Record placement information every few (3-5) sectors
• When head cross servo burst, figure out location and adjust as

needed

Reliability
Disks fail more often....

• When continuously powered-on
• With heavy workloads
• Under high temperatures

How do disks fail?
• Whole disk can stop working (e.g., motor dies)
• Transient problem (cable disconnected)
• Individual sectors can fail (e.g., head crash or scratch)

– Data can be corrupted or block not readable/writable

Disks can internally fix some sector problems
• ECC (error correction code): Detect/correct bit flips
• Retry sector reads and writes: Try 20-30 different offset and

timing combinations for heads
• Remap sectors: Do not use bad sectors in future

– How does this impact performance contract??

4

Buffering
Disks contain internal memory (2MB-16MB) used as cache
Read-ahead: “Track buffer”

• Read contents of entire track into memory during rotational
delay

Write caching with volatile memory
• Immediate reporting: Claim written to disk when not
• Data could be lost on power failure

– Use only for user data, not file system meta-data

Command queueing
• Have multiple outstanding requests to the disk
• Disk can reorder (schedule) requests for better performance

Disk Scheduling

Goal: Minimize positioning time
• Performed by both OS and disk itself; Why?

FCFS: Schedule requests in order received
• Advantage: Fair
• Disadvantage: High seek cost and rotation

Shortest seek time first (SSTF):
• Handle nearest cylinder next
• Advantage: Reduces arm movement (seek time)
• Disadvantage: Unfair, can starve some requests

Disk Scheduling

SCAN (elevator): Move from outer cylinder in, then back
out again
• Advantage: More fair to requests, similar performance as SSTF
• Variation: Circular-Scan (C-Scan)

– Move head only from outer cylinder inward (then start over)
– Why??? (Two reasons)

LOOK: SCAN, except stop at last request

Calculate seek distance for workload with cylinder #s: 10,
2, 0, 85, 50, 40, 1, 37, 41; Start at #43, moving up

Disk Scheduling

Real goal: Minimize positioning time
• Trend: Rotation time dominating positioning time

– Very difficult for OS to predict
• ZBR, track and cylinder skew, serpertine layout, bad block remapping,

caching, ...

– Disk controller can calculate positioning time

• Shortest positioning time first (SPTF)

Technique to prevent starvation
• Two queues
• Handle requests in current queue
• Add newly arriving requests added to other queue

