
1

Processes

Questions answered in this lecture:
What is a process?
How does the dispatcher context-switch between

processes?
How does the OS create a new process?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

What is a Process?

Process: An execution stream in the context of a process state
Execution stream

1) Stream of executing instructions
2) Running piece of code
3) Sequential sequence of instructions
4) “thread of control”

Process state
• Everything that the running code can affect or be affected by
• Registers

– General-purpose, floating point, status, program counter, stack pointer
• Address space

– Everything process can address through memory
– Represented by array of bytes
– Heap, stack, and code

Processes vs. Programs

A process is different than a program
• Program: Static code and static data
• Process: Dynamic instance of code and data

No one-to-one mapping between programs and
processes
• Can have multiple processes of the same program

Example: many users can run “ls” at the same time
• One program can invoke multiple processes

Example: “make” runs many processes to accomplish
its work

Processes vs. Threads

A process is different than a thread
Thread: “Lightweight process” (LWP)

• An execution stream that shares an address space
• Multiple threads within a single process

Example:
• Two processes examining memory address 0xffe84264 see

different values (I.e., different contents)
• Two threads examining memory address 0xffe84264 see same

value (I.e., same contents)

2

System Classifications

All systems support processes, but the number varies
Uniprogramming: Only one process resident at a time

• Examples: First systems and DOS for PCs
• Advantages: Runs on all hardware
• Disadvantages: Not convenient for user and poor performance

Multiprogramming: Multiple processes resident at a time
(or, multitasking)
• Note: Different than multiprocessing

– Multiprocessing: Systems with multiple processors
• Examples: Unix variants, WindowsNT
• Advantages: Better user convenience and system performance
• Disadvantages: Complexity in OS

Multiprogramming

OS requirements for multiprogramming
• Mechanism

– To switch between processes
– To protect processes from one another

• Policy
– To decide which process to schedule

Separation of policy and mechanism
• Reoccuring theme in OS
• Policy: Decision-maker to optimize some workload performance

metric
– Which process when?
– Process Scheduler: Future lecture

• Mechanism: Low-level code that implements the decision
– How?
– Process Dispatcher: Today’s lecture

Dispatch Mechanism

OS runs dispatch loop

while (1) {
run process A for some time-slice
stop process A and save its context
load context of another process B

}

Question 1: How does dispatcher gain control?
Question 2: What execution context must be saved and

restored?

Context-switch

Q1: Hardware for
Multiprogramming

Must differentiate application process and OS
Hardware support

• Bit in status word designates whether currently
running in user or system mode

• System mode (or privileged or supervisor) allows functionality
– Execution of special instructions (e.g., access hardware devices)
– Access to all of memory
– Change stack pointer

• Usage
– Applications run in user mode
– OS runs in system mode

3

Q1: Entering system mode

How does OS get control?
1) Synchronous interrupts, or traps

• Event internal to a process that gives control to OS
• Examples: System calls, page faults (access page not in main

memory), or errors (illegal instruction or divide by zero)

2) Asynchronous interrupts
• Events external to a process, generated by hardware
• Examples: Characters typed, or completion of a disk transfer

How are interrupts handled?
• Each type of interrupt has corresponding routine (handler or

interrupt service routine (ISR)
• Hardware saves current process and passes control to ISR

Q1: How does Dispatcher run?

Option 1: Cooperative Multi-tasking
• Trust process to relinquish CPU through traps

– Trap: Event internal to process that gives control to OS
– Examples: System call, page fault (access page not in main

memory), or error (illegal instruction or divide by zero)

• Disadvantages: Processes can misbehave
– By avoiding all traps and performing no I/O, can take over

entire machine
– Only solution: Reboot!

• Not performed in modern operating systems

Q1: How does Dispatcher run?

Option 2: True Multi-tasking
• Guarantee OS can obtain control periodically
• Enter OS by enabling periodic alarm clock

– Hardware generates timer interrupt (CPU or separate chip)
– Example: Every 10ms

• User must not be able to mask timer interrupt
• Dispatcher counts interrupts between context

switches
– Example: Waiting 20 timer ticks gives 200 ms time slice
– Common time slices range from 10 ms to 200 ms

Q2: Process States

Each process is in one of three modes:
• Running: On the CPU (only one on a uniprocessor)
• Ready: Waiting for the CPU
• Blocked (or asleep): Waiting for I/O or

synchronization to complete

Running

Blocked

Ready
Transitions?

4

Q2: Tracking Processes

OS must track every process in system
Each process identified by unique Process ID

(PID)
OS maintains queues of all processes

• Ready queue: Contains all ready processes
• Event queue: One logical queue per event (e.g., disk

I/O and locks)
– Contains all processes waiting for that event to complete

Q2: What Context must be Saved?

Dispatcher must track context of process when not
running
• Save context in process control block (PCB) (or, process

descriptor)

What information is stored in PCB?
• PID
• Process state (I.e., running, ready, or blocked)
• Execution state (all registers, PC, stack ptr)
• Scheduling priority
• Accounting information (parent and child processes)
• Credentials (which resources can be accessed, owner)
• Pointers to other allocated resources (e.g., open files)

Q2: Context-Switch
Implementation

Basic idea: Save all registers to PCB in memory
• Tricky: Must execute code without using registers
• Machine-dependent code (written in assembly)

– Different for x86, SPARC, MIPS, etc.

Requires special hardware support
• Hardware saves process PC and PSR on interrupts
• CISC: Single instruction saves all registers onto stack
• RISC: Agreement to keep some registers empty

– Alpha and SPARC: Shadow registers
– MIPS: Two general-purpose registers are scratch, avoided by

compiler

How long does a context-switch take?
• 10s of microseconds

Multiprogramming and Memory

Does OS need to save all of memory between processes?
Option 1: Save all of memory to disk

• Example: Alto, early personal workstation
• Disadvantage: Very time consuming
• How long to save a 10 MB process to disk?

Option 2: Trust next process to not overwrite memory
• Example: Early multiprogramming in PCs and Macs (single user)
• Disadvantage: Very hard to track down bugs

Option 3: Protect memory (and files) from next process
• Requires hardware support
• Investigate later in course

5

Process Creation

Two ways to create a process
• Build a new empty process from scratch
• Copy an existing process and change it appropriately

Option 1: New process from scratch
• Steps

– Load specified code and data into memory;
Create empty call stack

– Create and initialize PCB (make look like context-switch)
– Put process on ready list

• Advantages: No wasted work
• Disadvantages: Difficult to setup process correctly and to

express all possible options
– Process permissions, where to write I/O, environment variables
– Example: WindowsNT has call with 10 arguments

Process Creation

Option 2: Clone existing process and change
• Example: Unix fork() and exec()

– Fork(): Clones calling process
– Exec(char *file): Overlays file image on calling process

• Fork()
– Stop current process and save its state
– Make copy of code, data, stack, and PCB
– Add new PCB to ready list
– Any changes needed to PCB?

• Exec(char *file)
– Replace current data and code segments with those in specified

file
• Advantages: Flexible, clean, simple
• Disadvantages: Wasteful to perform copy and then overwrite of

memory

Unix Process Creation

How are Unix shells implemented?
While (1) {

Char *cmd = getcmd();
Int retval = fork();
If (retval == 0) {

// This is the child process
// Setup the child’s process environment here
// E.g., where is standard I/O, how to handle signals?
exec(cmd);
// exec does not return if it succeeds
printf(“ERROR: Could not execute %s\n”, cmd);
exit(1);

} else {

// This is the parent process; Wait for child to finish
int pid = retval;
wait(pid);

}
}

