
1

Implementing Locks

Questions answered in this lecture:
Why use higher-level synchronization primitives?
What is a lock?
How can locks be implemented?
When to use spin-waiting vs. blocking?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Synchronization Layering

Build higher-level synchronization primitives in OS
• Operations that ensure correct ordering of instructions across

threads

Motivation: Build them once and get them right
• Don’t make users write entry and exit code

Monitors Semaphores

Condition Variables
Locks

Loads
Stores Test&Set

Disable Interrupts

Locks

Goal: Provide mutual exclusion (mutex)
Three common operations:

Allocate and Initialize
• Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
• Acquire exclusion access to lock; Wait if lock is not available
• Pthread_mutex_lock(&mylock);

Release
• Release exclusive access to lock
• Pthread_mutex_unlock(&mylock);

Lock Example
After lock has been allocated and initialized:

Void deposit(int amount) {
Pthread_mutex_lock(&mylock);
balance += amount;
Pthread_mutex_unlock(&mylock);

}

Allocate one lock for each bank account:
Void deposit(int accountid, int amount) {

Pthread_mutex_lock(&locks[accountid]);
balance[accountid] += amount;
Pthread_mutex_unlock(&locks[accountid]);

}

2

Implementing Locks: Version #1

Build locks using atomic loads and stores
Typedef struct {

bool lock[2] = {false, false};
int turn = 0;

} lockT;
Void acquire(lockT *l) {

l->lock[tid] = true;
l->turn = 1-tid;
while (l->lock[1-tid] && l->turn==1-tid) /* wait */;

}
Void release (lockT *l) {

l->lock[tid] = false;
}
Disadvantages??

Implementing Locks: Version #2

Turn off interrupts for critical sections
• Prevent dispatcher from running another thread
• Code executes atomically

Void acquire(lockT *l) {
disableInterrupts();

}
Void release(lockT *l) {

enableInterrupts();
}

Disadvantages??

Implementing Locks: Version #3

Leverage atomic “Test of Lock” and “Set of Lock”
Hardware instruction: TestAndSet addr val (TAS)

• Returns previous value of addr and sets value at addr to val
Example: C=10;
Old = TAS(&C, 15)
Old == ?? C == ??

Typedef bool lockT;
Void acquire(lockT *l) {

while (TAS(l, true)) /* wait */;
}
Void release(lockT *l) {

*l = false;
}
Disadvantages??

Lock Implementation #4:
Block when Waiting

Typedef struct {
bool lock = false;
bool guard = false;
queue q = queue_alloc();

} LockT;

Void acquire(LockT *l) {
while (TAS(&l->guard, true));
If (l->lock) {

qadd(l->q, tid);
l->guard = false;
call dispatcher;

} else {
l->lock = true;
l->guard = false;

}
}
Void release(LockT *l) {

while (TAS(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else WakeFirstProcess(l->q);
l->guard = false;

}

3

How to stop Spin-Waiting?

Option 1: Add sleep(time) to while(TAS(&guard,1));
• Problems?

Option 2: Add yield()
• Problems?

Option 3: Don’t let thread give up CPU to begin with
• How?

• Why is this acceptable here?

Lock Implementation #5:
Final Optimization

Void acquire(LockT *l) {
??
while (TAS(&l->guard,true));
If (l->lock) {

qadd(l->q, tid);
l->guard = false;
??
call dispatcher;

} else {
l->lock = true;
l->guard = false;
??

}
}

Void release(LockT *l) {
??
while (TAS(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else WakeFirstProcess(l->q);
l->guard = false;
??

}

Spin-Waiting vs Blocking

Each approach is better under different circumstances
Uniprocessor

• Waiting process is scheduled --> Process holding lock isn’t
• Waiting process should relinquish processor
• Associate queue of waiters with each lock

Multiprocessor
• Waiting process is scheduled --> Process holding lock might be
• Spin or block depends on how long, t, before lock is released

– Lock released quickly --> Spin-wait
– Lock released slowly --> Block
– Quick and slow are relative to context-switch cost, C

When to Spin-Wait?
When to Block?

If know how long, t, before lock released, can determine
optimal behavior

How much CPU time is wasted when spin-waiting?

How much wasted when block?

What is the best action when t<C?

When t>C?

Problem: Requires knowledge of future

4

Two-Phase Waiting

Theory: Bound worst-case performance
When does worst-possible performance occur?

Spin-wait for C then block --> Factor of 2 of optimal
Two cases:

T < C: optimal spin-waits for t; we spin-wait t too
T > C: optimal blocks immediately (cost of C); we pay spin C then

block (cost of 2 C)

Example of competitive analysis

