
1

Dining Philosophers & Monitors

Questions answered in this lecture:
How to synchronize dining philosophers?
What are monitors and condition variables?
What are the differences between Hoare and Mesa

specifications?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Two Classes of Synchronization
Problems

Uniform resource usage with simple scheduling constraints
• No other variables needed to express relationships
• Use one semaphore for every constraint
• Examples: thread join and producer/consumer

Complex patterns of resource usage
• Cannot capture relationships with only semaphores
• Need extra state variables to record information
• Use semaphores such that

– One is for mutual exclusion around state variables
– One for each class of waiting

Always try to cast problems into first, easier type
Today: Two examples using second approach

Dining Philosophers

Problem Statement:
• N Philosophers sitting at a round table
• Each philosopher shares a chopstick with neighbor
• Each philosopher must have both chopsticks to eat
• Neighbors can’t eat simultaneously
• Philosophers alternate between thinking and eating

Each philosopher/thread i runs following code:
while (1) {

think();
take_chopsticks(i);
eat();
put_chopsticks(i);

}

Dining Philosophers: Attempt #1
Two neighbors can’t use chopstick at same time
Must test if chopstick is there and grab it atomically

• Represent each chopstick with a semaphore
• Grab right chopstick then left chopstick

Code for 5 philosophers:
sem_t chopstick[5]; // Initialize each to 1
take_chopsticks(int i) {

wait(&chopstick[i]);
wait(&chopstick[(i+1)%5]);

}
put_chopsticks(int i) {

signal(&chopstick[i]);
signal(&chopstick[(i+1)%5]);

}
What is wrong with this solution???

2

Dining Philosophers: Attempt #2
Approach

• Grab lower-numbered chopstick first, then higher-numbered
Code for 5 philosophers:
sem_t chopstick[5]; // Initialize to 1
take_chopsticks(int i) {

if (i < 4) {
wait(&chopstick[i]);
wait(&chopstick[i+1]);

} else {
wait(&chopstick[0]);
wait(&chopstick[4]);

}

What is wrong with this solution???

Dining Philosophers:
How to Approach

Guarantee two goals
• Safety: Ensure nothing bad happens (don’t violate constraints of

problem)
• Liveness: Ensure something good happens when it can (make as

much progress as possible)

Introduce state variable for each philosopher i
state[i] = THINKING, HUNGRY, or EATING

Safety: No two adjacent philosophers eat simultaneously
for all i: !(state[i]==EATING && state[i+1%5]==EATING)

Liveness: Not the case that a philosopher is hungry and
his neighbors are not eating
for all i: !(state[i]==HUNGRY &&
(state[i+4%5]!=EATING && state[i+1%5]!=EATING))

Dining Philosophers: Solution
sem_t mayEat[5]; // how to initialize?
sem_t mutex; // how to init?
int state[5] = {THINKING};
take_chopsticks(int i) {

wait(&mutex); // enter critical section
state[i] = HUNGRY;
testSafetyAndLiveness(i); // check if I can run
signal(&mutex); // exit critical section
wait(&mayEat[i]);

}
put_chopsticks(int i) {

wait(&mutex); // enter critical section
state[i] = THINKING;
test(i+1 %5); // check if neighbor can run now
test(i+4 %5);
signal(&mutex); // exit critical section

}
testSafetyAndLiveness(int i) {

if (state[i]==HUNGRY && state[i+4%5]!=EATING&&state[i+1%5]!=EATING) {
state[i] = EATING;
signal(&mayEat[i]);

}
}

Dining Philosophers:
Example Execution

3

Monitors

Motivation
• Users can inadvertently misuse locks and semaphores (e.g.,

never unlock a mutex)

Idea
• Provide language support to automatically lock and unlock

monitor lock when in critical section
– Lock is added implicitly; never seen by user

• Provide condition variables for scheduling constraints

Examples
• Mesa language from Xerox
• Java from Sun

– Use synchronized keyword when defining method
synchronized deposit(int amount) {

balance += amount;
}

Condition Variables
Idea

• Used to specify scheduling constraints
• Always used with a monitor lock
• No value (history) associated with condition variable

Allocate: Cannot initialize value!
• Must allocate a monitor lock too (implicit with language

support, explicit in POSIX and C)
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t monitor_lock = PTHREAD_MUTEX_INITIALIZER;

Wait
• Call with monitor lock held; Releases monitor lock, sleeps until

signalled, reacquires lock when woken
• NOTE: No test inside of wait(); will always sleep!
pthread_mutex_lock(&monitor_lock);
if (expression) pthread_cond_wait(&cond, &monitor_lock);
pthread_mutex_unlock(&monitor_lock);

Condition Variables

Signal (or Notify)
• Call with monitor lock held
• Wake one thread waiting on this condition variable (if any)
• Hoare (signal-and-exit): Signaller relinquishes lock and CPU to

waiter (Theory)
• Mesa (signal-and-continue): Signaller can keep lock and CPU

(Practice)
pthread_mutex_lock(&monitor_lock);
pthread_cond_signal(&cond);
pthread_mutex_unlock(&monitor_lock);

Broadcast (or NotifyAll)
• Wake all threads waiting on condition variable

Producer/Consumer: Hoare
Attempt #1

Final case:
• Multiple producer threads, multiple consumer threads
• Shared buffer with N elements between producer and consumer

Producer

While (1) {
 mutex_lock(&monitor);
 cond_wait(&empty,&monitor);
 myi = findempty(&buffer);
 Fill(&buffer[myi]);
 cond_signal(&full);
 mutex_unlock(&monitor);
}

Consumer

While (1) {
 mutex_lock(&monitor);
 cond_wait(&full,&monitor);
 myj = findfull(&buffer);
 Use(&buffer[myj]);
 cond_signal(&empty);
 mutex_unlock(&monitor);
}

Shared variables
lock_t monitor;
cond_t empty, full;

Why won’t this work?

4

Producer/Consumer: Hoare
Attempt #2

Producer

While (1) {
 mutex_lock(&monitor);
 if (slots==N)
 cond_wait(&empty,&monitor);
 myi = findempty(&buffer);
 Fill(&buffer[myi]);
 slots++;
 cond_signal(&full);
 mutex_unlock(&monitor);
}

Consumer

While (1) {
 mutex_lock(&monitor);
 if (slots==0)
 cond_wait(&full,&monitor);
 myj = findfull(&buffer);
 Use(&buffer[myj]);
 slots--;
 cond_signal(&empty);
 mutex_unlock(&monitor);
}

Shared variables
lock_t monitor;
cond_t empty, full;
int slots = 0;

Producer/Consumer:
Hoare Example

Two producers, two consumers...

Producer/Consumer: Mesa

Mesa: Another thread may be scheduled and acquire lock before
signalled thread runs

Repeat Example: Two producers, two consumers...

What can go wrong?

Producer/Consumer: Mesa
Mesa: Another thread may be scheduled and acquire lock before signalled thread runs
Implication: Must recheck condition with while() loop instead of if()

Producer

While (1) {
 mutex_lock(&lock);
 while (slots==N)
 cond_wait(&empty,&lock);
 myi = findempty(&buffer);
 Fill(&buffer[myi]);
 slots++;
 cond_signal(&full);
 mutex_unlock(&lock);
}

Consumer

While (1) {
 mutex_lock(&lock);
 while(slots==0)
 cond_wait(&full,&lock);
 myj = findfull(&buffer);
 Use(&buffer[myj]);
 slots--;
 cond_signal(&empty);
 mutex_unlock(&lock);
}

Shared variables
cond_t empty, full;
int slots = 0;

