
Part I: Short Questions1. Whih of the following are more like poliies, and whih are more like mehanisms? For eah answer, irlepoliy or mehanism.(a) The timer interrupt Poliy / Mehanism(b) How long a time quantum should be Poliy / Mehanism() Saving the register state of a proess Poliy / Mehanism(d) Continuing to run the urrent proess when a disk I/O interrupt ours Poliy / Mehanism2. For a workload onsisting of ten CPU-bound jobs of all the same length (eah would run for 10 seonds in a dedi-ated environment), whih poliy would result in the lowest average response time?Please irle ONE answer.(a) Round-robin with a 100 milliseond quantum(b) Shortest Job First() Shortest Time to Completion First(d) Round-robin with a 10 nanoseond quantum3. Proesses (or threads) an be in one of three states: Running, Ready, or Bloked. For eah of the followingfour examples, write down whih state the proess (or thread) is in:(a) Waiting in Domain Read() for a message from some other proess to arrive.(b) Spin-waiting for a variable x to beome non-zero.() Having just ompleted an I/O, waiting to get sheduled again on the CPU.(d) Waiting inside of pthread ond wait() for some other thread to signal it.4. What is a ooperative approah to sheduling proesses, and why is it potentially a bad idea?5. Assume we run the following ode snippet. After waiting for a �long� time, howmany proesses will be runningon the mahine, ignoring all other proesses exept those involved with this ode snippet? You an assume thatfork() never fails. Feel free to add a short explanation to your answer.voidrunMe(){ for (int i = 0; i < 100; i++) {int r = fork();if (r == 0) {while (1); // spin forever} else {while (1); // spin forever}}}Number of proesses running: 1



6. In lass, we gave the following ode as an implementation of mutual exlusion:boolean lok[0℄ = lok[1℄ = false;int turn = 0;void deposit (int amount) {lok[pid℄ = true;turn = 1 - pid;while (lok[1-pid℄ && (turn == (1 - pid))); // spinbalane = balane + amount;lok[pid℄ = false;}Let's say we replae the statement turn = 1 - pid with the statement turn = BinaryRandom(),where the funtion BinaryRandom() returns a 1 or 0 at random to whomever alls it.Will the ode still funtion properly? If so, why, and if not, what problem ould our?
7. Assume the following ode snippet, where we have two semaphores, 'mutex' and 'signal':Thread 1 Thread 2sem_wait(mutex); sem_wait(mutex);if (x > 0) x++;sem_post(signal); sem_post(signal);sem_post(mutex); sem_post(mutex);sem_wait(signal);Wewant 'mutex' to providemutual exlusion among the two threads, and for 'signal' to provide a way for thread2 to ativate thread 1 when 'x' is greater than 0. What should the initial values of eah of the two semaphoresbe? (Assume that 'x' is always positive or zero, and that there are only these two threads in the system).Value of mutex:Value of signal:

2



8. Whih of the following will NOT guarantee that deadlok is avoided? Please irle all that apply.(a) Aquire all resoures (loks) all at one, atomially(b) Use loks sparingly() Aquire resoures (loks) in a �xed order(d) Be willing to release a held lok if another lok you want is held, and then try the whole thing over again9. A number of threads periodially all into the following routine, to make sure that a �le that is shared betweenthem has already been opened (after alling this routine, a thread might go ahead and all write() on that �le, forexample). Assume there is a global integer fd, whih is set to -1 when the fd is losed, and a global lok lok,whih is used for synhronization. Here is the ode:void MakeSureFileIsOpen() {mutex_lok(&lok);if (fd == -1)fd = open(``/tmp/file'', O_WRONLY);mutex_unlok(&lok);}However, you get lever, and deide to re-write the ode as follows:void MakeSureFileIsOpen() {if (fd == -1) {mutex_lok(&lok);if (fd == -1)fd = open(``/tmp/file'', O_WRONLY);mutex_unlok(&lok);}}Does this ode still work orretly? Why? If so, what advantage do we gain by using this implementation,and why is the ondition (fd == -1) reheked inside the mutex? If not, why doesn't it work?10. For a workload onsisting of ten CPU-bound jobs of varying lengths (half run for 1 seond, and the other halffor ten seonds), whih poliy would result in the lowest total run time for the entire workload? Assume thatontext swith time is zero for this problem, and please irle all that apply.(a) Shortest Job First(b) Shortest-Time to Completion First() Round-robin with a 100 milliseond quantum(d) Multi-level Feedbak Queue11. A mehanism that an be used for synhronization is the ability to turn on and off interrupts.a) How an you use this to implement a ritial setion?b)Why does does it work on a single proessor system?b)Why does't does it work on a multi-proessor system?)Why is this generally a bad idea, whether on a single or multi-proessor system?3



Part II: Longer Questions1. Rae to the FinishAssume we are in an environment with many threads running. Take the following C ode snippet:int z = 0; // global variable, shared among threadsvoid update (int x, int y) {z = z + x + y;}Assume that threads may all be alling update with different values for x and y.a): Write assembly ode that implements the funtion update(). Assume you have three instrutions at yourdisposal: (1) load [address℄, Rdest, (2) add Rdest, Rsr1, Rsr2, and (3) store Rsr, [address℄. Also, feelfree to assume that when update() is alled, the value of 'x' is already in R1, and the value of 'y' is in R2.
b): Beause this ode is not guarded with a lok or other synhronization primitive, a �rae ondition� ouldour. Desribe what this means.
): Now, label plaes in the assembly ode where a timer interrupt and swith to another thread ould result insuh a rae ondition ouring.
d): Now, assume we hange the C ode as follows:void update (int x, int y) {z = x + y; // note we just set z equal to x+y (not additive)}If two threads all update() at �nearly� the same time, the �rst like this: 'update(3,4)', and seond like this:'update(10,20)', what are the possible outomes? If we plae a lok around the routine (e.g., before setting z =x + y, we aquire a lok, and after, we release it), does this hange the behavior of this snippet?

4


