CS-537: Midterm Exam (Fall 2004)
Midterm Harder: The Solutions

Please Read All Questions Carefully!

There are eight (8) total numbered pages.

Please put your student ID (but NOT YOUR NAME) on every page.

Name and Student ID:

Part I: Short Questions
The following questions require short answetach of 12 is worth 5 points (60 total)
1. In atraditional single-threaded process, we have bsthck and aheap

e What is the stack used for?
Dynamically-allocated data that is allocated and deatkgtén a predictable order, namely things like
procedure call parameters and local variables. Hencanthisory tends to be compiler managed (the user
does not have to be involved).

e What is the heap used for?
Dynamically-allocated data that is allocated and deatkxta an unpredictable manner, such as arbitrary
data structures like linked lists, etc. Hence this memongseto be user managed (requiring calls to
allocate memory, and depending on the language, deallotat®ory too).

e If, for some reason, you could only have one of these two, imhiculd you pick and why?
The heap, because it is more general albeit slower.

2. Assume you have a free list that consists of the followneg fchunks, in this order from the head of the list:
10 bytes, 20 bytes, 40 bytes, and 10 bytes. Then assume ythedetlowing allocation requests: allocate 10,
allocate 15, allocate 10, allocate 35.

e Usingfirst fit allocation, will all requests succeed?
First fit fails upon the fourth request, for 35 bytes. Why? &exe the 10 byte chunk is used by request
1, the 20 byte chunk used by the 15-byte request 2 (leavingyeehunk), and then the 40-byte chunk
gets used by request 3 (leaving a 30-byte chunk). Hence, thiee3b-byte request rolls around, there is a
5-byte, 30-byte, and 10-byte chunk, leading to failure.

e Usingbest fit allocation, will all requests succeed?
Yes. Request 1 is served by the 10-byte chunk, request 2 R0ktyte chunk (leaving 5), request 3 by
the last 10-byte chunk, and request 4 by the 40-byte chuakifig 5).

e In general, which is better, first fit or best fit?

Hard to say. Could make the argument that you can’t say beocausdon’t know what the workload is
like. Could also argue first-fit (because it’s likely to betéas, or best-fit (because it avoids problems like
the above).

3. With dynamic relocation, the hardware has baseregister and dounds register, which it uses to support
multiprogramming.

¢ Imagine if you just had haseregister; what functionality do you lose with the loss of Hweinds register?
Bounds gives you protection, checking that referenceswsitiyn the address space of a given process.

e Imagine if you just had Boundsregister; what functionality do you lose with the loss of Haese register?
Base gives you the ability to relocate through hardware.

¢ In a multiprogrammed system, if you could only have one segster, which would you chooseaseor
bounds? Why?

Simple answer: multiprogramming demands relocation (@b&nmultiple processes to run within the
same memory). Hence, the base register.

Other accepted answer: bounds, because we can use statatieh (done via the loader) to get relocation.

4. This question is abowixternal fragmentation.

e Define it.

External fragmentation is the type of fragmentation thatuos outside of the unit of allocation. Hence,
the free space is broken up into a number of holes, often @divarsize and hence potentially problematic
under an arbitrary request stream.

e Give an example of where it occurs.

It occurs in heap-based memory management. Others gavesperiic examples, which was also OK.

5. Name and descrildie/o advantages thaegmentationhas over simplelynamic relocation:

e Advantage #1:
Permits sharing (say of code pages).

e Advantage #2:

Supports sparse address spaces (all of those pages inebettveestack and the heap no longer need be
allocated).

6. Envision a system that uspsre paging(i.e., no segmentation) and a hardwatd3 . Also assume the the TLB
is software managedi.e., any updates to the TLB are handled by the operatingsys

e What happens on&LB hit ?

A TLB hitis completely handled by hardware. TLB takes the Vifdin the address, looks up the matching
entry in the TLB to find the PPN, appends the offset from thegional address, and presents the fully-
qualified physical address to memory.

e What happens on8LB miss?

A TLB miss follows the same path above until the TLB is consdiland it is found that the matching
entry for this VPN is not in the TLB. At that point, a fault isgerated, jumping into the OS to handle the
problem (it is a software-managed TLB after all). The OS tbemsults the page table, and, assuming that
the relevant page is in memory, takes the PPN, installs itenf_B (removing another entry), and restarts
the instruction.

e What happens onpage fault?

The same path as above is taken, except that when the pagegsaiinsulted, it tells you that the page
is not resident in memory. Hence, one must find the page onattidlbring it into memory. If there was
no free memory available, a page replacement algorithm firasbe run, evicting an existing page, and
if that page was dirty, it must first be written to disk. Once tiew page is brought in, the page table and
TLB must be updated, and the instruction restarted.

7. This question is about the contents of a typical TLB.

e Sometimes a TLB will contain two entries that have the spimesical address- when?

| really should have said the same “physical page humberéTtB of course does not hold the offset
part of the addresses. However, any time two separate [g@Eassharing a page of memory, the TLB
will have two entries that refer to the same physical page.

e Sometimes a TLB will contain two entries that have the sairtaal address — when?

| again should have said “virtual page number”. The TLB witlidh entries with the same virtual page
number when two different processes have entries in the TltBeasame time.

e Do either or both of these cases require extra hardware sufjppm the system to work properly?

Really, both do. In the first case, we have sharing, and hendeubtedly need protection bits. In the
second, we need to distinguish entries with the same VPNhande need an address-space identifier of
some kind.

8. In this question, we discuss thkmck replacement strategy.

e Describe how clock works. What hardware support is needek&t\dbftware structures must be kept?

Clock uses reference bits (or use bits) to approximate LBseH page replacement. Upon a memory
reference to a page, clock assumes that the hardware wil bigttsaying that the given page has been
accessed. The OS, when it needs a page, will then sweep ththegages of memory in a circular (or
clock-like) fashion, looking for a page that has not beereased recently (i.e., its use bit has not been
set). In doing the sweep, the OS also clears the bits as itiegarthem, and hence in the worst case will
sweep all the way around before replacing a page (in the basalt pages had been accessed).

e Can clock ever behave exactly like “perfect” LRU? (describe

| basically took answers that went either way here. If yod yais, you probably meant that it could if the
reference stream were just right and it matched LRU’s befalfiyou said no, you probably argued that
clock just does “NRU” replacement (not recently used), aglde is only an approximation of LRU.

9. This question is about physical addressability in a sydteat usepaging. Let’s say we have a0-bit virtual
address with a4 KB page size

e Let's assume that the system we’re running upon has a maxiofiunGB of physical memory. How big
is each page table? (assume 2 extra bits of information aeeaebeyond the usual stuff).

Size of a page table: number of entries times the size pey.évitimber of entries here: determine by the
number of pages in th@rtual address space. With a 20-bit address space and a 4 KB pagesibhave

8 bits of each address which determine the number of virtagép in the address space, and h&ioer
256 pages. Hence, 256 entries.

Now we must calculate the size per entry. For this, we havee#tize that each entry must hold the
corresponding physical page number, plus 2 bits. In thisqgfahe question, it is stated the we have 1 GB
of addressable physical memory. 1 GB is 30 bits, and we hasgalitract the size of the offset (12 bits
again from the 4 KB page size) to get an 18-bit physical pagebar. We add the 2 bits and get 20 bits
per entry.

So the answer is 256 entries, each of size 20 bits. Becauseolalgy have to use bytes and not bits, a
very reasonable answer is 256 entries each of size 3 byté§8dvytes.

e Let's assume a different system we’re running upon has amanxiof 64 KB of memory. How big is each
page table? (again assume the 2 extra bits).
Similar reasoning for the number of entries: 256 (we aregigie same virtual address space after all).
As for the number of bits needed for the PPN, this time we havikB addressable physical memory. 64
KB implies only 4 bits for the PPN (with 12 for the 4-KB offseain), and we again add 2 bits to get 6
bits per entry.

So the answer is 256 entries each of 6 bits. Again roundinggoeartest byte per entry, 256 bytes is your
answer.

e Which of the preceding two cases is worse, having more palsiemory than your process can address,
or less? Why?
Having more physical memory than your process can addresbasl thing — it implies the only way to
use the entire memory is through multiprogramming. A simgytegram with large memory requirements
could not.

Some people said the latter was worse because it leads togpagi this confuses the issue of paging with
the issue of addressability.

10. In this question, we explore page cache replacemertegies.
Assume you have the following page reference stream: A, B,@, B, E, A, B, C, D, E.

e Assuming a page cache of si2gagesand aFIFO replacement policy, how many misses will there be?
9 misses. A - miss (afterwards, in cache: A), B - miss (cachB), £ - miss (cache: ABC), D - miss
(cache: BCD), A - miss (cache: CDA), B - miss (cache: DAB), Eissr(cache: ABE), A - hit (cache:
ABE), B - hit (cache: ABE), C - miss (cache: BEC), D - miss (ca&icRCD), E - hit.

e Assuming a page cache of s¢@agesand aFIFO replacement policy, how many misses will there be?
10 misses. A - miss (cache: A), B - miss (cache: AB), C - missi{eaABC), D - miss (cache: ABCD), A
- hit, B - hit, E - miss (cache: BCDE), A - miss (cache: CDEA), Biiss (cache: DEAB), C - miss (cache:
EABC), D - miss (cache: ABCD), E - miss (cache: BCDE).

e Does the comparison between the 3-page and 4-page cacheseypu in any way? Why?

Most (who got the numbers right) said “yes”, because biggehes are supposed to be better. Some said
“no”, because FIFO is a silly policy and can lead to funny aabes like this (in fact, this one is called

“Belady’s anomaly”). If you are interested, you can alsoverto yourself that thisannot happen for an
LRU-managed cache.

11. Thrashing occurs when more memory is being actively utilized than trstesn contains. When talking about
thrashing, one often refers therking set of a process.

¢ Define the “working set” of a process.

Simply, the number of unique pages accessed by the proctsa thie lastl’ seconds. Some also said the
number of pages a process is using at a given time or in a givenftame.

e If a system is thrashing, how can we try to reduce thrashiitigin the OS? (i.e., how would we change
the 0S?)

Thrashing implies that we are repeatedly evicting pages fremory and fetching new ones, hence mak-
ing slow progress. The OS could handle this in a number of welgsvever, one really good way is to
use admission control: by descheduling some of the jobdrmatige thrashing, we can reduce the load on
memory and make better progress. We could also perhapsetiamgeplacement policy, but that might
be harder to get right.

o If a system is thrashing, how can we try to reduce thrashiitly hardware (of some kind)? (i.e., how
would we change the hardware?)

Simplest answer: buy more memory. Other more esoteric stiggs were also made, and yet often
rejected by this exacting grader.

12. Assume you have physical addressP. Let's say this is in a system that has a typiltaéar page table
structure.

e How would you find out which virtual address(es) are mappef20
Given a linear page table and a physical addiéssne must extract the PPN from the address and scan
the table looking for any and all addresses that map to thisipal page.

e What kind of data structures might you add to speed up thisgas?

Something like an inverted page table, i.e., somethinglaahes physical page numbers to the virtual
pages that are mapped to it.

Part Il: Longer Questions

The second half of the exam consists of two longer questeard) worth 20 points (total 40)

1. Improving your memory.
In this question, we consider a new hardware system thata$ypes of memoryPrimary memory is the

type

of memory attached to the system in the typical manngr (@ a memory bus)Secondary memory

is additional memory that you add for more capacity, butdatiled onto the I/O bus. The implication of this
structure is thasecondary memory accesses are slower than primary memory eessegbut still of course
are much faster than disk accesses).

Note that secondary memory is addressed just like primamaong Specifically, the hardware looks like it just
has one big physical memory. However, the lower part of thig/Sical” memory is the faster primary memory,
and the upper part is slower secondary memory. The OS caratdy find out where the boundary is, and thus
can be intelligentin how it uses primary versus secondamang.

We now discuss how OS design must change to accommodatevthzangware.

(@)

(b)

(©

(d)

Let's say you decide to use a combination of segmentatidmpaging in the OS for this system. Describe
how a combined segmentation and paging approach works, @amdhis hybrid approach improves on
strict paging and strict segmentation.

Paging is great because it removes the problems of exteagah&ntation — all requests are for page-sized
entities and hence can be serviced by any free page. Hovpewerpaging requires really large page tables,
with one entry per virtual page. Adding segmentation sotkiesproblem, by requiring only one entry per
virtual page in each segment (and removing the need for #tleoéntries in the middle part of the address
space between the stack and the heap). Hence, paging ptlasrsgion avoids the problems of external
fragmentation while supporting large, sparse addressespettectively.

In this system, you of course will have page tables. Shgali change how the page tables are structured
in this new system? (if so, how, if not, why not)

Some said yes, in that minimally you might want to track sonfe about which type of memory the
page is residing in (primary or secondary). | accepted #ithpugh it is redundant; simply knowing the
physical address tells you which type of memory itis in.

Some said yes, and suggested putting the page tables inrpningsnory to speed up access. | liked this
answer.

Some said no: although we have primary and slower secondanyany, the page tables could remain
intact. This was acceptable with good justification.

You also decide to use LRU replacement for the page caabscribe how LRU replacement works.

Standard “perfect” LRU replacement works by evicting thasterecently used page when a free page
frame is required. The newly broughtin page becomes, ofseptine most-recently used page.

Should you change how your basic LRU algorithm works is tlew system? (if so, how, if not, why not)

The new system might want to try to keep pages that are beiaglhaised by the system in primary
memory, to speed up accesses. One excellentway to do thisésmt secondary memory like another cache
in the hierarchy, some people suggested, and | liked thafestipn. Others suggested more complicated
schemes which moved pages back and forth between primargenuhdary depending on their LRU
order. This was also quite acceptable. Others said thatwloeyd prefer to evict pages from primary
memory, because the eviction was faster(!), which | did iket&t all but gave some credit for — our goal
is not fast eviction but rather to make sure the program rasisvfhen it is accessing memory!

2. Size does matter.

In this question, we try to understand the issues that sndthe choice opage sizen a system. In particular,
we will discuss some new systems that have suppottfopages sizes, orfemall” sized (say 4 KB), and one
thatis“big” (say 1 MB).

(@)

(b)

(©

(d)

If we just have a single page size, and it is qbiig, what are the possible negative consequences? In
contrast, what negative consequences arise if our pagessaesmall?

Bigger pages have the problem of increased waste due toahfeagmentation.
Smaller pages have the problem of increasingly large pddesta

Usingbig pagescan improve performance. Whidtardware resourcesof the system are better utilized
with big pages?

Big pages are primarily used to reduce pressure on the TLBk-hig) pages, a much bigger portion of
your address space can be actively mapped by the TLB, anctlyene TLB hit rates improve. If you
didn’t say “TLB” in your answer, it was hard for you to get faltedit.

Big pages may also reduce memory pressure because you hallergmage tables and hence more other
stuff can fit into memory.

Finally, big pages may improve disk access times, as it iegdly more efficient to move large pages in
and out of disk.

To support multiple page sizes, some aspects ghdge tablemustchange Describe the most important
changes needed, and how you would implement them. Assumgpdedinear page table

| accepted answers that minimally realized that differeadgpsizes implied a differing number of bits
needed in the PPN in each page table. However, it’s a littleertricky than that, because you also have to
index the page table with the VPN of the address, so a more lebergmswer would have to deal with that
issue as well.

Now imagine a scheme that tries to make use of big pagesvgussible. Specifically, the OS first hands
out small pages when a process asks for more memory. The@Speriodically tries taonvert batches

of these small pages into big pages. Describe how the OS vamuttis — what must be true to convert
small pages into a big page? What (software/hardware)tsrescmust be updated?

To convert a set of small pages into a single big one, the OS ook for a set of small pages that
are aligned with the big page, and are contiguous in both ittieal address of the process as well as in
physical memory. These pages also should have the samethatics (e.g., they should have the same
protection). Note that the if the physical contiguity regment is not met, the OS could reshuffle pages
(at some cost) to meet the requirement. Once such a set df gagals is found, they can be promoted to
a large page, which would involve changing the page tablefteat such a change, as well as the TLB.

