CS-537: Midterm Exam (Spring 2001)

Please Read All Questions Carefully!

There are seven (7) total numbered pages

Name:




Grading Page

Points| Total Possible

Part I: Short Answers (12 x 5) — 60
Part Il: Long Answers (2 x 20) — 40
Total 100

Name:




Part I: Short Questions
The following questions require short answeEsch of 12 is worth 5 points (60 total)

1. Which of the following are more like policies, and whicleanore like mechanismgzor each answer, circle
policy or mechanism.

(8) The timer interrupt Policy / Mechanism
(b) How long a time quantum should be Policy / Mechanism
(c) Saving the register state of a process Policy / Mechanism
(d) Continuing to run the current process when a disk I/Ormiat occurs Policy / Mechanism

The interrupt and register state saving are mechanisms (théhow”), whereas the quantum length and
decision to run a particular process are clearly policies.

2. Foraworkload consisting of ten CPU-bound jobs of all #u@s length (each would run for 10 seconds in a dedi-
cated environment), which policy would result in thdowest average response tinke
Please circle ONE answer.

(8) Round-robin with a 100 millisecond quantum

(b) Shortest Job First

(c) Shortest Time to Completion First

(d) Round-robin with a 1000 nanosecond quantum
Response time is the time from the demand from service untilhe first service. Shortest-job first and
shortest-time-to-completion will make some processes (ig ones) wait arbitrarily long, so those can be

ruled out. Thus, it is clearly one of the RRs. The one with the Isorter time quantum wins (1000 ns is
much less than 100 ms).

3. Assume we divide the heap into fixed-sized units of Sizé\lso assume that we never get a request for a unit
larger thanS. Thus, for any request you receive, you will return a sindtichk of sizeS, if you have any free
blocks. What kind ofragmentation can occur in this situation, and why is this bad?

Internal fragmentation may occur. This is bad simply becaus it potentially wastes space, e.g., if all
requests are for 1 byte, S-1 bytes will be wasted per requestt is called internal fragmentation because
the waste is “internal” in the block that has been allocated.

4. Name and describevo examples of where we saw the OS needed support from the herdwarder to
implement some needed functionalityirft : think about process management and memory management).
Many possible answers. Base and bounds registers for memorganagement support. Test and set in-
struction for synchronization. Timer interrupt to re-gain control of the CPU.

5. What is acooperativeapproach to scheduling, and why is it potentially a bad idea?

Cooperative scheduling assumes that processes will volatly give up the CPU. It is potentially bad
because a buggy or malicious process can commandeer the CPhdanever relinquish it.



6. Assume we run the following code snippet. After waitingddlong” time, how many processes will be running
on the machine, ignoring all other processes except thesdvied with this code snippet? You can assume that
fork() never fails. Feel free to add a short explanation tangmswer.

voi d
runMe()
{
for (int i =0; i < 23; i++) {
int rc = fork();
if (rc == 0) {
while (1) ;
} else {
while (1) ;
}
}
}

Number of processes running:

Two processes. The parent enters the code, forks a child, atlden spins eternally. The child gets created,
and starts spinning too. Thus, we have parent and child, eacépinning forever (well, until you hit control-
Q).

7. Assume the following code snippet, where we have two seorag, 'mutex’ and 'signal’:

Thread 1 Thread 2
nmut ex. P() ; nmut ex. P() ;
if (x >0) X++;

signal . V(); signal . V();
nmut ex. V() ; mut ex. V() ;
signal . P();

We want 'mutex’ to provide mutual exclusion among the twe#tus, and for 'signal’ to provide a way for thread
2 to activate thread 1 when 'X’ is greater than 0. What sholédinitial values of each of the two semaphores
be? (Assume that 'x’ is always positive or zero, and thatelase only these two threads in the system).

Value of mutex: 1
Value of signal: 0

Mutex must be "1’ to provide mutual exclusion. Sighal must be0’ to ensure the proper signalling occurs
(thatis, thread 1 will only pass through the signal.P() if sgnal has been incrememted first via a V(), either
by itself or thread 2).

8. Assume we manage a heap imest-fit manner. What does best-fit management try to do? What kind of
fragmentation can occur in this situation, and why is this bad?

Best-fit management finds the smallest block that will fulfillthe current request (equal-to or greater-than).
Organizing memory in such a manner can lead to external fragrentation. This is bad because a request
that asks for .S bytes of memory may be denied even when more thafi bytes are free, but theS bytes are
scattered throughout memory.



9.

10.

11.

12.

Which of the following willNOT guarantee that deadlock is avoiddelease circle all that apply.

(a) Acquire all resources (locks) all at once, atomically

(b) Use locks sparingly

(c) Acquire resources (locks) in a fixed order

(d) Be willing to release a held lock if another lock you washkeld, and then try the whole thing over again

Using locks sparingly does not do anything for you, and can dtlead to deadlock.
Why is stack-based memory management usually muctr thsie heap-based memory management? If it's so

much faster, why do we ever use the heap?

The stack’s advtantage is simplicity, where allocation isyst a pointer increment, and deallocation is a
decrement. Simplicity implies speed in this case. We use theeap for flexibility, e.g., for data structures
that are not allocated/deallocated in a stack discipline.

For a workload consisting of ten CPU-bound jobs of vagylangths (half run for 1 second, and the other half
for ten seconds), which policy would result in the lowesatotn timefor the entire workload? Please circle
all that apply.

(a) Shortest Job First
(b) Shortest-Time to Completion First
(c) Round-robin with a 100 millisecond quantum
(d) Multi-level Feedback Queue
Total time is not altered by scheduling policy, and thus all plicies are equivalent. You could argue that

SJF is the fastest, because of a lack of context switches. Bhen you would have to know the parameters
of the MLFQ, which were not specified...

Assume we have a system that performs dynamic relocatiprocesses in physical memory. A process that
has just started needs 2000 total bytes of memory in its addygace. The OS currently has two free regions:
the first between physical addresses of 1000 and 2000, arebttomd between physical addresses 5000 and
7000. What value would end up in tihaseregister for this process, and what value would be inkbends
register? (write down any assumptions that you make abeuidlinds register)

Value of base: 5000
Value of bounds: 2000 or 7000



Part Il: Longer Questions
The second half of the exam consists of two longer questaach) worth 20 points (total 40)

1. Monit-or Not, Here | Come.

You are stuck using some language that only provigkesitors for mutual exclusion. However, you don’t
really like monitors all that much, and decide to implememtesv class that looks a lot more like tBénary
semaphorewe all know and love. The monitor class looks something Iiks.t

nmoni t or cl ass Bi narySemaphore {
/1 your class variables go here
void P() {
/1l code for P() goes here

}
void V() {
/1 code for V() goes here

}
}

You have at your disposal@ndition class, which has three methodsgnal(), broadcast(), andwait(), which
all function as you would expect given our class discussimu are also expected to uskare semantics.

a): What variables would you declare as part of this monitors;lasd what would you initialize them to?

i nt count

:1,
condition ¢ =

new condi tion();
b): Write the pseudo-code for your monitor implementation gftigfre.

if (count == Q)
c.wait();
count = O;

c): Write the pseudo-code for your monitor implementation of Mgre.

count = 1;
c.signal ();

b: Assume you had to uddesa semantics instead. What would have to change in your codg@ulflidn’'t
change the code, what bad thing could happen?

The if" in the P() code should be a 'while’. If this change isrit made, the code will not guarantee mutual
exclusion (think about another process entering P() just aa waiting process is woken.



2. Race to the Finish
Assume we are in an environment with many threads runninkg ffze following C code snippet:

int z =0; // global variable, shared anong threads
void update (int x, int y) {

Z t= X tYy,
}

Assume that threads may all be calling update with diffevahies for x and y.

a): Write assembly code that implements the function upda#&gsume you have three instructions at your
disposal: (1)oad [address], Rdest (2) add Rdest, Rsrcl, Rsrc2and (3)store Rsrc, [address] Also, feel
free to assume that when update() is called, the value o§’already in R1, and the value of 'y’ is in R2.

add r2, r1, r2 // conbine x and y

Id 'z, r3 /1l load z
add r2, r2, r3 // conbine x, y, and z
store r2, 'z’ // store new val ue of z

b): Because this code is not guarded with a lock or other syndratan primitive, a “race condition” could
occur. Describe what this means.

A race condition occurs when two processes 'race’ to update shared variable (in this case, 'Z’). Itis a
race because the outcome is indeterminate; the outcome deqis on how the scheduler interleaves the
two threads.

c): Now, label places in thassemblycode where a timer interrupt and switch to another threadtamsult in
such a race condition occuring.

add r2, r1, r2 // conbine x and y

Id "z, R3 /'l load z

(SWTCH HERE | S A PROBLEM

add r2, r2, r3 // conbine x, y, and z
(SWTCH HERE | S A PROBLEM

store r2, 'z /|l store new val ue of z

Basically, once 'z’ is loaded, and before it is stored, we ana danger.
d): Now, assume we change the C code as follows:

void update (int x, int y) {
z =x +y; I/ note we just set z equal to x+y (not additive)

}

If two threads call update() at “nearly” the same time, thstfiike this: 'update(3,4)’, and second like this:
'update(10,20)’, what are the possible outcomes? If wegtalock around the routine (e.g., before setting z =
X +y, we acquire a lock, and after, we release it), does thasigh the behavior of this snippet?

No problem here, because 'z’ is not incremented, simply ovewritten. Thus, whether there is mutual
exclusion or not, the value of 'z’ will either be '7’ if thread 1 went last, or '30’ if thread 2 went last.



