
CS-537: Midterm Exam (Spring 2001)

Please Read All Questions Carefully!

There are seven (7) total numbered pages

Name:

1



Grading Page

Points Total Possible

Part I: Short Answers (12 × 5) → 60

Part II: Long Answers (2 × 20) → 40

Total 100

Name:

2



Part I: Short Questions

The following questions require short answers.Each of 12 is worth 5 points (60 total).

1. Which of the following are more like policies, and which are more like mechanisms?For each answer, circle
policy or mechanism.

(a) The timer interrupt Policy / Mechanism

(b) How long a time quantum should be Policy / Mechanism

(c) Saving the register state of a process Policy / Mechanism

(d) Continuing to run the current process when a disk I/O interrupt occurs Policy / Mechanism

The interrupt and register state saving are mechanisms (the“how”), whereas the quantum length and
decision to run a particular process are clearly policies.

2. For a workload consisting of ten CPU-bound jobs of all the same length (each would run for 10 seconds in a dedi-
cated environment), which policy would result in thelowest average response time?
Please circle ONE answer.

(a) Round-robin with a 100 millisecond quantum

(b) Shortest Job First

(c) Shortest Time to Completion First

(d) Round-robin with a 1000 nanosecond quantum

Response time is the time from the demand from service until the first service. Shortest-job first and
shortest-time-to-completion will make some processes (long ones) wait arbitrarily long, so those can be
ruled out. Thus, it is clearly one of the RRs. The one with the shorter time quantum wins (1000 ns is
much less than 100 ms).

3. Assume we divide the heap into fixed-sized units of sizeS. Also assume that we never get a request for a unit
larger thanS. Thus, for any request you receive, you will return a single block of sizeS, if you have any free
blocks. What kind offragmentation can occur in this situation, and why is this bad?

Internal fragmentation may occur. This is bad simply because it potentially wastes space, e.g., if all
requests are for 1 byte, S-1 bytes will be wasted per request.It is called internal fragmentation because
the waste is “internal” in the block that has been allocated.

4. Name and describetwo examples of where we saw the OS needed support from the hardware in order to
implement some needed functionality (hint : think about process management and memory management).

Many possible answers. Base and bounds registers for memorymanagement support. Test and set in-
struction for synchronization. Timer interrupt to re-gain control of the CPU.

5. What is acooperativeapproach to scheduling, and why is it potentially a bad idea?

Cooperative scheduling assumes that processes will voluntarily give up the CPU. It is potentially bad
because a buggy or malicious process can commandeer the CPU and never relinquish it.

3



6. Assume we run the following code snippet. After waiting for a “long” time, how many processes will be running
on the machine, ignoring all other processes except those involved with this code snippet? You can assume that
fork() never fails. Feel free to add a short explanation to your answer.

void
runMe()
{

for (int i = 0; i < 23; i++) {
int rc = fork();
if (rc == 0) {

while (1) ;
} else {

while (1) ;
}

}
}

Number of processes running:

Two processes. The parent enters the code, forks a child, andthen spins eternally. The child gets created,
and starts spinning too. Thus, we have parent and child, eachspinning forever (well, until you hit control-
C).

7. Assume the following code snippet, where we have two semaphores, ’mutex’ and ’signal’:

Thread 1 Thread 2

mutex.P(); mutex.P();
if (x > 0) x++;

signal.V(); signal.V();
mutex.V(); mutex.V();
signal.P();

We want ’mutex’ to provide mutual exclusion among the two threads, and for ’signal’ to provide a way for thread
2 to activate thread 1 when ’x’ is greater than 0. What should the initial values of each of the two semaphores
be? (Assume that ’x’ is always positive or zero, and that there are only these two threads in the system).

Value of mutex: 1

Value of signal: 0

Mutex must be ’1’ to provide mutual exclusion. Signal must be’0’ to ensure the proper signalling occurs
(that is, thread 1 will only pass through the signal.P() if signal has been incrememted first via a V(), either
by itself or thread 2).

8. Assume we manage a heap in abest-fit manner. What does best-fit management try to do? What kind of
fragmentation can occur in this situation, and why is this bad?

Best-fit management finds the smallest block that will fulfillthe current request (equal-to or greater-than).
Organizing memory in such a manner can lead to external fragmentation. This is bad because a request
that asks for S bytes of memory may be denied even when more thanS bytes are free, but theS bytes are
scattered throughout memory.

4



9. Which of the following willNOT guarantee that deadlock is avoided?Please circle all that apply.

(a) Acquire all resources (locks) all at once, atomically

(b) Use locks sparingly

(c) Acquire resources (locks) in a fixed order

(d) Be willing to release a held lock if another lock you want is held, and then try the whole thing over again

Using locks sparingly does not do anything for you, and can still lead to deadlock.

10. Why is stack-based memory management usually much faster than heap-based memory management? If it’s so
much faster, why do we ever use the heap?

The stack’s advtantage is simplicity, where allocation is just a pointer increment, and deallocation is a
decrement. Simplicity implies speed in this case. We use theheap for flexibility, e.g., for data structures
that are not allocated/deallocated in a stack discipline.

11. For a workload consisting of ten CPU-bound jobs of varying lengths (half run for 1 second, and the other half
for ten seconds), which policy would result in the lowest total run timefor the entire workload? Please circle
all that apply.

(a) Shortest Job First

(b) Shortest-Time to Completion First

(c) Round-robin with a 100 millisecond quantum

(d) Multi-level Feedback Queue

Total time is not altered by scheduling policy, and thus all policies are equivalent. You could argue that
SJF is the fastest, because of a lack of context switches. Butthen you would have to know the parameters
of the MLFQ, which were not specified...

12. Assume we have a system that performs dynamic relocationof processes in physical memory. A process that
has just started needs 2000 total bytes of memory in its address space. The OS currently has two free regions:
the first between physical addresses of 1000 and 2000, and thesecond between physical addresses 5000 and
7000. What value would end up in thebaseregister for this process, and what value would be in thebounds
register? (write down any assumptions that you make about the bounds register)

Value of base: 5000

Value of bounds: 2000 or 7000

5



Part II: Longer Questions

The second half of the exam consists of two longer questions,each worth 20 points (total 40).

1. Monit-or Not, Here I Come.

You are stuck using some language that only providesmonitors for mutual exclusion. However, you don’t
really like monitors all that much, and decide to implement anew class that looks a lot more like theBinary
semaphorewe all know and love. The monitor class looks something like this.

monitor class BinarySemaphore {
// your class variables go here
void P() {

// code for P() goes here
}
void V() {

// code for V() goes here
}

}

You have at your disposal acondition class, which has three methods:signal(), broadcast(), andwait(), which
all function as you would expect given our class discussion.You are also expected to useHoare semantics.

a): What variables would you declare as part of this monitor class, and what would you initialize them to?

int count = 1;
condition c = new condition();

b): Write the pseudo-code for your monitor implementation of P() here.

if (count == 0)
c.wait();

count = 0;

c): Write the pseudo-code for your monitor implementation of V() here.

count = 1;
c.signal();

b: Assume you had to useMesasemantics instead. What would have to change in your code? Ifyou didn’t
change the code, what bad thing could happen?

The ’if’ in the P() code should be a ’while’. If this change isn’t made, the code will not guarantee mutual
exclusion (think about another process entering P() just asa waiting process is woken.

6



2. Race to the Finish

Assume we are in an environment with many threads running. Take the following C code snippet:

int z = 0; // global variable, shared among threads
void update (int x, int y) {

z += x + y;
}

Assume that threads may all be calling update with differentvalues for x and y.

a): Write assembly code that implements the function update().Assume you have three instructions at your
disposal: (1)load [address], Rdest, (2) add Rdest, Rsrc1, Rsrc2, and (3)store Rsrc, [address]. Also, feel
free to assume that when update() is called, the value of ’x’ is already in R1, and the value of ’y’ is in R2.

add r2, r1, r2 // combine x and y
ld ’z’, r3 // load z
add r2, r2, r3 // combine x, y, and z
store r2, ’z’ // store new value of z

b): Because this code is not guarded with a lock or other synchronization primitive, a “race condition” could
occur. Describe what this means.

A race condition occurs when two processes ’race’ to update ashared variable (in this case, ’z’). It is a
race because the outcome is indeterminate; the outcome depends on how the scheduler interleaves the
two threads.

c): Now, label places in theassemblycode where a timer interrupt and switch to another thread could result in
such a race condition occuring.

add r2, r1, r2 // combine x and y
ld ’z’, R3 // load z
(SWITCH HERE IS A PROBLEM)
add r2, r2, r3 // combine x, y, and z
(SWITCH HERE IS A PROBLEM)
store r2, ’z’ // store new value of z

Basically, once ’z’ is loaded, and before it is stored, we arein danger.

d): Now, assume we change the C code as follows:

void update (int x, int y) {
z = x + y; // note we just set z equal to x+y (not additive)

}

If two threads call update() at “nearly” the same time, the first like this: ’update(3,4)’, and second like this:
’update(10,20)’, what are the possible outcomes? If we place a lock around the routine (e.g., before setting z =
x + y, we acquire a lock, and after, we release it), does this change the behavior of this snippet?

No problem here, because ’z’ is not incremented, simply over-written. Thus, whether there is mutual
exclusion or not, the value of ’z’ will either be ’7’ if thread 1 went last, or ’30’ if thread 2 went last.

7


