
CS-537: Midterm Exam (Spring 2001)

Please Read All Questions Carefully!

There are seven (7) total numbered pages

Name:

1



Grading Page

Points Total Possible

Part I: Short Answers (12 × 5) → 60

Part II: Long Answers (2 × 20) → 40

Total 100

Name:

2



Part I: Short Questions

The following questions require short answers.Each of 12 is worth 5 points (60 total).

1. Which of the following are more like policies, and which are more like mechanisms?For each answer, circle
policy or mechanism.

(a) The timer interrupt Policy / Mechanism

(b) How long a time quantum should be Policy / Mechanism

(c) Saving the register state of a process Policy / Mechanism

(d) Continuing to run the current process when a disk I/O interrupt occurs Policy / Mechanism

2. For a workload consisting of ten CPU-bound jobs of all the same length (each would run for 10 seconds in a dedi-
cated environment), which policy would result in thelowest average response time?
Please circle ONE answer.

(a) Round-robin with a 100 millisecond quantum

(b) Shortest Job First

(c) Shortest Time to Completion First

(d) Round-robin with a 1000 nanosecond quantum

3. Assume we divide the heap into fixed-sized units of sizeS. Also assume that we never get a request for a unit
larger thanS. Thus, for any request you receive, you will return a single block of sizeS, if you have any free
blocks. What kind offragmentation can occur in this situation, and why is this bad?

4. Name and describetwo examples of where we saw the OS needed support from the hardware in order to
implement some needed functionality (hint : think about process management and memory management).

5. What is acooperativeapproach to scheduling, and why is it potentially a bad idea?

3



6. Assume we run the following code snippet. After waiting for a “long” time, how many processes will be running
on the machine, ignoring all other processes except those involved with this code snippet? You can assume that
fork() never fails. Feel free to add a short explanation to your answer.

void
runMe()
{

for (int i = 0; i < 23; i++) {
int rc = fork();
if (rc == 0) {

while (1) ;
} else {

while (1) ;
}

}
}

Number of processes running:

7. Assume the following code snippet, where we have two semaphores, ’mutex’ and ’signal’:

Thread 1 Thread 2

mutex.P(); mutex.P();
if (x > 0) x++;

signal.V(); signal.V();
mutex.V(); mutex.V();
signal.P();

We want ’mutex’ to provide mutual exclusion among the two threads, and for ’signal’ to provide a way for thread
2 to activate thread 1 when ’x’ is greater than 0. What should the initial values of each of the two semaphores
be? (Assume that ’x’ is always positive or zero, and that there are only these two threads in the system).

Value of mutex:

Value of signal:

8. Assume we manage a heap in abest-fit manner. What does best-fit management try to do? What kind of
fragmentation can occur in this situation, and why is this bad?

4



9. Which of the following willNOT guarantee that deadlock is avoided?Please circle all that apply.

(a) Acquire all resources (locks) all at once, atomically

(b) Use locks sparingly

(c) Acquire resources (locks) in a fixed order

(d) Be willing to release a held lock if another lock you want is held, and then try the whole thing over again

10. Why is stack-based memory management usually much faster than heap-based memory management? If it’s so
much faster, why do we ever use the heap?

11. For a workload consisting of ten CPU-bound jobs of varying lengths (half run for 1 second, and the other half
for ten seconds), which policy would result in the lowest total run timefor the entire workload? Please circle
all that apply.

(a) Shortest Job First

(b) Shortest-Time to Completion First

(c) Round-robin with a 100 millisecond quantum

(d) Multi-level Feedback Queue

12. Assume we have a system that performs dynamic relocationof processes in physical memory. A process that
has just started needs 2000 total bytes of memory in its address space. The OS currently has two free regions:
the first between physical addresses of 1000 and 2000, and thesecond between physical addresses 5000 and
7000. What value would end up in thebaseregister for this process, and what value would be in thebounds
register? (write down any assumptions that you make about the bounds register)

Value of base:

Value of bounds:

5



Part II: Longer Questions

The second half of the exam consists of two longer questions,each worth 20 points (total 40).

1. Monit-or Not, Here I Come.

You are stuck using some language that only providesmonitors for mutual exclusion. However, you don’t
really like monitors all that much, and decide to implement anew class that looks a lot more like theBinary
semaphorewe all know and love. The monitor class looks something like this.

monitor class BinarySemaphore {
// your class variables go here
void P() {

// code for P() goes here
}
void V() {

// code for V() goes here
}

}

You have at your disposal acondition class, which has three methods:signal(), broadcast(), andwait(), which
all function as you would expect given our class discussion.You are also expected to useHoare semantics.

a): What variables would you declare as part of this monitor class, and what would you initialize them to?

b): Write the pseudo-code for your monitor implementation of P() here.

c): Write the pseudo-code for your monitor implementation of V() here.

b: Assume you had to useMesasemantics instead. What would have to change in your code? Ifyou didn’t
change the code, what bad thing could happen?

6



2. Race to the Finish

Assume we are in an environment with many threads running. Take the following C code snippet:

int z = 0; // global variable, shared among threads
void update (int x, int y) {

z += x + y;
}

Assume that threads may all be calling update with differentvalues for x and y.

a): Write assembly code that implements the function update().Assume you have three instructions at your
disposal: (1)load [address], Rdest, (2) add Rdest, Rsrc1, Rsrc2, and (3)store Rsrc, [address]. Also, feel
free to assume that when update() is called, the value of ’x’ is already in R1, and the value of ’y’ is in R2.

b): Because this code is not guarded with a lock or other synchronization primitive, a “race condition” could
occur. Describe what this means.

c): Now, label places in theassemblycode where a timer interrupt and switch to another thread could result in
such a race condition occuring.

d): Now, assume we change the C code as follows:

void update (int x, int y) {
z = x + y; // note we just set z equal to x+y (not additive)

}

If two threads call update() at “nearly” the same time, the first like this: ’update(3,4)’, and second like this:
’update(10,20)’, what are the possible outcomes? If we place a lock around the routine (e.g., before setting z =
x + y, we acquire a lock, and after, we release it), does this change the behavior of this snippet?

7


